New Prospects for Neural Stem Cell Therapies of Nervous System Diseases Toward the Establishment of Atypical Ectopic Perivascular Stem Cell Niches

  • Clara Alfaro-Cervello
  • Chiara Cossetti
  • Elena Giusto
  • Matteo Donegà
  • Stefano Pluchino
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Compelling evidence exists that neural stem/precursor cell (NPC) transplants protect the central nervous system (CNS) from inflammation-driven degeneration, such as that occurring in multiple sclerosis (MS) and in the subacute stages after brain stroke and spinal cord injury (SCI). In immune-mediated experimental demyelination and stroke, transplanted NPCs display a constitutive and inducible ability to mediate efficient bystander myelin repair and axonal rescue. This is dependent on multiple ‘chaperone’-like capacities that NPCs exhibit within specific in vivo microenvironments after transplantation. Yet, a comprehensive understanding of the mechanisms by which NPCs exert their therapeutic impact is lacking. Here will review some of these bystander capacities, while pointing at the formation of the atypical ectopic perivascular niches, as the most challenging example of cross talk between the inflamed microenvironment(s) and transplanted therapeutic NPCs.

Keywords

Multiple Sclerosis Spinal Cord Injury Experimental Autoimmune Encephalomyelitis Neural Stem Cell Leukemia Inhibitory Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McKay R (1997) Stem cells in the central nervous system. Science 276(5309):66–71Google Scholar
  2. 2.
    Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184PubMedGoogle Scholar
  3. 3.
    Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148PubMedGoogle Scholar
  4. 4.
    Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26(30):7907–7918PubMedGoogle Scholar
  5. 5.
    Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Van Evercooren AB (1999) Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci 11(12):4357–4366PubMedGoogle Scholar
  6. 6.
    Anderson DJ (2001) Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30(1):19–35PubMedGoogle Scholar
  7. 7.
    Gage FH (1998) Stem cells of the central nervous system. Curr Opin Neurobiol 8(5):671–676PubMedGoogle Scholar
  8. 8.
    Martino G, Pluchino S, Bonfanti L, Schwartz M (2011) Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells. Physiol Rev 91(4):1281–1304PubMedGoogle Scholar
  9. 9.
    Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441(7097):1094–1096PubMedGoogle Scholar
  10. 10.
    Martino G, Franklin RJ, Van Evercooren AB, Kerr DA (2010) Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol 6(5):247–255PubMedGoogle Scholar
  11. 11.
    Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7(5):395–406PubMedGoogle Scholar
  12. 12.
    Rossi F, Cattaneo E (2002) Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci 3(5):401–409PubMedGoogle Scholar
  13. 13.
    Pluchino S, Martino G (2008) The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis. J Neurol Sci 265(1–2):105–110PubMedGoogle Scholar
  14. 14.
    Pluchino S, Zanotti L, Deleidi M, Martino G (2005) Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev 48(2):211–219PubMedGoogle Scholar
  15. 15.
    Compston A, Coles A (2002) Multiple sclerosis. Lancet 359(9313):1221–1231PubMedGoogle Scholar
  16. 16.
    Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855PubMedGoogle Scholar
  17. 17.
    Fernandez–Fernandez O, Alvarez-Cermeno JC, Arbizu-Urdiain T, Arroyo-Gonzalez R, Arnal-Garcia C, Casanova-Estruch B, Calles-Hernandez MC, Coret-Ferrer F, Comabella M, de Garcia-Merino JA (2011) Review of the novelties presented at the 26th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) (II). Revista de neurologia 52(5):289–299PubMedGoogle Scholar
  18. 18.
    Killestein J, Rudick RA, Polman CH (2011) Oral treatment for multiple sclerosis. Lancet Neurology 10(11):1026–1034PubMedGoogle Scholar
  19. 19.
    Kilsdonk ID, Barkhof F, Wattjes MP (2011) 2010 revisions to McDonald criteria for diagnosis of multiple sclerosis: impact of 3-Tesla magnetic resonance imaging. Ann Neurology 70(1):182–183Google Scholar
  20. 20.
    Giannakopoulou A, Grigoriadis N, Polyzoidou E, Lourbopoulos A, Michaloudi E, Papadopoulos GC (2011) Time-dependent fate of transplanted neural precursor cells in experimental autoimmune encephalomyelitis mice. Exp Neurol 230(1):16–26PubMedGoogle Scholar
  21. 21.
    Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422(6933):688–694PubMedGoogle Scholar
  22. 22.
    Einstein O, Fainstein N, Vaknin I, Mizrachi-Kol R, Reihartz E, Grigoriadis N, Lavon I, Baniyash M, Lassmann H, Ben-Hur T (2007) Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol 61(3):209–218PubMedGoogle Scholar
  23. 23.
    Einstein O, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Polyzoidou E, Lavon I, Milonas I, Karussis D, Abramsky O, Ben-Hur T (2006) Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp Neurol 198(2):275–284PubMedGoogle Scholar
  24. 24.
    Einstein O, Karussis D, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Abramsky O, Ben-Hur T (2003) Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci 24(4):1074–1082PubMedGoogle Scholar
  25. 25.
    Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436(7048):266–271PubMedGoogle Scholar
  26. 26.
    Rampon C, Weiss N, Deboux C, Chaverot N, Miller F, Buchet D, Tricoire-Leignel H, Cazaubon S, Baron-Van Evercooren A, Couraud PO (2008) Molecular mechanism of systemic delivery of neural precursor cells to the brain: assembly of brain endothelial apical cups and control of transmigration by CD44. Stem Cells 26(7):1673–1682PubMedGoogle Scholar
  27. 27.
    Pluchino S, Gritti A, Blezer E, Amadio S, Brambilla E, Borsellino G, Cossetti C, Del Carro U, Comi G, t Hart B, Vescovi A, Martino G (2009) Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 66(3):343–354PubMedGoogle Scholar
  28. 28.
    Mueller FJ, Serobyan N, Schraufstatter IU, DiScipio R, Wakeman D, Loring JF, Snyder EY, Khaldoyanidi SK (2006) Adhesive interactions between human neural stem cells and inflamed human vascular endothelium are mediated by integrins. Stem Cells 24(11):2367–2372PubMedGoogle Scholar
  29. 29.
    Einstein O, Friedman-Levi Y, Grigoriadis N, Ben-Hur T (2009) Transplanted neural precursors enhance host brain-derived myelin regeneration. J Neurosci 29(50):15694–15702PubMedGoogle Scholar
  30. 30.
    Butzkueven H, Zhang JG, Soilu-Hanninen M, Hochrein H, Chionh F, Shipham KA, Emery B, Turnley AM, Petratos S, Ernst M, Bartlett PF, Kilpatrick TJ (2002) LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med 8(6):613–619PubMedGoogle Scholar
  31. 31.
    Marriott MP, Emery B, Cate HS, Binder MD, Kemper D, Wu Q, Kolbe S, Gordon IR, Wang H, Egan G, Murray S, Butzkueven H, Kilpatrick TJ (2008) Leukemia inhibitory factor signaling modulates both central nervous system demyelination and myelin repair. Glia 56(6):686–698PubMedGoogle Scholar
  32. 32.
    Talbott JF, Cao Q, Bertram J, Nkansah M, Benton RL, Lavik E, Whittemore SR (2007) CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo. Exp Neurol 204(1):485–489PubMedGoogle Scholar
  33. 33.
    Cagnon L, Braissant O (2009) CNTF protects oligodendrocytes from ammonia toxicity: intracellular signaling pathways involved. Neurobiol Dis 33(1):133–142PubMedGoogle Scholar
  34. 34.
    Knight JC, Scharf EL, Mao-Draayer Y (2010) Fas activation increases neural progenitor cell survival. J Neurosci Res 88(4):746–757PubMedGoogle Scholar
  35. 35.
    Fainstein N, Vaknin I, Einstein O, Zisman P, Ben Sasson SZ, Baniyash M, Ben-Hur T (2008) Neural precursor cells inhibit multiple inflammatory signals. Mol Cell Neurosci 39(3):335–341PubMedGoogle Scholar
  36. 36.
    Ricci-Vitiani L, Lombardi DG, Signore M, Biffoni M, Pallini R, Parati E, Peschle C, De Maria R (2007) Human neural progenitor cells display limited cytotoxicity and increased oligodendrogenesis during inflammation. Cell Death Differ 14(4):876–878PubMedGoogle Scholar
  37. 37.
    Wang L, Shi J, van Ginkel FW, Lan L, Niemeyer G, Martin DR, Snyder EY, Cox NR (2009) Neural stem/progenitor cells modulate immune responses by suppressing T lymphocytes with nitric oxide and prostaglandin E2. Exp Neurol 216(1):177–183PubMedGoogle Scholar
  38. 38.
    Kim SY, Cho HS, Yang SH, Shin JY, Kim JS, Lee ST, Chu K, Roh JK, Kim SU, Park CG (2009) Soluble mediators from human neural stem cells play a critical role in suppression of T-cell activation and proliferation. J Neurosci Res 87(10):2264–2272PubMedGoogle Scholar
  39. 39.
    Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, Salani G, Cossetti C, Borsellino G, Battistini L, Ponzoni M, Doglioni C, Garcia-Verdugo JM, Comi G, Manfredi AA, Martino G (2009) Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS ONE 4(6):e5959PubMedGoogle Scholar
  40. 40.
    Cao W, Yang Y, Wang Z, Liu A, Fang L, Wu F, Hong J, Shi Y, Leung S, Dong C, Zhang JZ (2011) Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease. Immunity 35(2):273–284PubMedGoogle Scholar
  41. 41.
    Pluchino S, Zanotti L, Brini E, Ferrari S, Martino G (2009) Regeneration and repair in multiple sclerosis: the role of cell transplantation. Neurosci Lett 456(3):101–106PubMedGoogle Scholar
  42. 42.
    Mohindru M, Kang B, Kim BS (2004) Functional maturation of proteolipid protein(139–151)-specific Th1 cells in the central nervous system in experimental autoimmune encephalomyelitis. J Neuroimmunol 155(1–2):127–135PubMedGoogle Scholar
  43. 43.
    Flugel A, Berkowicz T, Ritter T, Labeur M, Jenne DE, Li Z, Ellwart JW, Willem M, Lassmann H, Wekerle H (2001) Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14(5):547–560PubMedGoogle Scholar
  44. 44.
    de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S, Boon L, t Hart BA, Laman JD (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169(10):5415–5423PubMedGoogle Scholar
  45. 45.
    Bright FA, Kayes NM, McCann CM, McPherson KM (2011) Understanding hope after stroke: a systematic review of the literature using concept analysis. Top Stroke Rehabil 18(5):490–508PubMedGoogle Scholar
  46. 46.
    Lindvall O, Kokaia Z (2011) Stem cell research in stroke: how far from the clinic? Stroke J Cereb Circ 42(8):2369–2375Google Scholar
  47. 47.
    Liu YP, Lang BT, Baskaya MK, Dempsey RJ, Vemuganti R (2009) The potential of neural stem cells to repair stroke-induced brain damage. Acta Neuropathol 117(5):469–480PubMedGoogle Scholar
  48. 48.
    Pluchino S, Cusimano M, Bacigaluppi M, Martino G (2010) Remodelling the injured CNS through the establishment of atypical ectopic perivascular neural stem cell niches. Arch Ital Biol 148(2):173–183PubMedGoogle Scholar
  49. 49.
    Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU (2007) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25(5):1204–1212PubMedGoogle Scholar
  50. 50.
    Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 101(32):11839–11844PubMedGoogle Scholar
  51. 51.
    Hicks AU, Lappalainen RS, Narkilahti S, Suuronen R, Corbett D, Sivenius J, Hovatta O, Jolkkonen J (2009) Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur J Neurosci 29(3):562–574PubMedGoogle Scholar
  52. 52.
    Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, Manley NC, Pereira MP, Sheikh LA, McMillan EL, Schaar BT, Svendsen CN, Bliss TM, Steinberg GK (2011) Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 134(Pt 6):1777–1789PubMedGoogle Scholar
  53. 53.
    Bacigaluppi M, Pluchino S, Martino G, Kilic E, Hermann DM (2008) Neural stem/precursor cells for the treatment of ischemic stroke. J Neurol Sci 265(1–2):73–77PubMedGoogle Scholar
  54. 54.
    Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101(52):18117–18122PubMedGoogle Scholar
  55. 55.
    Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 26(3):605–614PubMedGoogle Scholar
  56. 56.
    Andres RH, Choi R, Pendharkar AV, Gaeta X, Wang N, Nathan JK, Chua JY, Lee SW, Palmer TD, Steinberg GK, Guzman R (2011) The CCR2/CCL2 Interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke 42(10):2923–2931 PubMedGoogle Scholar
  57. 57.
    Capone C, Frigerio S, Fumagalli S, Gelati M, Principato MC, Storini C, Montinaro M, Kraftsik R, De Curtis M, Parati E, De Simoni MG (2007) Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PLoS ONE 2(4):e373PubMedGoogle Scholar
  58. 58.
    Englund U, Bjorklund A, Wictorin K, Lindvall O, Kokaia M (2002) Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci U S A 99(26):17089–17094PubMedGoogle Scholar
  59. 59.
    Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20(11):1111–1117PubMedGoogle Scholar
  60. 60.
    Buhnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, Reymann KG, Dihne M (2006) Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain 129(Pt 12):3238–3248PubMedGoogle Scholar
  61. 61.
    Sun C, Zhang H, Li J, Huang H, Cheng H, Wang Y, Li P, An Y (2010) Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke. J Translational Med 8:77Google Scholar
  62. 62.
    Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, Kilic E, Kilic U, Salani G, Brambilla E, West MJ, Comi G, Martino G, Hermann DM (2009) Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain 132(Pt 8):2239–2251PubMedGoogle Scholar
  63. 63.
    Ben-Hur T (2008) Immunomodulation by neural stem cells. J Neurol Sci 265(1–2):102–104PubMedGoogle Scholar
  64. 64.
    Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808PubMedGoogle Scholar
  65. 65.
    Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G, Wu JC, Steinberg GK (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke J Cereb Circ 41(3):516–523Google Scholar
  66. 66.
    Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R, Jiang K, Sun G, Wu JC, Steinberg GK (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41(3):516–523PubMedGoogle Scholar
  67. 67.
    Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605PubMedGoogle Scholar
  68. 68.
    Frieler RA, Meng H, Duan SZ, Berger S, Schutz G, He Y, Xi G, Wang MM, Mortensen RM (2011) Myeloid-specific deletion of the mineralocorticoid receptor reduces infarct volume and alters inflammation during cerebral ischemia. Stroke J Cereb Circ 42(1):179–185Google Scholar
  69. 69.
    Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131(Pt 3):616–629PubMedGoogle Scholar
  70. 70.
    Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976) 26(24 Suppl): S2–12Google Scholar
  71. 71.
    Rowland JW, Hawryluk GW, Kwon B, Fehlings MG (2008) Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 25(5):E2PubMedGoogle Scholar
  72. 72.
    Hagg T, Oudega M (2006) Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 23(3–4):264–280PubMedGoogle Scholar
  73. 73.
    Hernandeza J, Torres-Espina A, Navarro X (2011) Adult stem cell transplants for spinal cord injury repair: current state in preclinical research. Curr Stem Cell Res Ther 6(3):273–287Google Scholar
  74. 74.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedGoogle Scholar
  75. 75.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedGoogle Scholar
  76. 76.
    Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, Nagoshi N, Kitamura K, Kumagai G, Nishino M, Tomisato S, Higashi H, Nagai T, Katoh H, Kohda K, Matsuzaki Y, Yuzaki M, Ikeda E, Toyama Y, Nakamura M, Yamanaka S, Okano H (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A 107(28):12704–12709PubMedGoogle Scholar
  77. 77.
    Nori S, Okada Y, Yasuda A, Tsuji O, Takahashi Y, Kobayashi Y, Fujiyoshi K, Koike M, Uchiyama Y, Ikeda E, Toyama Y, Yamanaka S, Nakamura M, Okano H (2011) Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A 108(40):16825–16830PubMedGoogle Scholar
  78. 78.
    Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, Ishii J, Maeda Y, Hara M, Kim SU, Yoshida J (2007) Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426(2):69–74PubMedGoogle Scholar
  79. 79.
    Bottai D, Madaschi L, Di Giulio AM, Gorio A (2008) Viability-dependent promoting action of adult neural precursors in spinal cord injury. Mol Med Cambridge, Mass 14(9–10): 634–644Google Scholar
  80. 80.
    Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102(39):14069–14074PubMedGoogle Scholar
  81. 81.
    Parr AM, Kulbatski I, Tator CH (2007) Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J Neurotrauma 24(5):835–845PubMedGoogle Scholar
  82. 82.
    Parr AM, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, Tator CH (2008) Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155(3):760–770PubMedGoogle Scholar
  83. 83.
    Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26(13):3377–3389PubMedGoogle Scholar
  84. 84.
    Cao QL, Howard RM, Dennison JB, Whittemore SR (2002) Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Exp Neurol 177(2):349–359PubMedGoogle Scholar
  85. 85.
    Cao QL, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR (2001) Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 167(1):48–58PubMedGoogle Scholar
  86. 86.
    Vroemen M, Aigner L, Winkler J, Weidner N (2003) Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neurosci 18(4):743–751PubMedGoogle Scholar
  87. 87.
    Pfeifer K, Vroemen M, Blesch A, Weidner N (2004) Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. Eur J Neurosci 20(7):1695–1704PubMedGoogle Scholar
  88. 88.
    Yan J, Xu L, Welsh AM, Hatfield G, Hazel T, Johe K, Koliatsos VE (2007) Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med 4(2):e39PubMedGoogle Scholar
  89. 89.
    Han SS, Kang DY, Mujtaba T, Rao MS, Fischer I (2002) Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol 177(2):360–375PubMedGoogle Scholar
  90. 90.
    Abematsu M, Tsujimura K, Yamano M, Saito M, Kohno K, Kohyama J, Namihira M, Komiya S, Nakashima K (2010) Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 120(9):3255–3266PubMedGoogle Scholar
  91. 91.
    Bonner JF, Blesch A, Neuhuber B, Fischer I (2010) Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J Neurosci Res 88(6):1182–1192PubMedGoogle Scholar
  92. 92.
    Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA, Fischer I (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31(12):4675–4686PubMedGoogle Scholar
  93. 93.
    Hwang DH, Kim BG, Kim EJ, Lee SI, Joo IS, Suh-Kim H, Sohn S, Kim SU (2009) Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci 10:117PubMedGoogle Scholar
  94. 94.
    Lee SI, Kim BG, Hwang DH, Kim HM, Kim SU (2009) Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury. J Neurosci Res 87(14):3186–3197PubMedGoogle Scholar
  95. 95.
    Oh JS, Kim KN, An SS, Pennant WA, Kim HJ, Gwak SJ, Yoon DH, Lim MH, Choi BH, Ha Y (2011) Co-transplantation of mouse neural stem sells (mNSCs) with adipose tissue-derived mesenchymal stem sells improves mNSC survival in a rat spinal cord injury model. Cell Transplant 20(6):837–849 PubMedGoogle Scholar
  96. 96.
    Oh JS, Ha Y, An SS, Khan M, Pennant WA, Kim HJ, Yoon do H, Lee M, Kim KN (2010) Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model. Neurosci Lett 472(3):215–219PubMedGoogle Scholar
  97. 97.
    Wang G, Ao Q, Gong K, Zuo H, Gong Y, Zhang X (2010) Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury. Cell Transplant 19(10):1325–1337PubMedGoogle Scholar
  98. 98.
    Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 99(5):3024–3029PubMedGoogle Scholar
  99. 99.
    Lu P, Jones LL, Snyder EY, Tuszynski MH (2003) Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181(2):115–129PubMedGoogle Scholar
  100. 100.
    Kusano K, Enomoto M, Hirai T, Tsoulfas P, Sotome S, Shinomiya K, Okawa A (2010) Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury. Biochem Biophys Res Commun 393(4):812–817PubMedGoogle Scholar
  101. 101.
    Schwartz M, Ziv Y (2008) Immunity to self and self-maintenance: a unified theory of brain pathologies. Trends Immunol 29(5):211–219PubMedGoogle Scholar
  102. 102.
    Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M (2006) Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A 103(35):13174–13179PubMedGoogle Scholar
  103. 103.
    Cusimano M, Biziato D, Brambilla E, Donegà M, Alfaro-Cervello C, Snider S, Salani G, Pucci F, Comi G, Garcia-Verdugo JM, De Palma M, Martino G, Pluchino S (2012) Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain 35(Pt 2):447–460Google Scholar
  104. 104.
    Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T (2008) Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS ONE 3(9):e3145PubMedGoogle Scholar
  105. 105.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736PubMedGoogle Scholar
  106. 106.
    Vultur A, Cao J, Arulanandam R, Turkson J, Jove R, Greer P, Craig A, Elliott B, Raptis L (2004) Cell-to-cell adhesion modulates Stat3 activity in normal and breast carcinoma cells. Oncogene 23(15):2600–2616PubMedGoogle Scholar
  107. 107.
    Gerdes HH, Bukoreshtliev NV, Barroso JF (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581(11):2194–2201PubMedGoogle Scholar
  108. 108.
    Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219PubMedGoogle Scholar
  109. 109.
    Dinger ME, Mercer TR, Mattick JS (2008) RNAs as extracellular signaling molecules. J Mol Endocrinol 40(4):151–159PubMedGoogle Scholar
  110. 110.
    Scheffler B, Schmandt T, Schroder W, Steinfarz B, Husseini L, Wellmer J, Seifert G, Karram K, Beck H, Blumcke I, Wiestler OD, Steinhauser C, Brustle O (2003) Functional network integration of embryonic stem cell-derived astrocytes in hippocampal slice cultures. Development 130(22):5533–5541PubMedGoogle Scholar
  111. 111.
    Giaume C, McCarthy KD (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci 19(8):319–325PubMedGoogle Scholar
  112. 112.
    Jaderstad J, Jaderstad LM, Li J, Chintawar S, Salto C, Pandolfo M, Ourednik V, Teng YD, Sidman RL, Arenas E, Snyder EY, Herlenius E (2010) Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host. Proc Natl Acad Sci U S A 107(11):5184–5189PubMedGoogle Scholar
  113. 113.
    Jaderstad J, Brismar H, Herlenius E (2010) Hypoxic preconditioning increases gap-junctional graft and host communication. NeuroReport 21(17):1126–1132PubMedGoogle Scholar
  114. 114.
    Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, Lane JC, Hudson JE, Chen N, Davis CD, Sanberg PR (2003) Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res 12(3):255–270PubMedGoogle Scholar
  115. 115.
    Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, Kocsis JD (2006) Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 129(Pt 10):2734–2745PubMedGoogle Scholar
  116. 116.
    Xiao J, Nan Z, Motooka Y, Low WC (2005) Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev 14(6):722–733PubMedGoogle Scholar
  117. 117.
    Chu K, Kim M, Park KI, Jeong SW, Park HK, Jung KH, Lee ST, Kang L, Lee K, Park DK, Kim SU, Roh JK (2004) Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016(2):145–153PubMedGoogle Scholar
  118. 118.
    Aboody K, Capela A, Niazi N, Stern JH, Temple S (2011) Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta Stone. Neuron 70(4):597–613PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Clara Alfaro-Cervello
    • 1
  • Chiara Cossetti
    • 1
  • Elena Giusto
    • 1
  • Matteo Donegà
    • 1
  • Stefano Pluchino
    • 1
  1. 1.Department of Clinical NeurosciencesCambridge Centre for Brain Repair and Stem Cell Initiative, University of CambridgeCambridgeUK

Personalised recommendations