Skip to main content

Bioactive Polyacetylenes of Carrots in Cancer Prevention

  • Chapter
  • First Online:
Bioactive Dietary Factors and Plant Extracts in Dermatology

Part of the book series: Nutrition and Health ((NH))

  • 2684 Accesses

Abstract

Many epidemiological studies have shown an inverse association of fruit and vegetable intake with cancer risk [1–5], and that the daily intake of fruit and vegetables should be around 400–600 g in order to decrease the risk of this disease [2, 6]. The cancer preventive effects of fruit and vegetables has for many years primarily been ascribed to their contents of vitamins, minerals, fibers and antioxidants, but still the compounds responsible for the cancer preventive effects of these foods are largely unknown. However, if we look at specific vegetables, it may be possible to give a more unambiguous answer to their cancer preventive effect. This is, for example, the case with carrots (Daucus carota L., Apiaceae).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc. 1996;96:1027–39.

    Article  PubMed  CAS  Google Scholar 

  2. Van’t Veer P, Jansen MCJF, Klerk M, et al. Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr. 2000;3:103–7.

    PubMed  Google Scholar 

  3. Greenwald P, Clifford CK, Milner JA. Diet and cancer prevention. Eur J Cancer. 2001;37:948–65.

    Article  PubMed  CAS  Google Scholar 

  4. Maynard M, Gunnell D, Emmett P, et al. Fruit, vegetables, and antioxidants in childhood and risk of adult cancer: the Boyd Orr cohort. J Epidemiol Community Health. 2003;57:218–25.

    Article  PubMed  CAS  Google Scholar 

  5. Brandt K, Christensen LP, Hansen-Møller J, et al. Health promoting compounds in vegetables and fruits: a systematic approach for identifying plant components with impact on human health. Trends Food Sci Technol. 2004;15:384–93.

    Article  CAS  Google Scholar 

  6. Gundgaard J, Nielsen JN, Olsen J, et al. Increased intake of fruit and vegetables: estimation of impact in terms of life expectancy and healthcare costs. Public Health Nutr. 2003;6:25–30.

    Article  PubMed  Google Scholar 

  7. Omenn GS, Goodmann GE, Thornquist MD, et al. Effects of a combination of β(beta)-carotene and vitamin A on lung cancer and cardiovascular disease. N Eng J Med. 1996;334:1150–5.

    Article  CAS  Google Scholar 

  8. Greenberg ER, Baron JA, Karagas MR, et al. Mortality associated with low plasma concentration of β(beta)-carotene and the effect of oral supplementation. JAMA. 1996;275:699–703.

    Article  PubMed  CAS  Google Scholar 

  9. O’Neill ME, Carroll Y, Corridan B, et al. A European carotenoid database to assess carotenoid intakes and its use in a five country comparative study. Br J Nutr. 2001;85:499–507.

    Article  PubMed  Google Scholar 

  10. Wright ME, Mayne ST, Swanson CA, et al. Dietary carotenoids, vegetables, and lung cancer risk in women: the Missouri Women’s Health Study (United States). Cancer Causes Control. 2003;14:85–96.

    Article  PubMed  Google Scholar 

  11. Michaud DS, Feskanich D, Rimm EB, et al. Intake of specific carotenoids and risk of lung cancer in 2 prospective US cohorts. Am J Clin Nutr. 2000;72:990–7.

    PubMed  CAS  Google Scholar 

  12. Knekt P, Järvinen R, Teppo L, et al. Role of various carotenoids in lung cancer prevention. J Natl Cancer Inst. 1999;91:182–4.

    Article  PubMed  CAS  Google Scholar 

  13. Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta. 2005;1740:101–10.

    Article  PubMed  CAS  Google Scholar 

  14. Clifford MN. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004;70:1103–14.

    Article  PubMed  CAS  Google Scholar 

  15. Dinkova-Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res. 2008;52:S128–38.

    PubMed  Google Scholar 

  16. Hercberg S, Kesse-Guyot E, Druesne-Pecollo N, et al. Incidence of cancers, ischemic cardiovascular diseases and mortality during 5-year follow-up after stopping antioxidant vitamins and minerals supplements: a post-intervention follow-up in the SU.VI.MAX Study. Int J Cancer. 2010;127:1875–81.

    Article  PubMed  CAS  Google Scholar 

  17. Fu H, Zhang L, Yi T, et al. Two new guaiane-type sesquiterpenoids from the fruits ofDaucus carota L. Fitoterapia. 2010;8:443–6.

    Article  Google Scholar 

  18. Yang R-L, Yan Z-H, Lu Y. Cytotoxic phenylpropanoids from carrot. J Agric Food Chem. 2008;56:3024–7.

    Article  PubMed  CAS  Google Scholar 

  19. Christensen LP, Brandt K. Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal. 2006;41:683–93.

    Article  PubMed  CAS  Google Scholar 

  20. Christensen LP. Aliphatic C17-polyacetylenes of the falcarinol type as potential health promoting compounds in food plants of the Apiaceae family. Recent Pat Food Nutr Agric. 2011;3:64–77.

    Article  PubMed  CAS  Google Scholar 

  21. Christensen LP. Bioactivity of polyacetylenes in food plants. In: Watson RR, Preedy VR, editors. Bioactive foods in promoting health. 1st ed. Oxford: Elsevier Inc., Academic Press; 2009. p. 285–306.

    Google Scholar 

  22. Purup S, Larsen E, Christensen LP. Differential effects of falcarinol and related aliphatic C17-polyacetylenes on intestinal cell proliferation. J Agric Food Chem. 2009;57:8290–6.

    Article  PubMed  CAS  Google Scholar 

  23. Young JF, Duthie SJ, Milne L, et al. Biphasic effect of falcarinol on CaCo-2 cell proliferation, DNA damage, and apoptosis. J Agric Food Chem. 2007;55:618–23.

    Article  PubMed  CAS  Google Scholar 

  24. Zidorn C, Johrer K, Ganzera M, et al. Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem. 2005;53:2518–23.

    Article  PubMed  CAS  Google Scholar 

  25. Kobæk-Larsen M, Christensen LP, Vach W, et al. Inhibitory effects of feeding with carrots or (−)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon. J Agric Food Chem. 2005;53:1823–7.

    Article  PubMed  Google Scholar 

  26. Hansen SL, Purup S, Christensen LP. Bioactivity of falcarinol and the influence of processing and storage on its content in carrots (Daucus carota L.). J Sci Food Agric. 2003;83:1010–7.

    Article  CAS  Google Scholar 

  27. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed  CAS  Google Scholar 

  28. Leonti M, Casu L, Raduner S. Falcarinol is a covalent cannabinoid CB1 receptor antagonist and induces pro-allergic effects in skin. Biochem Pharmacol. 2010;79:1815–26.

    Article  PubMed  CAS  Google Scholar 

  29. Christensen LP, Jakobsen HB. Polyacetylenes: distribution in higher plants, pharmacological effects and analysis. In: Waksmundzka-Hajnos M, Sherma J, Kowalska T, editors. Thin layer chromatography in phytochemistry, Chromatographic science series, vol. 99. Boca Raton, FL: CRC/Taylor & Francis Group; 2008. p. 757–816.

    Google Scholar 

  30. Schmiech L, Alayrac C, Witulski B, et al. Structure determination of bisacetylenic oxylipins in carrots (Daucus carota L.) and enantioselective synthesis of falcarindiol. J Agric Food Chem. 2009;57:11030–40.

    Article  PubMed  CAS  Google Scholar 

  31. Lund ED. Polyacetylenic carbonyl compounds in carrots. Phytochemistry. 1992;31:3621–3.

    Article  CAS  Google Scholar 

  32. Lund ED, White JM. Polyacetylenes in normal and water-stressed “Orlando Gold” carrots (Daucus carota). J Sci Food Agric. 1991;51:507–16.

    Article  Google Scholar 

  33. Christensen LP. Unpublished results.

    Google Scholar 

  34. Christensen LP, Christensen KB. HPLC analysis of polyacetylenes. In: Waksmundzka-Hajnos M, Sherma J, editors. High performance liquid chromatography in phytochemical analysis, Chromatographic science series, vol. 102. Boca Raton, FL: CRC/Taylor & Francis Group; 2010. p. 887–916.

    Chapter  Google Scholar 

  35. Rawson A, Koidis A, Patras A, et al. Modelling the effect of water immersion thermal processing on polyacetylene levels and instrumental colour of carrot disks. Food Chem. 2010;121:62–8.

    Article  CAS  Google Scholar 

  36. Søltoft M, Eriksen MR, Trager AWB, et al. Comparison of polyacetylene content in organically and conventionally grown carrots using a fast ultrasonic liquid extraction method. J Agric Food Chem. 2010;58:7673–9.

    Article  PubMed  Google Scholar 

  37. Metzger BT, Barnes DM. Polyacetylene diversity and bioactivity in orange market and locally grown colored carrots (Daucus carota L.). J Agric Food Chem. 2009;57:11134–9.

    Article  PubMed  CAS  Google Scholar 

  38. Metzger BT, Barnes DM, Reed JD. Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. J Agric Food Chem. 2008;56:3554–60.

    Article  PubMed  CAS  Google Scholar 

  39. Schmiech L, Uemura D, Hofmann T. Reinvestigation of the bitter compounds in carrots (Daucus carota L.) by using a molecular sensory science approach. J Agric Food Chem. 2008;56:10252–60.

    Article  PubMed  CAS  Google Scholar 

  40. Kreutzmann S, Christensen LP, Edelenbos M. Investigation of bitterness in carrots (Daucus carota L.) based on quantitative chemical and sensory analyses. LWT- Food Sci Technol. 2008;41:193–205.

    Article  CAS  Google Scholar 

  41. Christensen LP, Kreutzmann S. Determination of polyacetylenes in carrot roots (Daucus carota L.) by high-­performance liquid chromatography coupled with diode array detection. J Sep Sci. 2007;30:483–90.

    Article  PubMed  CAS  Google Scholar 

  42. Kidmose U, Hansen SL, Christensen LP, et al. Effects of genotype, root size, storage, and processing on bioactive compounds in organically grown carrots (Daucus carota L.). J Food Sci. 2004;69:S388–94.

    Article  CAS  Google Scholar 

  43. Rai DK, Brunton NP, Koidis A. Characterisation of polyacetylenes isolated from carrot (Daucus carota) extracts by negative ion tandem mass spectrometry. Rapid Commun Mass Spectrom. 2011;25:2231–9.

    Article  PubMed  CAS  Google Scholar 

  44. Pferschy-Wenzig E-M, Getzinger V, Kunert O, et al. Determination of falcarinol in carrot (Daucus carota L.) genotypes using liquid chromatography/mass spectrometry. Food Chem. 2009;114:1083–90.

    Article  CAS  Google Scholar 

  45. Czepa A, Hofmann T. Quantitative studies and sensory analyses on the influence of cultivar, spatial tissue distribution, and industrial processing on the bitter off-taste of carrots (Daucus carota L.) and carrot products. J Agric Food Chem. 2004;52:4508–14.

    Article  PubMed  CAS  Google Scholar 

  46. Paulsen E, Christensen LP, Andersen KE. Dermatitis from common ivy (Hedera helix L. subsp.helix) in Europe: past, present, and future. Contact Dermatitis. 2010;62:201–9.

    Article  PubMed  CAS  Google Scholar 

  47. Hansen L, Hammershøy O, Boll PM. Allergic contact dermatitis from falcarinol isolated fromSchefflera arboricola. Contact Dermatitis. 1986;14:91–3.

    Article  PubMed  CAS  Google Scholar 

  48. Murdoch SR, Dempster J. Allergic contact dermatitis from carrot. Contact Dermatitis. 2000;42:236.

    PubMed  CAS  Google Scholar 

  49. Machado S, Silva E, Massa A. Occupational allergic contact dermatitis from falcarinol. Contact Dermatitis. 2002;47:113–4.

    Article  PubMed  CAS  Google Scholar 

  50. Wang D, DuBois RN. Prostaglandins and cancer. Gut. 2006;55:115–22.

    Article  PubMed  CAS  Google Scholar 

  51. Schneider I, Bucar F. Lipoxygenase inhibitors from natural plant sources. Part 1. Medicinal plants with inhibitory activity on arachidonate 5-lipoxygenase and 5-lipoxygenase/cyclooxygenase. Phytother Res. 2005;19:81–102.

    Article  PubMed  CAS  Google Scholar 

  52. Schneider I, Bucar F. Lipoxygenase inhibitors from natural plant sources. Part 2. Medicinal plants with inhibitory activity on arachidonate 12-lipoxygenase, 15-lipoxygenase and leukotriene receptor antagonists. Phytother Res. 2005;19:263–72.

    Article  PubMed  CAS  Google Scholar 

  53. Alanko J, Kurahashi Y, Yoshimoto T, et al. Panaxynol, a polyacetylene compound isolated from oriental medicines, inhibits mammalian lipoxygenases. Biochem Pharmacol. 1994;48:1979–81.

    Article  PubMed  CAS  Google Scholar 

  54. Liu J-H, Zschocke S, Bauer R. A polyacetylenic acetate and a coumarin fromAngelica pubescens f.biserrata. Phytochemistry. 1998;49:211–3.

    Article  CAS  Google Scholar 

  55. Uma YR, Kong C-S, Lee JI, et al. Evaluation of chemical constituents fromGlehnia littoralis for antiproliferative activity against HT-29 human colon cancer cells. Process Biochem. 2010;45:114–9.

    Article  Google Scholar 

  56. Prior RM, Lundgaard NH, Light ME, et al. The polyacetylene falcarindiol with COX-1 activity isolated fromAegopodium podagraria L. J Ethnopharmacol. 2007;113:176–8.

    Article  PubMed  CAS  Google Scholar 

  57. Dang NH, Zhang XF, Zheng MS, et al. Inhibitory constituents against cyclooxygenases fromAralia cordata thunb. Arch Pharm Res. 2005;28:28–33.

    Article  PubMed  CAS  Google Scholar 

  58. Matsunaga H, Katano M, Yamamoto H, et al. Cytotoxic activity of polyacetylene compounds inPanax ginseng C. A. Meyer. Chem Pharm Bull. 1990;38:3480–2.

    Article  PubMed  CAS  Google Scholar 

  59. Ahn B-Z, Kim S-I. Relation between structure and cytotoxic activity of panaxydol analogues against L1210 cells. Arch Pharm. 1988;321:61–3.

    Article  CAS  Google Scholar 

  60. Cunsolo F, Ruberto G, Amico V, et al. Bioactive metabolites from sicilian marine fennel.Crithmum maritimum. J Nat Prod. 1993;56:1598–600.

    Article  PubMed  CAS  Google Scholar 

  61. Bernart MW, Cardellina II JH, Balaschak MS, et al. Cytotoxic falcarinol oxylipins fromDendropanax arboreus. J Nat Prod. 1996;59:748–53.

    Article  PubMed  CAS  Google Scholar 

  62. Fujioka T, Furumi K, Fujii H, et al. Antiproliferative constituents from Umbelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root ofAngelica japonica. Chem Pharm Bull. 1999;47:96–100.

    Article  PubMed  CAS  Google Scholar 

  63. Young JF, Christensen LP, Theil PK, et al. The polyacetylenes falcarinol and falcarindiol affect stress responses in myotube cultures in a biphasic manner. Dose Response. 2008;6:239–51.

    Article  PubMed  CAS  Google Scholar 

  64. Calabrese EJ. Hormesis: from marginalization to mainstream: a case for hormesis as the default dose-response model in risk assessment. Toxicol Appl Pharmacol. 2004;197:125–36.

    Article  PubMed  CAS  Google Scholar 

  65. Ahn B-Z, Kim S-I. Heptadeca-1,8  t-diene-4,6-diyne-3,10-diol, a further cytotoxic substance from Korean ginseng roots which is active against L1210 cells. Planta Med. 1988;54:183.

    Article  PubMed  CAS  Google Scholar 

  66. Sun S, Du G-J, Qi L-W, et al. Hydrophobic constituents and their potential anticancer activities from Devil’s Club (Oplopanax horridus Miq.). J Ethnopharmacol. 2010;132:280–5.

    Article  PubMed  CAS  Google Scholar 

  67. Kuo Y-C, Lin YL, Huang C-P, et al. A tumor cell growth inhibitor fromSaposhnikovae divaricata. Cancer Invest. 2002;20:955–64.

    Article  PubMed  Google Scholar 

  68. Arscott SA, Tanumihardjo SA. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Comp Rev Food Sci Food Safety. 2010;9:223–39.

    Article  CAS  Google Scholar 

  69. Baranska M, Schulz H, Baranski R, et al. In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. J Agric Food Chem. 2005;53:6565–71.

    Article  PubMed  CAS  Google Scholar 

  70. Kjeldsen F, Christensen LP, Edelenbos M. Changes in volatile compounds of carrots (Daucus carota L.) during refrigerated and frozen storage. J Agric Food Chem. 2003;51:5400–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Porskjær Christensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christensen, L.P. (2013). Bioactive Polyacetylenes of Carrots in Cancer Prevention. In: Watson, R., Zibadi, S. (eds) Bioactive Dietary Factors and Plant Extracts in Dermatology. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-167-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-167-7_29

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-166-0

  • Online ISBN: 978-1-62703-167-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics