Skip to main content

Development of Biological Approaches to Improve Muscle Healing After Injury and Disease

  • Chapter
  • First Online:
Regenerative Medicine and Cell Therapy

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Unique among adult tissues, skeletal muscle possesses a robust regeneration capacity dependent upon satellite cells (SC), the professional muscle stem cell. SCs are normally quiescent in a niche located within the basal lamina but outside the muscle membrane, or sarcolemma. Activated SCs proliferate and migrate to the site of injury. Through asymmetric division, a portion of SCs return to quiescence while daughter cells committed to the myogenic lineage, termed myoblasts, fuse and eventually form new muscle fibers. Yet, despite this potential, severely damaged muscle requires medical intervention. In addition to injuries resulting from blunt trauma, work, or sports-related accidents, there are a number of muscle diseases, both inherited, and acquired. At this time, there are no pharmaceutical drugs that can be used to effectively accelerate muscle healing following injury. Here, we discuss new biological approaches to improve muscle healing such as growth factor delivery, myoblast transfer therapy, stem cell-based therapy, gene therapy, and combining biological therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson G (2008) American academy of orthopaedic surgeons: the burden of musculoskeletal diseases in the United States: prevalence societal and economic cost. American Academy of Orthopaedic Surgeons, Rosemont

    Google Scholar 

  2. Brooks SV (2003) Current topics for teaching skeletal muscle physiology. Adv Physiol Educ 27(1–4):171–182

    Article  PubMed  Google Scholar 

  3. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120(1):11–19

    Article  PubMed  CAS  Google Scholar 

  4. Andia I, Sanchez M, Maffulli N (2011) Platelet rich plasma therapies for sports muscle injuries: any evidence behind clinical practice? Expert Opin Biol Ther 11(4):509–518

    Article  PubMed  Google Scholar 

  5. Stauber WT, Knack KK, Miller GR, Grimmett JG (1996) Fibrosis and intercellular collagen connections from four weeks of muscle strains. Muscle Nerve 19(4):423–430

    Article  PubMed  CAS  Google Scholar 

  6. Hagg GM (2000) Human muscle fibre abnormalities related to occupational load. Eur J Appl Physiol 83(2–3):159–165

    PubMed  CAS  Google Scholar 

  7. Tiidus PM (2008) Skeletal muscle damage and repair. Human Kinetics, Champaign

    Google Scholar 

  8. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027):760–764

    Article  PubMed  CAS  Google Scholar 

  9. McNeil DE, Davis C, Jillapalli D, Targum S, Durmowicz A, Cote TR (2010) Duchenne muscular dystrophy: drug development and regulatory considerations. Muscle Nerve 41(6):740–745

    Article  PubMed  CAS  Google Scholar 

  10. Rocha CT, Hoffman EP (2010) Limb-girdle and congenital muscular dystrophies: current diagnostics, management, and emerging technologies. Curr Neurol Neurosci Rep 10(4):267–276

    Article  PubMed  Google Scholar 

  11. Mishra DK, Friden J, Schmitz MC, Lieber RL (1995) Anti-inflammatory medication after muscle injury. A treatment resulting in short-term improvement but subsequent loss of muscle function. J Bone Joint Surg Am 77(10):1510–1519

    PubMed  CAS  Google Scholar 

  12. Shen W, Li Y, Tang Y, Cummins J, Huard J (2005) NS-398, a cyclooxygenase-2-specific inhibitor, delays skeletal muscle healing by decreasing regeneration and promoting fibrosis. Am J Pathol 167(4):1105–1117

    Article  PubMed  CAS  Google Scholar 

  13. Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Dossing S, Kadi F, Koskinen SO, Jensen CH, Schroder HD, Langberg H (2007) The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol 103(2):425–431

    Article  PubMed  CAS  Google Scholar 

  14. Biggar WD, Harris VA, Eliasoph L, Alman B (2006) Long-term benefits of deflazacort treatment for boys with duchenne muscular dystrophy in their second decade. Neuromuscul Disord 16(4):249–255

    Article  PubMed  CAS  Google Scholar 

  15. Nagaraju K (2001) Immunological capabilities of skeletal muscle cells. Acta Physiol Scand 171(3):215–223

    Article  PubMed  CAS  Google Scholar 

  16. Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, Authier FJ, Dreyfus PA, Gherardi RK (2003) Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol 163(5):1133–1143

    Article  PubMed  CAS  Google Scholar 

  17. Conboy IM, Rando TA (2002) The regulation of notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3(3):397–409

    Article  PubMed  CAS  Google Scholar 

  18. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456(7221):502–506

    Article  PubMed  CAS  Google Scholar 

  19. Peault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15(5):867–877

    Article  PubMed  CAS  Google Scholar 

  20. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166(3):347–357

    Article  PubMed  CAS  Google Scholar 

  21. Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164(3):1007–1019

    Article  PubMed  CAS  Google Scholar 

  22. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810

    Article  PubMed  CAS  Google Scholar 

  23. Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278(1):C174–C181

    PubMed  CAS  Google Scholar 

  24. Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31(24):6279–6308

    Article  PubMed  CAS  Google Scholar 

  25. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C et al (1992) Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257(5075):1401–1403

    Article  PubMed  CAS  Google Scholar 

  26. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105(7):788–793

    Article  PubMed  CAS  Google Scholar 

  27. Eppler SM, Combs DL, Henry TD, Lopez JJ, Ellis SG, Yi JH, Annex BH, McCluskey ER, Zioncheck TF (2002) A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther 72(1):20–32

    Article  PubMed  CAS  Google Scholar 

  28. Creaney L, Hamilton B (2008) Growth factor delivery methods in the management of sports injuries: the state of play. Br J Sports Med 42(5):314–320

    Article  PubMed  CAS  Google Scholar 

  29. Mishra A, Pavelko T (2006) Treatment of chronic elbow tendinosis with buffered platelet-rich plasma. Am J Sports Med 34(11):1774–1778

    Article  PubMed  Google Scholar 

  30. Marx RE (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 62(4):489–496

    Article  PubMed  Google Scholar 

  31. Sanchez M, Anitua E, Andia I (2005) Application of autologous growth factors on skeletal muscle healing. In: 2nd international conference on regenerative medicine

    Google Scholar 

  32. Mourkioti F, Rosenthal N (2005) IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol 26(10):535–542

    Article  PubMed  CAS  Google Scholar 

  33. Borselli C, Storrie H, Benesch-Lee F, Shvartsman D, Cezar C, Lichtman JW, Vandenburgh HH, Mooney DJ (2010) Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci USA 107(8):3287–3292

    Article  PubMed  CAS  Google Scholar 

  34. Bogdanovich S, Perkins KJ, Krag TO, Khurana TS (2004) Therapeutics for Duchenne muscular dystrophy: current approaches and future directions. J Mol Med (Berl) 82(2):102–115

    Article  Google Scholar 

  35. Liu Z, Wu Y, Chen BG (2006) Myoblast therapy: from bench to bedside. Cell Transplant 15(6):455–462

    Article  PubMed  Google Scholar 

  36. Fan Y, Maley M, Beilharz M, Grounds M (1996) Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 19(7):853–860

    Article  PubMed  CAS  Google Scholar 

  37. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144(6):1113–1122

    Article  PubMed  CAS  Google Scholar 

  38. Huard J, Acsadi G, Jani A, Massie B, Karpati G (1994) Gene transfer into skeletal muscles by isogenic myoblasts. Hum Gene Ther 5(8):949–958

    Article  PubMed  CAS  Google Scholar 

  39. Bouchentouf M, Benabdallah BF, Tremblay JP (2004) Myoblast survival enhancement and transplantation success improvement by heat-shock treatment in mdx mice. Transplantation 77(9):1349–1356

    Article  PubMed  CAS  Google Scholar 

  40. Tambara K, Premaratne GU, Sakaguchi G, Kanemitsu N, Lin X, Nakajima H, Sakakibara Y, Kimura Y, Yamamoto M, Tabata Y, Ikeda T, Komeda M (2005) Administration of control-released hepatocyte growth factor enhances the efficacy of skeletal myoblast transplantation in rat infarcted hearts by greatly increasing both quantity and quality of the graft. Circulation 112(9 Suppl):I129–134

    PubMed  Google Scholar 

  41. Yao SN, Smith KJ, Kurachi K (1994) Primary myoblast-mediated gene transfer: persistent expression of human factor IX in mice. Gene Ther 1(2):99–107

    PubMed  CAS  Google Scholar 

  42. Shabbir A, Zisa D, Leiker M, Johnston C, Lin H, Lee T (2009) Muscular dystrophy therapy by nonautologous mesenchymal stem cells: muscle regeneration without immunosuppression and inflammation. Transplantation 87(9):1275–1282

    Article  PubMed  CAS  Google Scholar 

  43. Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18(3):482–496

    Article  PubMed  CAS  Google Scholar 

  44. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453

    Article  PubMed  CAS  Google Scholar 

  45. Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157(5):851–864

    Article  PubMed  CAS  Google Scholar 

  46. Deasy BM, Gharaibeh BM, Pollett JB, Jones MM, Lucas MA, Kanda Y, Huard J (2005) Long-term self-renewal of postnatal muscle-derived stem cells. Mol Biol Cell 16(7):3323–3333

    Article  PubMed  CAS  Google Scholar 

  47. Urish KL, Vella JB, Okada M, Deasy BM, Tobita K, Keller BB, Cao B, Piganelli JD, Huard J (2009) Antioxidant levels represent a major determinant in the regenerative capacity of muscle stem cells. Mol Biol Cell 20(1):509–520

    Article  PubMed  CAS  Google Scholar 

  48. Ota S, Uehara K, Nozaki M, Kobayashi T, Terada S, Tobita K, Fu FH, Huard J (2011) Intramuscular transplantation of muscle-derived stem cells accelerates skeletal muscle healing after contusion injury via enhancement of angiogenesis. Am J Sports Med 39(9):1912–1922

    Article  PubMed  Google Scholar 

  49. Deasy BM, Li Y, Huard J (2004) Tissue engineering with muscle-derived stem cells. Curr Opin Biotechnol 15(5):419–423

    Article  PubMed  CAS  Google Scholar 

  50. Payne TR, Oshima H, Okada M, Momoi N, Tobita K, Keller BB, Peng H, Huard J (2007) A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol 50(17):1677–1684

    Article  PubMed  CAS  Google Scholar 

  51. Rose T, Peng H, Shen HC, Usas A, Kuroda R, Lill H, Fu FH, Huard J (2003) The role of cell type in bone healing mediated by ex vivo gene therapy. Langenbecks Arch Surg 388(5):347–355

    Article  PubMed  Google Scholar 

  52. Chirieleison SM, Feduska JM, Schugar RC, Askew Y, Deasy BM (2011) Human muscle-derived cell populations isolated by differential adhesion rates: phenotype and contribution to skeletal muscle regeneration in Mdx/SCID mice. Tissue Eng Part A 18(3–4):232–241

    PubMed  Google Scholar 

  53. Okada M, Payne TR, Drowley L, Jankowski RJ, Momoi N, Beckman S, Chen WC, Keller BB, Tobita K, Huard J (2011) Human skeletal muscle cells with a slow adhesion rate after isolation and an enhanced stress resistance improve function of ischemic hearts. Mol Ther 20(1):138–145

    Article  PubMed  Google Scholar 

  54. Carr LK, Steele D, Steele S, Wagner D, Pruchnic R, Jankowski R, Erickson J, Huard J, Chancellor MB (2008) 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 19(6):881–883

    Article  PubMed  CAS  Google Scholar 

  55. Rouger K, Larcher T, Dubreil L, Deschamps JY, Le Guiner C, Jouvion G, Delorme B, Lieubeau B, Carlus M, Fornasari B, Theret M, Orlando P, Ledevin M, Zuber C, Leroux I, Deleau S, Guigand L, Testault I, Le Rumeur E, Fiszman M, Cherel Y (2011) Systemic delivery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in duchenne muscular dystrophy dogs. Am J Pathol 179(5):2501–2518

    Article  PubMed  CAS  Google Scholar 

  56. Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Peault B (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25(9):1025–1034

    Article  PubMed  CAS  Google Scholar 

  57. Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89(5):655–661

    Article  PubMed  CAS  Google Scholar 

  58. Tan KY, Eminli S, Hettmer S, Hochedlinger K, Wagers AJ (2011) Efficient generation of iPS cells from skeletal muscle stem cells. PLoS One 6(10):e26406

    Article  PubMed  CAS  Google Scholar 

  59. Darabi R, Baik J, Clee M, Kyba M, Tupler R, Perlingeiro RC (2009) Engraftment of embryonic stem cell-derived myogenic progenitors in a dominant model of muscular dystrophy. Exp Neurol 220(1):212–216

    Article  PubMed  CAS  Google Scholar 

  60. Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50(3):509–517

    Article  PubMed  CAS  Google Scholar 

  61. Miyagoe-Suzuki Y, Takeda S (2010) Gene therapy for muscle disease. Exp Cell Res 316(18):3087–3092

    Article  PubMed  CAS  Google Scholar 

  62. Tang Y, Cummins J, Huard J, Wang B (2010) AAV-directed muscular dystrophy gene therapy. Expert Opin Biol Ther 10(3):395–408

    Article  PubMed  CAS  Google Scholar 

  63. Wang B, Li J, Xiao X (2000) Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 97(25):13714–13719

    Article  PubMed  CAS  Google Scholar 

  64. Tang Y, Reay DP, Salay MN, Mi MY, Clemens PR, Guttridge DC, Robbins PD, Huard J, Wang B (2010) Inhibition of the IKK/NF-kappaB pathway by AAV gene transfer improves muscle regeneration in older mdx mice. Gene Ther 17(12):1476–1483

    Article  PubMed  CAS  Google Scholar 

  65. Sun JY, Anand-Jawa V, Chatterjee S, Wong KK (2003) Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 10(11):964–976

    Article  PubMed  CAS  Google Scholar 

  66. Mendell JR, Clark KR (2006) Challenges for gene therapy for muscular dystrophy. Curr Neurol Neurosci Rep 6(1):47–56

    Article  PubMed  CAS  Google Scholar 

  67. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  PubMed  CAS  Google Scholar 

  68. Carnio S, Serena E, Rossi CA, De Coppi P, Elvassore N, Vitiello L (2011) Three-dimensional porous scaffold allows long-term wild-type cell delivery in dystrophic muscle. J Tissue Eng Regen Med 5(1):1–10

    Article  PubMed  CAS  Google Scholar 

  69. Jang JH, Schaffer DV, Shea LD (2011) Engineering biomaterial systems to enhance viral vector gene delivery. Mol Ther 19(8):1407–1415

    Article  PubMed  CAS  Google Scholar 

  70. Falco EE, Wang MO, Thompson JA, Chetta JM, Yoon DM, Li EZ, Kulkami MM, Shah S, Pandit A, Roth JS, Fisher JP (2011) Porous EH and EH-PEG scaffolds as gene delivery vehicles to skeletal muscle. Pharm Res 28(6):1306–1316

    Article  PubMed  CAS  Google Scholar 

  71. Osada K, Shiotani T, Tockary TA, Kobayashi D, Oshima H, Ikeda S, Christie RJ, Itaka K, Kataoka K (2012) Enhanced gene expression promoted by the quantized folding of pDNA within polyplex micelles. Biomaterials 33(1):325–332

    Article  PubMed  CAS  Google Scholar 

  72. Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW (2001) Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 8(5):341–348

    Article  PubMed  CAS  Google Scholar 

  73. Subramanian IV, Fernandes BC, Robinson T, Koening J, Lapara KS, Ramakrishnan S (2009) AAV-2-mediated expression of IGF-1 in skeletal myoblasts stimulates angiogenesis and cell survival. J Cardiovasc Transl Res 2(1):81–92

    Article  PubMed  Google Scholar 

  74. Galvez BG, Sampaolesi M, Brunelli S, Covarello D, Gavina M, Rossi B, Constantin G, Torrente Y, Cossu G (2006) Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol 174(2):231–243

    Article  PubMed  CAS  Google Scholar 

  75. Goudenege S, Pisani DF, Wdziekonski B, Di Santo JP, Bagnis C, Dani C, Dechesne CA (2009) Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol Ther 17(6):1064–1072

    Article  PubMed  CAS  Google Scholar 

  76. Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, Li J, Wang B, Monahan PE, Rabinowitz JE, Grieger JC, Govindasamy L, Agbandje-McKenna M, Xiao X, Samulski RJ (2011) Phase 1 gene therapy for duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 20(2):443–455

    Article  PubMed  Google Scholar 

  77. TCA Cellular Therapy (2000) In. Phase II safety/efficacy study of a combination stem cell therapycell therapy that develops mature stable vessel formation in ischemic limbs. In: ClinicalTrials.gov [Internet], (Bethesda (MD): National library of medicine (US). [cited 2011 Sept 23])

    Google Scholar 

  78. University of Wisconsin, Madison (2000) In. Stem cell revascularization in patients with critical limb ischemia. In: ClinicalTrials.gov [Internet], (Bethesda (MD): National library of medicine (US). [cited 2011 Sept 23])

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny Huard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Proto, J.D., Huard, J. (2013). Development of Biological Approaches to Improve Muscle Healing After Injury and Disease. In: Baharvand, H., Aghdami, N. (eds) Regenerative Medicine and Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-098-4_6

Download citation

Publish with us

Policies and ethics