Skip to main content

Effects of Obesity on Airway Responsiveness

  • Chapter
  • First Online:
  • 1523 Accesses

Part of the book series: Respiratory Medicine ((RM,volume 19))

Abstract

Although obesity is a risk factor for asthma, the mechanistic basis for this relationship is not established. In this chapter, we review data from human subjects and animal models examining how obesity impacts a characteristic feature of asthma airway hyperresponsiveness. We focus on two aspects of obesity that may affect airway responsiveness: the impact of obesity on the mechanical properties of the lungs and chest wall, and the low-grade systemic inflammation that results from interactions between adipocytes and leukocytes that are recruited to obese adipose tissue. We also discuss the possibility that diet may contribute to airway hyperresponsiveness, either through direct effects of dietary constituents or by altering the gut microbiome. Determining how obesity promotes asthma may uncover novel therapeutic strategies that are effective in the obese asthmatic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med. 2007;175(7):661–6.

    PubMed  Google Scholar 

  2. Ford ES. The epidemiology of obesity and asthma. J Allergy Clin Immunol. 2005;115(5): 897–909.

    PubMed  Google Scholar 

  3. Shore SA, Johnston RA. Obesity and asthma. Pharmacol Ther. 2006;110(1):83–102.

    PubMed  CAS  Google Scholar 

  4. Litonjua AA, Gold DR. Asthma and obesity: common early-life influences in the inception of disease. J Allergy Clin Immunol. 2008;121(5):1075–84.

    PubMed  Google Scholar 

  5. Mosen DM, Schatz M, Magid DJ, Camargo Jr CA. The relationship between obesity and asthma severity and control in adults. J Allergy Clin Immunol. 2008;122(3):507–11.

    PubMed  Google Scholar 

  6. Peters-Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM. Influence of body mass index on the response to asthma controller agents. Eur Respir J. 2006;27(3):495–503.

    PubMed  CAS  Google Scholar 

  7. Saint-Pierre P, Bourdin A, Chanez P, Daures JP, Godard P. Are overweight asthmatics more difficult to control? Allergy. 2006;61(1):79–84.

    PubMed  CAS  Google Scholar 

  8. Shore SA. Obesity, airway hyperresponsiveness, and inflammation. J Appl Physiol. 2010; 108(3):735–43.

    PubMed  Google Scholar 

  9. Litonjua AA, Sparrow D, Celedon JC, DeMolles D, Weiss ST. Association of body mass index with the development of methacholine airway hyperresponsiveness in men: the Normative Aging Study. Thorax. 2002;57(7):581–5.

    PubMed  CAS  Google Scholar 

  10. Chinn S, Jarvis D, Burney P. Relation of bronchial responsiveness to body mass index in the ECRHS. European Community Respiratory Health Survey. Thorax. 2002;57(12):1028–33.

    PubMed  CAS  Google Scholar 

  11. Celedon JC, Palmer LJ, Litonjua AA, Weiss ST, Wang B, Fang Z, et al. Body mass index and asthma in adults in families of subjects with asthma in Anqing, China. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1835–40.

    PubMed  CAS  Google Scholar 

  12. Sood A, Verhulst SJ, Varma A, Eagleton LE, Henkle JQ, Hopkins-Price P. Association of excess weight and degree of airway responsiveness in asthmatics and non-asthmatics. J Asthma. 2006;43(6):447–52.

    PubMed  Google Scholar 

  13. Schachter LM, Salome CM, Peat JK, Woolcock AJ. Obesity is a risk for asthma and wheeze but not airway hyperresponsiveness. Thorax. 2001;56(1):4–8.

    PubMed  CAS  Google Scholar 

  14. Bustos P, Amigo H, Oyarzun M, Rona RJ. Is there a causal relation between obesity and asthma? Evidence from Chile. Int J Obes Relat Metab Disord. 2005;29(7):804–9.

    CAS  Google Scholar 

  15. Nicolacakis K, Skowronski ME, Coreno AJ, West E, Nader NZ, Smith RL, et al. Observations on the physiological interactions between obesity and asthma. J Appl Physiol. 2008;105(5): 1533–41.

    PubMed  Google Scholar 

  16. Sharma S, Tailor A, Warrington R, Cheang M. Is obesity associated with an increased risk for airway hyperresponsiveness and development of asthma? Allergy Asthma Clin Immunol. 2008;4(2):51–8.

    PubMed  Google Scholar 

  17. Torchio R, Gobbi A, Gulotta C, Dellaca R, Tinivella M, Hyatt RE, et al. Mechanical effects of obesity on airway responsiveness in otherwise healthy humans. J Appl Physiol. 2009;107(2):408–16.

    PubMed  Google Scholar 

  18. Skloot G, Schechter C, Desai A, Togias A. Impaired response to deep inspiration in obesity. J Appl Physiol. 2011;111(3):726–34.

    PubMed  Google Scholar 

  19. Salome CM, Munoz PA, Berend N, Thorpe CW, Schachter LM, King GG. Effect of obesity on breathlessness and airway responsiveness to methacholine in non-asthmatic subjects. Int J Obes (Lond). 2008;32(3):502–9.

    CAS  Google Scholar 

  20. Chapman DG, Berend N, King GG, Salome CM. Increased airway closure is a determinant of airway hyperresponsiveness. Eur Respir J. 2008;32(6):1563–9.

    PubMed  CAS  Google Scholar 

  21. Sutherland TJ, Cowan JO, Taylor DR. Dynamic hyperinflation with bronchoconstriction: differences between obese and nonobese women with asthma. Am J Respir Crit Care Med. 2008;177(9):970–5.

    PubMed  Google Scholar 

  22. Hakala K, Mustajoki P, Aittomaki J, Sovijarvi AR. Effect of weight loss and body position on pulmonary function and gas exchange abnormalities in morbid obesity. Int J Obes Relat Metab Disord. 1995;19(5):343–6.

    PubMed  CAS  Google Scholar 

  23. Hedenstierna G, Santesson J, Norlander O. Airway closure and distribution of inspired gas in the extremely obese, breathing spontaneously and during anaesthesia with intermittent positive pressure ventilation. Acta Anaesthesiol Scand. 1976;20(4):334–42.

    PubMed  CAS  Google Scholar 

  24. Behazin N, Jones SB, Cohen RI, Loring SH. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol. 2010;108(1):212–8.

    PubMed  Google Scholar 

  25. Benedik PS, Baun MM, Keus L, Jimenez C, Morice R, Bidani A, et al. Effects of body position on resting lung volume in overweight and mildly to moderately obese subjects. Respir Care. 2009;54(3):334–9.

    PubMed  Google Scholar 

  26. Winkler T, Venegas JG. Complex airway behavior and paradoxical responses to bronchoprovocation. J Appl Physiol. 2007;103(2):655–63.

    PubMed  Google Scholar 

  27. Dixon AE, Pratley RE, Forgione PM, Kaminsky DA, Whittaker-Leclair LA, Griffes LA, et al. Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control and inflammation. J Allergy Clin Immunol. 2011;128(3):508–15.

    PubMed  Google Scholar 

  28. Aaron SD, Fergusson D, Dent R, Chen Y, Vandemheen KL, Dales RE. Effect of weight reduction on respiratory function and airway reactivity in obese women. Chest. 2004;125(6): 2046–52.

    PubMed  Google Scholar 

  29. Shore SA, Rivera-Sanchez YM, Schwartzman IN, Johnston RA. Responses to ozone are increased in obese mice. J Appl Physiol. 2003;95(3):938–45.

    PubMed  CAS  Google Scholar 

  30. Rivera-Sanchez YM, Johnston RA, Schwartzman IN, Valone J, Silverman ES, Fredberg JJ, et al. Differential effects of ozone on airway and tissue mechanics in obese mice. J Appl Physiol. 2004;96(6):2200–6.

    PubMed  CAS  Google Scholar 

  31. Lu FL, Johnston RA, Flynt L, Theman TA, Terry RD, Schwartzman IN, et al. Increased pulmonary responses to acute ozone exposure in obese db/db mice. Am J Physiol Lung Cell Mol Physiol. 2006;290(5):L856–65.

    PubMed  CAS  Google Scholar 

  32. Johnston RA, Theman TA, Shore SA. Augmented responses to ozone in obese carboxypeptidase E-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2006;290:R126–33.

    PubMed  CAS  Google Scholar 

  33. Johnston RA, Theman TA, Lu FL, Terry RD, Williams ES, Shore SA. Diet-induced obesity causes innate airway hyperresponsiveness to methacholine and enhances ozone-induced pulmonary inflammation. J Appl Physiol. 2008;104(6):1727–35.

    PubMed  CAS  Google Scholar 

  34. Shore SA, Williams ES, Zhu M. No effect of metformin on the innate airway hyperresponsiveness and increased responses to ozone observed in obese mice. J Appl Physiol. 2008;105(4):1127–33.

    PubMed  CAS  Google Scholar 

  35. Johnston RA, Zhu M, Hernandez CB, Williams ES, Shore SA. Onset of obesity in carboxypeptidase E-deficient mice and effect on airway responsiveness and pulmonary responses to ozone. J Appl Physiol. 2010;108(6):1812–9.

    PubMed  CAS  Google Scholar 

  36. Saraiva SA, Silva AL, Xisto DG, Abreu SC, Silva JD, Silva PL, et al. Impact of obesity on airway and lung parenchyma remodeling in experimental chronic allergic asthma. Respir Physiol Neurobiol. 2011;177(2):141–8.

    PubMed  Google Scholar 

  37. Johnston RA, Zhu M, Rivera-Sanchez YM, Lu FL, Theman TA, Flynt L, et al. Allergic airway responses in obese mice. Am J Respir Crit Care Med. 2007;176(7):650–8.

    PubMed  CAS  Google Scholar 

  38. Shore SA. Obesity and asthma: lessons from animal models. J Appl Physiol. 2007;102(2): 516–28.

    PubMed  CAS  Google Scholar 

  39. Jones RL, Nzekwu MM. The effects of body mass index on lung volumes. Chest. 2006;130(3):827–33.

    PubMed  Google Scholar 

  40. Ding DJ, Martin JG, Macklem PT. Effects of lung volume on maximal methacholine-induced bronchoconstriction in normal humans. J Appl Physiol. 1987;62(3):1324–30.

    PubMed  CAS  Google Scholar 

  41. Meinero M, Coletta G, Dutto L, Milanese M, Nova G, Sciolla A, et al. Mechanical response to methacholine and deep inspiration in supine men. J Appl Physiol. 2007;102(1):269–75.

    PubMed  Google Scholar 

  42. Torchio R, Gulotta C, Ciacco C, Perboni A, Guglielmo M, Crosa F, et al. Effects of chest wall strapping on mechanical response to methacholine in humans. J Appl Physiol. 2006;101(2):430–8.

    PubMed  Google Scholar 

  43. McClean MA, Matheson MJ, McKay K, Johnson PR, Rynell AC, Ammit AJ, et al. Low lung volume alters contractile properties of airway smooth muscle in sheep. Eur Respir J. 2003;22(1):50–6.

    PubMed  CAS  Google Scholar 

  44. Rorvik S, Bo G. Lung volumes and arterial blood gases in obesity. Scand J Respir Dis Suppl. 1976;95:60–4.

    PubMed  CAS  Google Scholar 

  45. Milic-Emili J, Torchio R, D’Angelo E. Closing volume: a reappraisal (1967–2007). Eur J Appl Physiol. 2007;99(6):567–83.

    PubMed  Google Scholar 

  46. Gump A, Haughney L, Fredberg J. Relaxation of activated airway smooth muscle: relative potency of isoproterenol vs. tidal stretch. J Appl Physiol. 2001;90(6):2306–10.

    PubMed  CAS  Google Scholar 

  47. Sampson MG, Grassino AE. Load compensation in obese patients during quiet tidal breathing. J Appl Physiol. 1983;55(4):1269–76.

    PubMed  CAS  Google Scholar 

  48. Holguin F, Cribbs S, Fitzpatrick AM, Ingram Jr RH, Jackson AC. A deep breath bronchoconstricts obese asthmatics. J Asthma. 2010;47(1):55–60.

    PubMed  Google Scholar 

  49. Boulet LP, Turcotte H, Boulet G, Simard B, Robichaud P. Deep inspiration avoidance and airway response to methacholine: influence of body mass index. Can Respir J. 2005;12(7):371–6.

    PubMed  Google Scholar 

  50. Skloot G, Togias A. Bronchodilation and bronchoprotection by deep inspiration and their relationship to bronchial hyperresponsiveness. Clin Rev Allergy Immunol. 2003;24(1):55–72.

    PubMed  Google Scholar 

  51. Ofir D, Laveneziana P, Webb KA, O’Donnell DE. Ventilatory and perceptual responses to cycle exercise in obese women. J Appl Physiol. 2007;102(6):2217–26.

    PubMed  Google Scholar 

  52. Romagnoli I, Laveneziana P, Clini EM, Palange P, Valli G, de Blasio F, et al. Role of hyperinflation vs. deflation on dyspnoea in severely to extremely obese subjects. Acta Physiol (Oxf). 2008;193(4):393–402.

    CAS  Google Scholar 

  53. Ferretti A, Giampiccolo P, Cavalli A, Milic-Emili J, Tantucci C. Expiratory flow limitation and orthopnea in massively obese subjects. Chest. 2001;119(5):1401–8.

    PubMed  CAS  Google Scholar 

  54. Martin J, Powell E, Shore S, Emrich J, Engel LA. The role of respiratory muscles in the hyperinflation of bronchial asthma. Am Rev Respir Dis. 1980;121(3):441–7.

    PubMed  CAS  Google Scholar 

  55. Farah CS, Kermode JA, Downie SR, Brown NJ, Hardaker KM, Berend N, et al. Obesity is a determinant of asthma control, independent of inflammation and lung mechanics. Chest. 2011;140(3):659–66.

    PubMed  Google Scholar 

  56. Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Gyori G, et al. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond). 2007;31(9):1420–8.

    CAS  Google Scholar 

  57. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.

    PubMed  CAS  Google Scholar 

  58. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.

    PubMed  CAS  Google Scholar 

  59. Strissel KJ, Stancheva Z, Miyoshi H, Perfield 2nd JW, DeFuria J, Jick Z, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910–8.

    PubMed  CAS  Google Scholar 

  60. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6 J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond). 2008;32(3):451–63.

    CAS  Google Scholar 

  61. Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293(4):E1118–28.

    PubMed  CAS  Google Scholar 

  62. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56(4): 901–11.

    PubMed  CAS  Google Scholar 

  63. Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem. 2007;282(48): 35279–92.

    PubMed  CAS  Google Scholar 

  64. Anderson EK, Gutierrez DA, Hasty AH. Adipose tissue recruitment of leukocytes. Curr Opin Lipidol. 2010;21(3):172–7.

    PubMed  CAS  Google Scholar 

  65. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    PubMed  CAS  Google Scholar 

  66. Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28(7):1304–10.

    PubMed  CAS  Google Scholar 

  67. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20.

    PubMed  CAS  Google Scholar 

  68. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15(8):921–9.

    PubMed  CAS  Google Scholar 

  69. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15(8):930–9.

    PubMed  CAS  Google Scholar 

  70. Ohmura K, Ishimori N, Ohmura Y, Tokuhara S, Nozawa A, Horii S, et al. Natural killer T cells are involved in adipose tissues inflammation and glucose intolerance in diet-induced obese mice. Arterioscler Thromb Vasc Biol. 2010;30(2):193–9.

    PubMed  CAS  Google Scholar 

  71. Caspar-Bauguil S, Cousin B, Andre M, Nibbelink M, Galinier A, Periquet B, et al. Weight-dependent changes of immune system in adipose tissue: importance of leptin. Exp Cell Res. 2006;312(12):2195–202.

    PubMed  CAS  Google Scholar 

  72. Zuniga LA, Shen WJ, Joyce-Shaikh B, Pyatnova EA, Richards AG, Thom C, et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol. 2010;185(11):6947–59.

    PubMed  CAS  Google Scholar 

  73. Liu J, Divoux A, Sun J, Zhang J, Clement K, Glickman JN, et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med. 2009;15(8):940–5.

    PubMed  CAS  Google Scholar 

  74. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332(6026):243–7.

    PubMed  CAS  Google Scholar 

  75. Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7(6):485–95.

    PubMed  CAS  Google Scholar 

  76. Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab. 2000;85(9):3338–42.

    PubMed  CAS  Google Scholar 

  77. Bastard JP, Jardel C, Bruckert E, Vidal H, Hainque B. Variations in plasma soluble tumour necrosis factor receptors after diet-induced weight loss in obesity. Diabetes Obes Metab. 2000;2(5):323–5.

    PubMed  CAS  Google Scholar 

  78. Katsuki A, Sumida Y, Murashima S, Murata K, Takarada Y, Ito K, et al. Serum levels of tumor necrosis factor-alpha are increased in obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1998;83(3):859–62.

    PubMed  CAS  Google Scholar 

  79. Roth CL, Kratz M, Ralston MM, Reinehr T. Changes in adipose-derived inflammatory cytokines and chemokines after successful lifestyle intervention in obese children. Metabolism. 2011;60(4):445–52.

    PubMed  CAS  Google Scholar 

  80. Zaldivar F, McMurray RG, Nemet D, Galassetti P, Mills PJ, Cooper DM. Body fat and circulating leukocytes in children. Int J Obes (Lond). 2006;30(6):906–11.

    CAS  Google Scholar 

  81. Nijhuis J, Rensen SS, Slaats Y, van Dielen FM, Buurman WA, Greve JW. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity (Silver Spring). 2009;17(11):2014–8.

    CAS  Google Scholar 

  82. Atabek ME, Vatansev H, Erkul I. Oxidative stress in childhood obesity. J Pediatr Endocrinol Metab. 2004;17(8):1063–8.

    PubMed  CAS  Google Scholar 

  83. Bakker SJ, IJzerman RG, Teerlink T, Westerhoff HV, Gans RO, Heine RJ. Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? Atherosclerosis. 2000;148(1):17–21.

    PubMed  CAS  Google Scholar 

  84. Keaney Jr JF, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23(3):434–9.

    PubMed  CAS  Google Scholar 

  85. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12): 1752–61.

    PubMed  CAS  Google Scholar 

  86. Lee YS, Kim AY, Choi JW, Kim M, Yasue S, Son HJ, et al. Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol Endocrinol. 2008;22(9):2176–89.

    PubMed  CAS  Google Scholar 

  87. Johnson JB, Summer W, Cutler RG, Martin B, Hyun DH, Dixit VD, et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med. 2007;42(5): 665–74.

    PubMed  CAS  Google Scholar 

  88. de Mello VD, Kolehmainen M, Schwab U, Mager U, Laaksonen DE, Pulkkinen L, et al. Effect of weight loss on cytokine messenger RNA expression in peripheral blood mononuclear cells of obese subjects with the metabolic syndrome. Metabolism. 2008;57(2):192–9.

    PubMed  Google Scholar 

  89. Traupe T, D’Uscio LV, Muenter K, Morawietz H, Vetter W, Barton M. Effects of obesity on endothelium-dependent reactivity during acute nitric oxide synthase inhibition: modulatory role of endothelin. Clin Sci (Lond). 2002;103(Suppl 48):13S–5.

    CAS  Google Scholar 

  90. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115(5):911–9.

    PubMed  CAS  Google Scholar 

  91. Scherer PE. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes. 2006;55(6):1537–45.

    PubMed  CAS  Google Scholar 

  92. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):191–8.

    PubMed  CAS  Google Scholar 

  93. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389(6651):610–4.

    PubMed  CAS  Google Scholar 

  94. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.

    PubMed  CAS  Google Scholar 

  95. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208.

    PubMed  CAS  Google Scholar 

  96. Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia. 2007;50(2):471–80.

    PubMed  CAS  Google Scholar 

  97. Tamura Y, Sugimoto M, Murayama T, Minami M, Nishikaze Y, Ariyasu H, et al. C-C chemokine receptor 2 inhibitor improves diet-induced development of insulin resistance and hepatic steatosis in mice. J Atheroscler Thromb. 2010;17(3):219–28.

    PubMed  CAS  Google Scholar 

  98. Burgess A, Li M, Vanella L, Kim DH, Rezzani R, Rodella L, et al. Adipocyte heme oxygenase-1 induction attenuates metabolic syndrome in both male and female obese mice. Hypertension. 2010;56(6):1124–30.

    PubMed  CAS  Google Scholar 

  99. Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–24.

    PubMed  Google Scholar 

  100. van Veen IH, Ten Brinke A, Sterk PJ, Rabe KF, Bel EH. Airway inflammation in obese and nonobese patients with difficult-to-treat asthma. Allergy. 2008;63(5):570–4.

    PubMed  Google Scholar 

  101. Berg CM, Thelle DS, Rosengren A, Lissner L, Toren K, Olin AC. Decreased fraction of exhaled nitric oxide in obese subjects with asthma symptoms: data from the population study INTERGENE/ADONIX. Chest. 2011;139(5):1109–16.

    PubMed  Google Scholar 

  102. Komakula S, Khatri S, Mermis J, Savill S, Haque S, Rojas M, et al. Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics. Respir Res. 2007;8:32.

    PubMed  Google Scholar 

  103. Scott HA, Gibson PG, Garg ML, Wood LG. Airway inflammation is augmented by obesity and fatty acids in asthma. Eur Respir J. 2011;38(3):594–602.

    PubMed  CAS  Google Scholar 

  104. Lessard A, Turcotte H, Cormier Y, Boulet LP. Obesity and asthma: a specific phenotype? Chest. 2008;134(2):317–23.

    PubMed  Google Scholar 

  105. Todd DC, Armstrong S, D’Silva L, Allen CJ, Hargreave FE, Parameswaran K. Effect of obesity on airway inflammation: a cross-sectional analysis of body mass index and sputum cell counts. Clin Exp Allergy. 2007;37(7):1049–54.

    PubMed  CAS  Google Scholar 

  106. Sutherland TJ, Cowan JO, Young S, Goulding A, Grant AM, Williamson A, et al. The association between obesity and asthma: interactions between systemic and airway inflammation. Am J Respir Crit Care Med. 2008;178(5):469–75.

    PubMed  Google Scholar 

  107. de Vries A, Hazlewood L, Fitch PM, Seckl JR, Foster P, Howie SE. High-fat feeding redirects cytokine responses and decreases allergic airway eosinophilia. Clin Exp Allergy. 2009;39(5): 731–9.

    PubMed  Google Scholar 

  108. Calixto MC, Lintomen L, Schenka A, Saad MJ, Zanesco A, Antunes E. Obesity enhances eosinophilic inflammation in a murine model of allergic asthma. Br J Pharmacol. 2010;159(3): 617–25.

    PubMed  CAS  Google Scholar 

  109. Giouleka P, Papatheodorou G, Lyberopoulos P, Karakatsani A, Alchanatis M, Roussos C, et al. Body mass index is associated with leukotriene inflammation in asthmatics. Eur J Clin Invest. 2011;41(1):30–8.

    PubMed  CAS  Google Scholar 

  110. Mancuso P, Canetti C, Gottschalk A, Tithof PK, Peters-Golden M. Leptin augments alveolar macrophage leukotriene synthesis by increasing phospholipase activity and enhancing group IVC iPLA2 (cPLA2gamma) protein expression. Am J Physiol Lung Cell Mol Physiol. 2004;287(3):L497–502.

    PubMed  CAS  Google Scholar 

  111. Holguin F, Rojas M, Brown LA, Fitzpatrick AM. Airway and plasma leptin and adiponectin in lean and obese asthmatics and controls. J Asthma. 2011;48(3):217–23.

    PubMed  CAS  Google Scholar 

  112. Lessard A, St-Laurent J, Turcotte H, Boulet LP. Leptin and adiponectin in obese and non-obese subjects with asthma. Biomarkers. 2011;16(3):271–3.

    PubMed  CAS  Google Scholar 

  113. Zhu M, Hug C, Kasahara DI, Johnston RA, Williams AS, Verbout NG, et al. Impact of ­adiponectin deficiency on pulmonary responses to acute ozone exposure in mice. Am J Respir Cell Mol Biol. 2010;43(4):487–97.

    PubMed  CAS  Google Scholar 

  114. Shore SA. Obesity and asthma: implications for treatment. Curr Opin Pulm Med. 2007;13(1):56–62.

    PubMed  Google Scholar 

  115. Shore SA. Obesity and asthma: possible mechanisms. J Allergy Clin Immunol. 2008;121(5):1087–93.

    PubMed  Google Scholar 

  116. Shore SA, Schwartzman IN, Mellema MS, Flynt L, Imrich A, Johnston RA. Effect of leptin on allergic airway responses in mice. J Allergy Clin Immunol. 2005;115(1):103–9.

    PubMed  CAS  Google Scholar 

  117. Shore SA, Terry RD, Flynt L, Xu A, Hug C. Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol. 2006;118(2): 389–95.

    PubMed  CAS  Google Scholar 

  118. Ferri C, Bellini C, Desideri G, Baldoncini R, Properzi G, Santucci A, et al. Circulating endothelin-1 levels in obese patients with the metabolic syndrome. Exp Clin Endocrinol Diabetes. 1997;105(Suppl 2):38–40.

    PubMed  CAS  Google Scholar 

  119. Maeda S, Jesmin S, Iemitsu M, Otsuki T, Matsuo T, Ohkawara K, et al. Weight loss reduces plasma endothelin-1 concentration in obese men. Exp Biol Med (Maywood). 2006;231(6):1044–7.

    CAS  Google Scholar 

  120. Cardillo C, Campia U, Iantorno M, Panza JA. Enhanced vascular activity of endogenous endothelin-1 in obese hypertensive patients. Hypertension. 2004;43(1):36–40.

    PubMed  CAS  Google Scholar 

  121. Mather KJ, Mirzamohammadi B, Lteif A, Steinberg HO, Baron AD. Endothelin contributes to basal vascular tone and endothelial dysfunction in human obesity and type 2 diabetes. Diabetes. 2002;51(12):3517–23.

    PubMed  CAS  Google Scholar 

  122. Macquin-Mavier I, Levame M, Istin N, Harf A. Mechanisms of endothelin-mediated bronchoconstriction in the guinea pig. J Pharmacol Exp Ther. 1989;250(2):740–5.

    PubMed  CAS  Google Scholar 

  123. Uchida Y, Ninomiya H, Saotome M, Nomura A, Ohtsuka M, Yanagisawa M, et al. Endothelin, a novel vasoconstrictor peptide, as potent bronchoconstrictor. Eur J Pharmacol. 1988;154(2):227–8.

    PubMed  CAS  Google Scholar 

  124. D’Agostino B, Filippelli A, Falciani M, Rossi F. Endothelin-1 and bronchial hyperresponsiveness in the rabbit. Naunyn Schmiedebergs Arch Pharmacol. 1998;358(5):561–6.

    PubMed  Google Scholar 

  125. Noguchi K, Ishikawa K, Yano M, Ahmed A, Cortes A, Abraham WM. Endothelin-1 contributes to antigen-induced airway hyperresponsiveness. J Appl Physiol. 1995;79(3):700–5.

    PubMed  CAS  Google Scholar 

  126. Sumarac-Dumanovic M, Stevanovic D, Ljubic A, Jorga J, Simic M, Stamenkovic-Pejkovic D, et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int J Obes (Lond). 2009;33(1):151–6.

    CAS  Google Scholar 

  127. Agache I, Ciobanu C, Agache C, Anghel M. Increased serum IL-17 is an independent risk factor for severe asthma. Respir Med. 2010;104(8):1131–7.

    PubMed  Google Scholar 

  128. Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, et al. Obesity predisposes to Th17 bias. Eur J Immunol. 2009;39(9):2629–35.

    PubMed  CAS  Google Scholar 

  129. Lyons JA, Haring JS, Biga PR. Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice. PLoS One. 2010;5(9):e12928.

    PubMed  Google Scholar 

  130. Pini M, Fantuzzi G. Enhanced production of IL-17A during zymosan-induced peritonitis in obese mice. J Leukoc Biol. 2010;87(1):51–8.

    PubMed  CAS  Google Scholar 

  131. Finkelman FD, Hogan SP, Hershey GK, Rothenberg ME, Wills-Karp M. Importance of cytokines in murine allergic airway disease and human asthma. J Immunol. 2010;184(4): 1663–74.

    PubMed  CAS  Google Scholar 

  132. Pichavant M, Goya S, Meyer EH, Johnston RA, Kim HY, Matangkasombut P, et al. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med. 2008;205(2):385–93.

    PubMed  CAS  Google Scholar 

  133. Tantisira KG, Weiss ST. Complex interactions in complex traits: obesity and asthma. Thorax. 2001;56(Suppl 2):ii64–73.

    PubMed  Google Scholar 

  134. Weiss ST. Obesity: insight into the origins of asthma. Nat Immunol. 2005;6(6):537–9.

    PubMed  CAS  Google Scholar 

  135. Soutar A, Seaton A, Brown K. Bronchial reactivity and dietary antioxidants. Thorax. 1997; 52(2):166–70.

    PubMed  CAS  Google Scholar 

  136. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–25.

    PubMed  CAS  Google Scholar 

  137. Blackburn P, Despres JP, Lamarche B, Tremblay A, Bergeron J, Lemieux I, et al. Postprandial variations of plasma inflammatory markers in abdominally obese men. Obesity (Silver Spring). 2006;14(10):1747–54.

    CAS  Google Scholar 

  138. Ghanim H, Sia CL, Upadhyay M, Korzeniewski K, Viswanathan P, Abuaysheh S, et al. Orange juice neutralizes the proinflammatory effect of a high-fat, high-carbohydrate meal and prevents endotoxin increase and Toll-like receptor expression. Am J Clin Nutr. 2010;91(4):940–9.

    PubMed  CAS  Google Scholar 

  139. Ghanim H, Sia CL, Korzeniewski K, Lohano T, Abuaysheh S, Marumganti A, et al. A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high-carbohydrate meal. J Clin Endocrinol Metab. 2011;96(5):1409–14.

    PubMed  CAS  Google Scholar 

  140. Wood LG, Garg ML, Gibson PG. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. J Allergy Clin Immunol. 2011;127(5):1133–40.

    PubMed  Google Scholar 

  141. Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez-Real JM, et al. Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care. 2009;32(12):2281–7.

    PubMed  CAS  Google Scholar 

  142. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.

    PubMed  CAS  Google Scholar 

  143. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374–83.

    PubMed  CAS  Google Scholar 

  144. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122): 1027–31.

    PubMed  Google Scholar 

  145. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578.

    PubMed  Google Scholar 

  146. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268): 1282–6.

    PubMed  CAS  Google Scholar 

  147. Shore SA. Environmental perturbations: obesity. Compr Physiol. 2010. doi:10.1002/cphy.c100017.

Download references

Acknowledgments

This work was supported by National Institute of Environmental Health Sciences Grants ES-013307 and ES-000002, and National Heart, Lung, and Blood Institute Grant HL-084044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie A. Shore Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shore, S.A. (2013). Effects of Obesity on Airway Responsiveness. In: Dixon, A., Clerisme-Beaty, E. (eds) Obesity and Lung Disease. Respiratory Medicine, vol 19. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-053-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-053-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-052-6

  • Online ISBN: 978-1-62703-053-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics