Advertisement

Pancreatic Reprogramming

  • Juan Domínguez-Bendala
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Hidden behind the hype of prospective stem cell-based approaches to treat human disease, reprogramming techniques have finally entered the landscape of regenerative medicine and are quickly becoming one of the most exciting and powerful weapons in the field. In the context of pancreatic regeneration, the reprogramming of non-endocrine adult tissues to cells with phenotypes resembling to those of the hormone-producing cells of the islets of Langerhans is a fertile and dynamic area of research. Here we analyze two of the most studied sources of reprogrammable cells, namely the liver and the acinar compartment of the pancreas. Several groups have now established that the ectopic expression of master pancreatic regulators such as Pdx1, MafA, Ngn3, or BETA2/NeuroD can result in variable degrees of reprogramming toward pancreatic endocrine fates, leading to insulin production in vitro, and reversal of hyperglycemia in vivo. The state of the art and clinical prospects of these novel approaches are discussed in the following chapter.

Keywords

Embryonic Stem Cell Beta Cell Leukemia Inhibitory Factor Somatic Cell Nuclear Transfer Exocrine Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

JDB acknowledges the funding of the JDRF, the NIH and the Diabetes Research Institute Foundation (DRIF)

References

  1. 1.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813PubMedCrossRefGoogle Scholar
  2. 2.
    Munsie MJ, Michalska AE, O’Brien CM, Trounson AO, Pera MF, Mountford PS (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10(16):989–992PubMedCrossRefGoogle Scholar
  3. 3.
    Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, Wolf DP, Mitalipov SM (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450(7169):497–502PubMedCrossRefGoogle Scholar
  4. 4.
    Hwang WS, Lee BC, Lee CK, Kang SK (2005) Cloned human embryonic stem cells for tissue repair and transplantation. Stem Cell Rev 1(2):99–109PubMedCrossRefGoogle Scholar
  5. 5.
    Hwang WS, Roh SI, Lee BC, Kang SK, Kwon DK, Kim S, Kim SJ, Park SW, Kwon HS, Lee CK, Lee JB, Kim JM, Ahn C, Paek SH, Chang SS, Koo JJ, Yoon HS, Hwang JH, Hwang YY, Park YS, Oh SK, Kim HS, Park JH, Moon SY, Schatten G (2005) Patient-specific embryonic stem cells derived from human SCNT blastocysts. Science 308(5729):1777–1783PubMedCrossRefGoogle Scholar
  6. 6.
    Hwang WS, Ryu YJ, Park JH, Park ES, Lee EG, Koo JM, Jeon HY, Lee BC, Kang SK, Kim SJ, Ahn C, Hwang JH, Park KY, Cibelli JB, Moon SY (2004) Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 303(5664):1669–1674PubMedCrossRefGoogle Scholar
  7. 7.
    Kennedy D (2006) Editorial retraction. Science 311(5759):335PubMedCrossRefGoogle Scholar
  8. 8.
    French AJ, Adams CA, Anderson LS, Kitchen JR, Hughes MR, Wood SH (2008) Development of Human cloned Blastocysts Following Somatic Cell Nuclear Transfer (SCNT) with Adult Fibroblasts. Stem Cells 26(2): 485–493 Google Scholar
  9. 9.
    Cowan CA, Atienza J, Melton DA, Eggan K (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309(5739):1369–1373PubMedCrossRefGoogle Scholar
  10. 10.
    Pells S, Di Domenico AI, Gallagher EJ, McWhir J (2002) Multipotentiality of neuronal cells after spontaneous fusion with embryonic stem cells and nuclear reprogramming in vitro. Cloning Stem Cells 4(4):331–338PubMedCrossRefGoogle Scholar
  11. 11.
    Pells S, McWhir J (2004) Studying nuclear reprogramming with cell hybrids. Methods Mol Biol 254:301–312PubMedGoogle Scholar
  12. 12.
    Sullivan S, Pells S, Hooper M, Gallagher E, McWhir J (2006) Nuclear reprogramming of somatic cells by embryonic stem cells is affected by cell cycle stage. Cloning Stem Cells 8(3):174–188PubMedCrossRefGoogle Scholar
  13. 13.
    Collas P (2003) Nuclear reprogramming in cell-free extracts. Philos Trans R Soc Lond B Biol Sci 358(1436):1389–1395PubMedCrossRefGoogle Scholar
  14. 14.
    Collas P, Taranger CK (2006) Epigenetic reprogramming of nuclei using cell extracts. Stem Cell Rev 2(4):309–317PubMedCrossRefGoogle Scholar
  15. 15.
    Collas P, Taranger CK (2006) Toward reprogramming cells to pluripotency. Ernst Schering Res Found Workshop (60): 47–67Google Scholar
  16. 16.
    Collas P, Taranger CK, Boquest AC, Noer A, Dahl JA (2006) On the way to reprogramming cells to pluripotency using cell-free extracts. Reprod Biomed Online 12(6):762–770PubMedCrossRefGoogle Scholar
  17. 17.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  18. 18.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  19. 19.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858): 1917–1920Google Scholar
  20. 20.
    Feng Q, Lu SJ, Klimanskaya I, Gomes I, Kim D, Chung Y, Honig GR, Kim KS, Lanza R (2010) Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28(4):704–712PubMedCrossRefGoogle Scholar
  21. 21.
    Bar-Nur O, Russ HA, Efrat S, Benvenisty N (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet Beta cells. Cell Stem Cell 9(1):17–23PubMedCrossRefGoogle Scholar
  22. 22.
    Hu Q, Friedrich AM, Johnson LV, Clegg DO (2011) Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells 28(11):1981–1991CrossRefGoogle Scholar
  23. 23.
    Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13(5):541–549PubMedCrossRefGoogle Scholar
  24. 24.
    Rizzi R, Di Pasquale E, Portararo P, Papait R, Cattaneo P, Latronico MV, Altomare C, Sala L, Zaza A, Hirsch E, Naldini L, Condorelli G, Bearzi C (2012) Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death Differ 19:1162–1174 PubMedCrossRefGoogle Scholar
  25. 25.
    Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brustle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471(7336):58–62PubMedCrossRefGoogle Scholar
  26. 26.
    Pera MF (2011) Stem cells: The dark side of induced pluripotency. Nature 471(7336):46–47PubMedCrossRefGoogle Scholar
  27. 27.
    Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J, Egli D, Maherali N, Park IH, Yu J, Daley GQ, Eggan K, Hochedlinger K, Thomson J, Wang W, Gao Y, Zhang K (2009) Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27(4):353–360PubMedCrossRefGoogle Scholar
  28. 28.
    Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336): 63–67Google Scholar
  29. 29.
    Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7(3):197–199PubMedCrossRefGoogle Scholar
  30. 30.
    Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928): 797–801Google Scholar
  31. 31.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476PubMedCrossRefGoogle Scholar
  32. 32.
    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630PubMedCrossRefGoogle Scholar
  33. 33.
    Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS (1996) Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10(13):1670–1682PubMedCrossRefGoogle Scholar
  34. 34.
    Douarin NM (1975) An experimental analysis of liver development. Med Biol 53(6):427–455PubMedGoogle Scholar
  35. 35.
    Jung J, Zheng M, Goldfarb M, Zaret KS (1999) Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284(5422):1998–2003PubMedCrossRefGoogle Scholar
  36. 36.
    Melton D (1997) Signals for tissue induction and organ formation in vertebrate embryos. Harvey Lect 93:49–64PubMedGoogle Scholar
  37. 37.
    Deutsch G, Jung J, Zheng M, Lora J, Zaret KS (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128(6):871–881PubMedGoogle Scholar
  38. 38.
    Lemaigre F, Zaret KS (2004) Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev 14(5):582–590PubMedCrossRefGoogle Scholar
  39. 39.
    Tremblay KD, Zaret KS (2005) Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol 280(1):87–99PubMedCrossRefGoogle Scholar
  40. 40.
    Yoshitomi H, Zaret KS (2004) Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131(4):807–817PubMedCrossRefGoogle Scholar
  41. 41.
    Zaret KS (2001) Hepatocyte differentiation: from the endoderm and beyond. Curr Opin Genet Dev 11(5):568–574PubMedCrossRefGoogle Scholar
  42. 42.
    Zaret KS (2000) Liver specification and early morphogenesis. Mech Dev 92(1):83–88PubMedCrossRefGoogle Scholar
  43. 43.
    Wells JM, Melton DA (1999) Vertebrate endoderm development. Annu Rev Cell Dev Biol 15:393–410PubMedCrossRefGoogle Scholar
  44. 44.
    Nordlie RC, Foster JD, Lange AJ (1999) Regulation of glucose production by the liver. Annu Rev Nutr 19:379–406PubMedCrossRefGoogle Scholar
  45. 45.
    Kim HI, Ahn YH (2004) Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes 53(Suppl 1):S60–S65PubMedCrossRefGoogle Scholar
  46. 46.
    Massa ML, Gagliardino JJ, Francini F (2011) Liver glucokinase: an overview on the regulatory mechanisms of its activity. IUBMB Life 63(1):1–6PubMedCrossRefGoogle Scholar
  47. 47.
    Rao MS, Dwivedi RS, Subbarao V, Usman MI, Scarpelli DG, Nemali MR, Yeldandi A, Thangada S, Kumar S, Reddy JK (1988) Almost total conversion of pancreas to liver in the adult rat: a reliable model to study transdifferentiation. Biochem Biophys Res Commun 156(1):131–136PubMedCrossRefGoogle Scholar
  48. 48.
    Rao MS, Reddy JK (1995) Hepatic transdifferentiation in the pancreas. Semin Cell Biol 6(3):151–156PubMedCrossRefGoogle Scholar
  49. 49.
    Rao MS, Subbarao V, Reddy JK (1986) Induction of hepatocytes in the pancreas of copper-depleted rats following copper repletion. Cell Differ 18(2):109–117PubMedCrossRefGoogle Scholar
  50. 50.
    Shen CN, Slack JM, Tosh D (2000) Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol 2(12):879–887PubMedCrossRefGoogle Scholar
  51. 51.
    Lee BC, Hendricks JD, Bailey GS (1989) Metaplastic pancreatic cells in liver tumors induced by diethylnitrosamine. Exp Mol Pathol 50(1):104–113PubMedCrossRefGoogle Scholar
  52. 52.
    Wolf HK, Burchette JL Jr, Garcia JA, Michalopoulos G (1990) Exocrine pancreatic tissue in human liver: a metaplastic process? Am J Surg Pathol 14(6):590–595PubMedCrossRefGoogle Scholar
  53. 53.
    Ohlsson H, Karlsson K, Edlund T (1993) IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J 12(11):4251–4259PubMedGoogle Scholar
  54. 54.
    Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H (1998) Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 12(12):1763–1768PubMedCrossRefGoogle Scholar
  55. 55.
    Li Y, Cao X, Li LX, Brubaker PL, Edlund H, Drucker DJ (2005) Beta-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 54(2):482–491PubMedCrossRefGoogle Scholar
  56. 56.
    Johnson JD, Ahmed NT, Luciani DS, Han Z, Tran H, Fujita J, Misler S, Edlund H, Polonsky KS (2003) Increased islet apoptosis in Pdx1 ± mice. J Clin Invest 111(8):1147–1160PubMedGoogle Scholar
  57. 57.
    Leibowitz G, Ferber S, Apelqvist A, Edlund H, Gross DJ, Cerasi E, Melloul D, Kaiser N (2001) IPF1/PDX1 deficiency and beta-cell dysfunction in Psammomys obesus, an animal With type 2 diabetes. Diabetes 50(8):1799–1806PubMedCrossRefGoogle Scholar
  58. 58.
    Leibowitz G, Melloul D, Yuli M, Gross DJ, Apelqvist A, Edlund H, Cerasi E, Kaiser N (2001) Defective glucose-regulated insulin gene expression associated with PDX-1 deficiency in the Psammomys obesus model of type 2 diabetes. Diabetes 50(Suppl 1):S138–S139PubMedCrossRefGoogle Scholar
  59. 59.
    Jonsson J, Carlsson L, Edlund T, Edlund H (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606–609PubMedCrossRefGoogle Scholar
  60. 60.
    Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15(1):106–110PubMedCrossRefGoogle Scholar
  61. 61.
    Jonsson J, Ahlgren U, Edlund T, Edlund H (1995) IPF1, a homeodomain protein with a dual function in pancreas development. Int J Dev Biol 39(5):789–798PubMedGoogle Scholar
  62. 62.
    Ahlgren U, Jonsson J, Edlund H (1996) The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 122(5):1409–1416PubMedGoogle Scholar
  63. 63.
    Afelik S, Chen Y, Pieler T (2006) Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue. Genes Dev 20(11):1441–1446PubMedCrossRefGoogle Scholar
  64. 64.
    Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134PubMedCrossRefGoogle Scholar
  65. 65.
    Kim SK, MacDonald RJ (2002) Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12(5):540–547PubMedCrossRefGoogle Scholar
  66. 66.
    Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, Hagenbuchle O, Wellauer PK (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12(23):3752–3763PubMedCrossRefGoogle Scholar
  67. 67.
    Grapin-Botton A, Majithia AR, Melton DA (2001) Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev 15(4):444–454PubMedCrossRefGoogle Scholar
  68. 68.
    Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53(4):1030–1037PubMedCrossRefGoogle Scholar
  69. 69.
    Kojima H, Nakamura T, Fujita Y, Kishi A, Fujimiya M, Yamada S, Kudo M, Nishio Y, Maegawa H, Haneda M, Yasuda H, Kojima I, Seno M, Wong NC, Kikkawa R, Kashiwagi A (2002) Combined expression of pancreatic duodenal homeobox 1 and islet factor 1 induces immature enterocytes to produce insulin. Diabetes 51(5):1398–1408PubMedCrossRefGoogle Scholar
  70. 70.
    Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6(5):568–572PubMedCrossRefGoogle Scholar
  71. 71.
    Ben-Shushan E, Marshak S, Shoshkes M, Cerasi E, Melloul D (2001) A pancreatic beta -cell-specific enhancer in the human PDX-1 gene is regulated by hepatocyte nuclear factor 3beta (HNF-3beta), HNF-1alpha, and SPs transcription factors. J Biol Chem 276(20):17533–17540PubMedCrossRefGoogle Scholar
  72. 72.
    Marshak S, Ben-Shushan E, Shoshkes M, Havin L, Cerasi E, Melloul D (2001) Regulatory elements involved in human pdx-1 gene expression. Diabetes 50(Suppl 1):S37–S38PubMedCrossRefGoogle Scholar
  73. 73.
    Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti-Zarum L, Meivar-Levy I, Ferber S (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278(34):31950–31957PubMedCrossRefGoogle Scholar
  74. 74.
    Westmacott A, Burke ZD, Oliver G, Slack JM, Tosh D (2006) C/EBPalpha and C/EBPbeta are markers of early liver development. Int J Dev Biol 50(7):653–657PubMedCrossRefGoogle Scholar
  75. 75.
    Begay V, Smink J, Leutz A (2004) Essential requirement of CCAAT/enhancer binding proteins in embryogenesis. Mol Cell Biol 24(22):9744–9751PubMedCrossRefGoogle Scholar
  76. 76.
    Horb ME, Shen CN, Tosh D, Slack JM (2003) Experimental conversion of liver to pancreas. Curr Biol 13(2):105–115PubMedCrossRefGoogle Scholar
  77. 77.
    Chalmers AD, Slack JM (1998) Development of the gut in Xenopus laevis. Dev Dyn 212(4):509–521PubMedCrossRefGoogle Scholar
  78. 78.
    Sadowski I, Ma J, Triezenberg S, Ptashne M (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335(6190):563–564PubMedCrossRefGoogle Scholar
  79. 79.
    Triezenberg SJ, Kingsbury RC, McKnight SL (1988) Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev 2(6):718–729PubMedCrossRefGoogle Scholar
  80. 80.
    Li WC, Horb ME, Tosh D, Slack JM (2005) In vitro transdifferentiation of hepatoma cells into functional pancreatic cells. Mech Dev 122(6):835–847PubMedCrossRefGoogle Scholar
  81. 81.
    Tang DQ, Lu S, Sun YP, Rodrigues E, Chou W, Yang C, Cao LZ, Chang LJ, Yang LJ (2006) Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1- and Pdx1-VP16 mediated by lentiviral vectors. Lab Invest 86(1):83–93PubMedCrossRefGoogle Scholar
  82. 82.
    Wang AY, Ehrhardt A, Xu H, Kay MA (2007) Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol Ther 15(2):255–263PubMedCrossRefGoogle Scholar
  83. 83.
    Kaneto H, Matsuoka TA, Nakatani Y, Miyatsuka T, Matsuhisa M, Hori M, Yamasaki Y (2005) A crucial role of MafA as a novel therapeutic target for diabetes. J Biol Chem 280(15):15047–15052PubMedCrossRefGoogle Scholar
  84. 84.
    Kaneto H, Miyatsuka T, Fujitani Y, Noguchi H, Song KH, Yoon KH, Matsuoka TA (2007) Role of PDX-1 and MafA as a potential therapeutic target for diabetes. Diabetes Res Clin Pract 77(Suppl 1):S127–S137PubMedCrossRefGoogle Scholar
  85. 85.
    Kaneto H, Miyatsuka T, Shiraiwa T, Yamamoto K, Kato K, Fujitani Y, Matsuoka TA (2007) Crucial role of PDX-1 in pancreas development, beta-cell differentiation, and induction of surrogate beta-cells. Curr Med Chem 14(16):1745–1752PubMedCrossRefGoogle Scholar
  86. 86.
    Matsuoka TA, Kaneto H, Stein R, Miyatsuka T, Kawamori D, Henderson E, Kojima I, Matsuhisa M, Hori M, Yamasaki Y (2007) MafA regulates expression of genes important to islet beta-cell function. Mol Endocrinol 21(11):2764–2774PubMedCrossRefGoogle Scholar
  87. 87.
    Miyatsuka T, Kaneto H, Kajimoto Y, Hirota S, Arakawa Y, Fujitani Y, Umayahara Y, Watada H, Yamasaki Y, Magnuson MA, Miyazaki J, Hori M (2003) Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem Biophys Res Commun 310(3):1017–1025PubMedCrossRefGoogle Scholar
  88. 88.
    Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L (2003) NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 9(5):596–603PubMedCrossRefGoogle Scholar
  89. 89.
    Rooman I, Heremans Y, Heimberg H, Bouwens L (2000) Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia 43(7):907–914PubMedCrossRefGoogle Scholar
  90. 90.
    Means AL, Meszoely IM, Suzuki K, Miyamoto Y, Rustgi AK, Coffey RJ Jr, Wright CV, Stoffers DA, Leach SD (2005) Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 132(16):3767–3776PubMedCrossRefGoogle Scholar
  91. 91.
    Lardon J, De Breuck S, Rooman I, Van Lommel L, Kruhoffer M, Orntoft T, Schuit F, Bouwens L (2004) Plasticity in the adult rat pancreas: transdifferentiation of exocrine to hepatocyte-like cells in primary culture. Hepatology 39(6):1499–1507PubMedCrossRefGoogle Scholar
  92. 92.
    Baeyens L, Bouwens L (2009) Cellular plasticity of the pancreas. Biol Chem 390(10):995–1001PubMedCrossRefGoogle Scholar
  93. 93.
    Baeyens L, Bouwens L (2008) Can beta-cells be derived from exocrine pancreas? Diabetes Obes Metab 10(Suppl 4):170–178PubMedCrossRefGoogle Scholar
  94. 94.
    Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L (2005) In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48(1):49–57PubMedCrossRefGoogle Scholar
  95. 95.
    Okuno M, Minami K, Okumachi A, Miyawaki K, Yokoi N, Toyokuni S, Seino S (2007) Generation of insulin-secreting cells from pancreatic acinar cells of animal models of type 1 diabetes. Am J Physiol Endocrinol Metab 292(1):E158–E165PubMedCrossRefGoogle Scholar
  96. 96.
    Minami K, Okuno M, Miyawaki K, Okumachi A, Ishizaki K, Oyama K, Kawaguchi M, Ishizuka N, Iwanaga T, Seino S (2005) Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci U S A 102(42):15116–15121PubMedCrossRefGoogle Scholar
  97. 97.
    Baeyens L, Bonne S, German MS, Ravassard P, Heimberg H, Bouwens L (2006) Ngn3 expression during postnatal in vitro beta cell neogenesis induced by the JAK/STAT pathway. Cell Death Differ 13(11):1892–1899PubMedCrossRefGoogle Scholar
  98. 98.
    Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae S-K, Kittappa R, McKay RDG (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442(7104):823PubMedCrossRefGoogle Scholar
  99. 99.
    Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H (1999) Notch signalling controls pancreatic cell differentiation. Nature 400(6747): 877–881Google Scholar
  100. 100.
    Cejudo-Martin P, Johnson RS (2005) A new notch in the HIF belt: how hypoxia impacts differentiation. Dev Cell 9(5):575–576PubMedCrossRefGoogle Scholar
  101. 101.
    Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD (2000) Control of endodermal endocrine development by Hes-1. Nat Genet 24(1):36–44PubMedCrossRefGoogle Scholar
  102. 102.
    Kadesch T (2004) Notch signaling: the demise of elegant simplicity. Curr Opin Genet Dev 14(5):506–512PubMedCrossRefGoogle Scholar
  103. 103.
    Lammert E, Brown J, Melton DA (2000) Notch gene expression during pancreatic organogenesis. Mech Dev 94(1–2):199–203PubMedCrossRefGoogle Scholar
  104. 104.
    Murtaugh LC, Stanger BZ, Kwan KM, Melton DA (2003) Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci U S A 100(25):14920–14925PubMedCrossRefGoogle Scholar
  105. 105.
    Domínguez-Bendala J, Klein D, Ribeiro M, Ricordi C, Inverardi L, Pastori R, Edlund H (2005) TAT-mediated neurogenin 3 protein transduction stimulates pancreatic endocrine differentiation in vitro. Diabetes 54(3):720–726PubMedCrossRefGoogle Scholar
  106. 106.
    Baeyens L, Bonne S, Bos T, Rooman I, Peleman C, Lahoutte T, German M, Heimberg H, Bouwens L (2009) Notch signaling as gatekeeper of rat acinar-to-beta-cell conversion in vitro. Gastroenterology 136(5): 1750–1760 e1713Google Scholar
  107. 107.
    Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455(7213): 627–632Google Scholar
  108. 108.
    Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA (2007) A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell 13(1):103–114PubMedCrossRefGoogle Scholar
  109. 109.
    Murtaugh LC, Melton DA (2003) Genes, signals, and lineages in pancreas development. Annu Rev Cell Dev Biol 19:71–89PubMedCrossRefGoogle Scholar
  110. 110.
    Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ (2000) Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 20(9):3292–3307PubMedCrossRefGoogle Scholar
  111. 111.
    You YH, Ham DS, Park HS, Rhee M, Kim JW, Yoon KH (2011) Adenoviruses expressing PDX-1, BETA2/NeuroD and MafA induces the transdifferentiation of porcine neonatal pancreas cell clusters and adult pig pancreatic cells into beta-cells. Diabetes Metab J 35(2):119–129PubMedCrossRefGoogle Scholar
  112. 112.
    Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103(7):2334–2339PubMedCrossRefGoogle Scholar
  113. 113.
    Konstantinova I, Nikolova G, Ohara-Imaizumi M, Meda P, Kucera T, Zarbalis K, Wurst W, Nagamatsu S, Lammert E (2007) EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell 129(2):359–370PubMedCrossRefGoogle Scholar
  114. 114.
    Zhang T, Saunee NA, Breslin MB, Song K, Lan MS (2012) Functional role of an islet transcription factor, INSM1/IA-1, on pancreatic acinar cell trans-differentiation. J Cell Physiol 227(6):2470–2479PubMedCrossRefGoogle Scholar
  115. 115.
    Mellitzer G, Bonne S, Luco RF, Van De Casteele M, Lenne-Samuel N, Collombat P, Mansouri A, Lee J, Lan M, Pipeleers D, Nielsen FC, Ferrer J, Gradwohl G, Heimberg H (2006) IA1 is NGN3-dependent and essential for differentiation of the endocrine pancreas. EMBO J 25(6):1344–1352PubMedCrossRefGoogle Scholar
  116. 116.
    D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11): 1392–1401Google Scholar
  117. 117.
    Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452PubMedCrossRefGoogle Scholar
  118. 118.
    Domínguez-Bendala J, Ricordi C, Pastori R (2006) Protein transduction: a novel approach to induce in vitro pancreatic differentiation. Cell Transplant 15(Supp. 15):85–90CrossRefGoogle Scholar
  119. 119.
    Vargas N, Alvarez-Cubela S, Giraldo JA, Nieto M, Fort NM, Cechin S, Garcia E, Espino-Grosso P, Fraker CA, Ricordi C, Inverardi L, Pastori RL, Dominguez-Bendala J (2011) TAT-mediated transduction of MafA protein in utero results in enhanced pancreatic insulin expression and changes in islet morphology. PLoS ONE 6(8):e22364PubMedCrossRefGoogle Scholar
  120. 120.
    von Herrath M (2005) Immunology: insulin trigger for diabetes. Nature 435(7039):151–152CrossRefGoogle Scholar
  121. 121.
    Kent SC, Chen Y, Bregoli L, Clemmings SM, Kenyon NS, Ricordi C, Hering BJ, Hafler DA (2005) Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435(7039):224–228PubMedCrossRefGoogle Scholar
  122. 122.
    Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, Yu L, Wegmann DR, Hutton JC, Elliott JF, Eisenbarth GS (2005) Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435(7039):220–223PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Diabetes Research InstituteUniversity of MiamiMiamiUSA

Personalised recommendations