Skip to main content

Prostate Elastrography

  • Chapter
  • First Online:
Imaging and Focal Therapy of Early Prostate Cancer

Abstract

Elastography of the prostate has shown great promise to help diagnose prostate cancer with high sensitivity (∼70–90 %) and specificity (∼72–87 %) when used for biopsy guidance. The basis for using elastography is given by empirical evidence (i.e., digital rectal examination) and quantitative experiments which have demonstrated that prostate cancer is often stiffer than surrounding prostatic tissue. Using ultrasound or magnetic resonance imaging along with a mechanical excitation, it is possible to generate images of the stiffness of the prostate, thereby guiding biopsy procedures and focal therapies to the stiff regions of the prostate. Several challenges exist with the clinically implemented version of compressive elastography; thus, multiple other elastographic methods are currently under investigation to determine their utility in the context of guiding biopsy procedures, guiding and monitoring focal therapies, and facilitating watchful waiting. This chapter provides a review of the fundamental principles of elasticity imaging, a summary of clinical reports of the utility and challenges with commercially available prostate elasticity imaging systems, and an overview of current research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamoi K, Okihara K, Ochiai A, et al. The utility of transrectal real-time elastography in the diagnosis of prostate cancer. Ultrasound Med Biol. 2008;34(7):1025–32.

    Article  PubMed  Google Scholar 

  2. Miyanaga N, Akaza H, Yamakawa M, et al. Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report. Int J Urol. 2006;13(12):1514–8.

    Article  PubMed  Google Scholar 

  3. Pallwein L, Mitterberger M, Pinggera G, et al. Sonoelastography of the prostate: comparison with systematic biopsy findings in 492 patients. Eur J Radiol. 2008;65(2):304–10.

    Article  PubMed  Google Scholar 

  4. Eggener S, Salomon G, Scardino PT, De la Rosette J, Polascik TJ, Brewster S. Focal therapy for prostate cancer: possibilities and limitations. Eur Urol. 2010;58(1):57–64.

    Article  PubMed  Google Scholar 

  5. Zhai L, Dahl J, Madden J, et al. Three-dimensional acoustic radiation force impulse (ARFI) imaging of human prostates in vivo. Paper presented at ultrasonics symposium. IEEE, 2–5 Nov 2008.

    Google Scholar 

  6. Zhai L, Madden J, Foo W-C, et al. Acoustic radiation force impulse imaging of human prostates ex vivo. Ultrasound Med Biol. 2010;36(4):576–88.

    Article  PubMed  Google Scholar 

  7. Zhai L, Madden J, Mouraviev V, Polascik T, Nightingale K. Correlation between SWEI and ARFI image findings in ex vivo human prostates. Paper presented at ultrasonics symposium. IEEE International, 20–23 Sep 2009.

    Google Scholar 

  8. Salcudean S, French D, Bachmann S, Zahiri-Azar R, Wen X, Morris W. Viscoelasticity modeling of the prostate region using vibro-elastography. In: Larsen R, Nielsen M, Sporring J, editors. Proceedings of the medical image computing and computer-assisted intervention – MICCAI 2006, vol 4190. Heidelberg: Springer; 2006. p. 389–96

    Google Scholar 

  9. Mahdavi SS, Moradi M, Wen X, Morris WJ, Salcudean SE. Evaluation of visualization of the prostate gland in vibro-elastography images. Med Image Anal. 2011;15(4):589–600.

    Article  PubMed  Google Scholar 

  10. Castaneda B, Hoyt K, Westesson K, et al. Performance of three-dimensional sonoelastography in prostate cancer detection: A comparison between ex vivo and in vivo experiments. Paper presented at ultrasonics symposium. IEEE International, 20–23 Sep 2009.

    Google Scholar 

  11. Hoyt K, Castaneda B, Zhang M, et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 2008;4(4):213–25.

    PubMed  Google Scholar 

  12. Taylor LS, Rubens DJ, Porter BC, et al. Prostate cancer: three-dimensional sonoelastography for in vitro detection1. Radiology. 2005;237(3):981–5.

    Article  PubMed  Google Scholar 

  13. Arani A, Plewes D, Chopra R. Transurethral prostate magnetic resonance elastography: prospective imaging requirements. Magn Reson Med. 2011;65(2):340–9.

    Article  PubMed  Google Scholar 

  14. Arani A, Plewes D, Krieger A, Chopra R. The ­feasibility of endorectal MR elastography for prostate cancer localization. Magn Reson Med. 2011;66:1649–57.

    Article  PubMed  Google Scholar 

  15. Chopra R, Arani A, Huang Y, et al. In vivo MR elastography of the prostate gland using a transurethral actuator. Magn Reson Med. 2009;62(3):665–71.

    Article  PubMed  Google Scholar 

  16. Kemper J, et al. MR elastography of the prostate: initial in-vivo application, vol. 176. Stuttgart, ALLEMAGNE: Thieme; 2004.

    Google Scholar 

  17. Zhang M, Nigwekar P, Castaneda B, et al. Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med Biol. 2008;34(7):1033–42.

    Article  PubMed  Google Scholar 

  18. Cochlin DL, Ganatra RH, Griffiths DFR. Elastography in the detection of prostatic cancer. Clin Radiol. 2002;57(11):1014–20.

    Article  PubMed  Google Scholar 

  19. Miyagawa T, Tsutsumi M, Matsumura T, et al. Real-time elastography for the diagnosis of prostate cancer: evaluation of elastographic moving images. Jpn J Clin Oncol. 2009;39(6):394–8.

    Article  PubMed  Google Scholar 

  20. Nelson ED, Slotoroff CB, Gomella LG, Halpern EJ. Targeted biopsy of the prostate: the impact of color doppler imaging and elastography on prostate cancer detection and gleason score. Urology. 2007;70(6):1136–40.

    Article  PubMed  Google Scholar 

  21. Pallwein L, Aigner F, Faschingbauer R, et al. Prostate cancer diagnosis: value of real-time elastography. Abdom Imag. 2008;33(6):729–35.

    Article  Google Scholar 

  22. Parker KJ, et al. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol. 2011;56(1):R1.

    Article  PubMed  CAS  Google Scholar 

  23. Salomon G, Köllerman J, Thederan I, et al. Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur Urol. 2008;54(6):1354–62.

    Article  PubMed  Google Scholar 

  24. Tsutsumi M, Miyagawa T, Matsumura T, et al. The impact of real-time tissue elasticity imaging (elastography) on the detection of prostate cancer: clinicopathological analysis. Int J Clin Oncol. 2007;12(4):250–5.

    Article  PubMed  Google Scholar 

  25. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    PubMed  CAS  Google Scholar 

  26. Kapoor A, Kapoor A, Mahajan G, Sidhu BS. Real-time elastography in the detection of prostate cancer in patients with raised PSA level. Ultrasound Med Biol. 2011;37(9):1374–81.

    Article  PubMed  Google Scholar 

  27. Tsutsumi M, Miyagawa T, Matsumura T, et al. Real-time balloon inflation elastography for prostate cancer detection and initial evaluation of clinicopathologic analysis. Am J Roentgenol. 2010;194(6):W471–6.

    Article  Google Scholar 

  28. Paul EB, Nachiket HG. Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions. Inverse Probl. 2004;20(1):283.

    Article  Google Scholar 

  29. Fehrenbach J. Influence of Poisson’s ratio on elastographic direct and inverse problems. Phys Med Biol. 2007;52(3):707.

    Article  PubMed  CAS  Google Scholar 

  30. Pallwein L, Mitterberger M, Pelzer A, et al. Ultrasound of prostate cancer: recent advances. Eur Radiol. 2008;18(4):707–15.

    Article  PubMed  Google Scholar 

  31. Torr GR. The acoustic radiation force, vol 52. AAPT; 1984.

    Google Scholar 

  32. Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force, vol 110. ASA; 2001.

    Google Scholar 

  33. Zhai L, Polascik T, Foo W-C, et al. Acoustic radiation force impulse imaging of human prostates: initial in vivo demonstration. Ultrasound Med Biol. 2012;38:50–61.

    Article  PubMed  Google Scholar 

  34. Turgay E, Salcudean S, Rohling R. Identifying the mechanical properties of tissue by ultrasound strain imaging. Ultrasound Med Biol. 2006;32(2):221–35.

    Article  PubMed  Google Scholar 

  35. Li S, Chen M, Wang W, et al. A feasibility study of MR elastography in the diagnosis of prostate cancer at 3.0 T. Acta Radiol. 2011;52(3):354–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn R. Nightingale Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rosenzweig, S., Zhai, L., Nightingale, K.R. (2013). Prostate Elastrography. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-182-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-182-0_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-181-3

  • Online ISBN: 978-1-62703-182-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics