Skip to main content

Soy Products Affecting Alcohol Absorption and Metabolism

Part of the Nutrition and Health book series (NH)

Abstract

Ethanol absorption in humans is controlled mainly by gastric emptying because the primary region of ethanol absorption is the small intestine [1]. Vegetable oils such as soybean oil and coconut oil delay the elimination rate of gastric ethanol and lessen the resultant increase in plasma ethanol concentrations [2]. The clearance of ethanol and toxic acetaldehyde is achieved by ethanol-metabolizing enzymes such as alcohol dehydrogenase (ADH), acetaldehyde dehydrogenase (ALDH), and microsomal ethanol oxidizing system (MEOS) [3]. Therefore, components such as sesamin and garlic that stimulate the activity of these enzymes are expected to ameliorate alcohol toxicity [4, 5].

Keywords

  • Isoflavone
  • Soymilk
  • Fermented soymilk
  • Aglycone
  • Glycoside

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-62703-047-2_15
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-62703-047-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7
Fig. 15.8
Fig. 15.9

References

  1. Holt M. Observations on the relation between alcohol absorption and the rate of gastric emptying. Can Med Assoc J. 1980;124:267–77.

    Google Scholar 

  2. Tachiyashiki K, Imaizumi K. Effects of vegetable oils and C18-unsaturated fatty acids on plasma ethanol levels and gastric emptying in ethanol-administrated rats. J Nutr Sci Vitaminol. 1993;39:163–76.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Lieber CS. Alcohol and the liver. 1994 update. Gastroenterology. 1994;106:1085–105.

    PubMed  CAS  Google Scholar 

  4. Yang Z, Suwa Y, Hirai K, et al. Effects of sesamin on ethanol-induced muscle relaxation. J Jpn Soc Nutr Food Sci. 1995;48:103–18.

    CrossRef  CAS  Google Scholar 

  5. Kishimoto R, Ueda M, Yoshinaga H, et al. Combined effects of ethanol and garlic on hepatic ethanol metabolism in mice. J Nutr Sci Vitaminol. 1999;45:275–86.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Setchell KDR, Cassidy A. Dietary isoflavones: biological effects and relevance to human health. J Nutr. 1999;129:758S–67.

    PubMed  CAS  Google Scholar 

  7. Scheiber MD, Liu JH, Subbiah MT, et al. Dietary inclusion of whole soy foods results in significant reductions in clinical risk factors for osteoporosis and cardiovascular disease in normal postmenopausal women. Menopause. 2001;8:384–92.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Adlercreutz H. Phyto-oestrogens and cancer. Lancet Oncol. 2002;3:364–73.

    PubMed  CrossRef  Google Scholar 

  9. Setchell KDR, Lydeking-Olsen E. Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am J Clin Nutr. 2003;78:593S–609.

    PubMed  CAS  Google Scholar 

  10. Spence LA, Lipscomb ER, Cadogan J, et al. The effect of soy protein and soy isoflavones on calcium metabolism in postmenopausal women: a randomized crossover study. Am J Clin Nutr. 2005;81:916–22.

    PubMed  CAS  Google Scholar 

  11. Lin RC, Guthrie S, Xie CY, et al. Isoflavonoid compounds extracted from Pueraria lobata suppress alcohol preference in a pharmacogenetic rat model of alcoholism. Alcohol Clin Exp Res. 1996;20:659–63.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Overstreet DH, Lee YW, Rezvani AH, et al. Suppression of alcohol intake after administration of the Chinese herbal medicine, NPI-028, and its derivatives. Alcohol Clin Exp Res. 1996;20:221–7.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Keung WM. Daidzin suppresses ethanol consumption by Syrian golden hamsters without blocking acetaldehyde metabolism. Proc Natl Acad Sci USA. 1995;92:8990–3.

    PubMed  CrossRef  CAS  Google Scholar 

  14. Xie CI, Lin RC, Antony V, et al. Daidzin, an antioxidant Isoflavonoid, decreases blood alcohol levels and shortens sleep time induced by ethanol intoxication. Alcohol Clin Exp Res. 1994;18:1443–7.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Wang HJ, Murphy PA. Isoflavone content in commercial soybean foods. J Agric Food Chem. 1994;42:1666–73.

    CrossRef  CAS  Google Scholar 

  16. Setchell KDR, Brown NM, Zimmer-Nechemias L, et al. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr. 2002;76:447–53.

    PubMed  CAS  Google Scholar 

  17. Atkinson C, Frankenfeld CL, Lampe JW. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med. 2005;230:155–70.

    CAS  Google Scholar 

  18. Decroos K, Vanhemmens S, Cattoir S, et al. Isolation and characterization of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol. 2005;18:45–55.

    CrossRef  Google Scholar 

  19. Tanaka R. Probiotics: prospects of use in opportunistic infections. In: Fuller R et al., editors. Old Herborn University seminar monograph, vol. 8. Herborn-Dill: Institute for Microecology; 1995. p. 141–57.

    Google Scholar 

  20. Kitajima H, Sumida Y, Tanaka R, et al. Early administration of Bifidobacterium breve to preterm infants: randomized controlled trial. Arch Dis Child. 1997;76:F101–7.

    CAS  Google Scholar 

  21. Tojo M, Oikawa T, Morikawa Y, et al. The effects of Bifidobacterium breve administration on Campylobacter enteritis. Acta Paediatr Jpn. 1987;29:160–7.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Hotta M, Sato Y, Iwata S, et al. Clinical effects of Bifidobacterium preparations on pediatric intractable diarrhea. Keio J Med. 1987;36:298–314.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Ishikawa F. Probiotic foods expected to prevent life-style derived diseases. Healthist. 2002;150:69–76.

    Google Scholar 

  24. Kano M, Takayanagi T, Harada K, et al. Bioavailability of isoflavones after ingestion of soy beverages in healthy adults. J Nutr. 2006;136:2291–6.

    PubMed  CAS  Google Scholar 

  25. Kano M, Ishikawa F. Form of isoflavone affects bioavailability from soymilk. Agro Food Ind Hi-Tech. 2007;18:1–3.

    Google Scholar 

  26. Kikuchi-Hayakawa H, et al. Effects of soy milk and Bifidobacterium fermented soy milk on lipid metabolism in aged ovariectomized rats. Biosci Biotechnol Biochem. 1998;62:1688–92.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Kikuchi-Hayakawa H, Onodera N, Matsubara S, et al. Effect of soya milk and Bifidobacterium-fermented soya milk on plasma and liver lipids, and faecal steroids in hamsters fed on a cholesterol-free or cholesterol-enriched diet. Br J Nutr. 1998;79:97–105.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Kikuchi-Hayakawa H, Onodera-Masuoka N, Kano M, et al. Effect of soy milk and Bifidobacterium-fermented soy milk on plasma and liver lipids in ovariectomized Syrian hamsters. J Nutr Sci Vitaminol. 2000;46:105–8.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Ohta T, Nakatsugi S, Watanabe K, et al. Inhibitory effects of Bifidobacterium-fermented soy milk on 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine-induced rat mammary carcinogenesis, with a partial contribution of its component isoflavones. Carcinogenesis. 2000;21:937–41.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Kano M, Ishikawa F, Matsubara S, et al. Soymilk products affect ethanol absorption and metabolism in rats during acute and chronic ethanol intake. J Nutr. 2002;132:238–44.

    PubMed  CAS  Google Scholar 

  31. Kano M, Ishikawa F. Soy products affecting alcohol absorption and metabolism. In: Watson RR, Preedy VR, editors. Nutrition and alcohol. Boca Raton: CRC Press; 2004. p. 301–11.

    Google Scholar 

  32. Keung WM, Vallee BL. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc Natl Acad Sci USA. 1993;90:1247–51.

    PubMed  CrossRef  CAS  Google Scholar 

  33. Lebsack ME, Gordon ER, Lieber CS, et al. Effect of chronic ethanol consumption on aldehyde dehydrogenase activity in the baboon. Biochem Pharmacol. 1981;30:2273–7.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Ingelman-Sundberg M, Johansson I, Yin H, et al. Ethanol-inducible cytochrome P4502E1: genetic polymorphism, regulation, and possible role in the etiology of alcohol-induced liver disease. Alcohol. 1993;10:447–52.

    PubMed  CrossRef  CAS  Google Scholar 

  35. Fridovich I. Oxygen radicals from acetaldehyde. Free Radic Biol Med. 1989;7:557–8.

    PubMed  CrossRef  CAS  Google Scholar 

  36. Rashba-Step J, Turro NJ, Cederbaum AI. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsome after chronic ethanol treatment. Arch Biochem Biophys. 1993;300:401–8.

    PubMed  CrossRef  CAS  Google Scholar 

  37. Vina J, Estrela JM, Guerri C, et al. Effect of ethanol on glutathione concentration in isolated hepatocytes. Biochem J. 1980;188:549–52.

    PubMed  CAS  Google Scholar 

  38. Tsuchida S, Sato K. Glutathione S-transferase isozymes. Protein Nucleic Acid Enzym (Jpn). 1988;33:1564–73.

    CAS  Google Scholar 

  39. Chae YH, Marcus CB, Ho DK, et al. Effects of synthetic and naturally occurring flavonoids on benzo[a]pyrene metabolism by hepatic microsomes prepared from rats treated with cytochrome P-450 inducers. Cancer Lett. 1991;60:15–24.

    PubMed  CrossRef  CAS  Google Scholar 

  40. Ronis MJ, Rowlands JC, Hakkak R, et al. Altered expression and glucocorticoid-inducibility of hepatic CYP3A and CYP2B enzymes in male rats fed diets containing soy protein isolate. J Nutr. 1999;129:1958–65.

    PubMed  CAS  Google Scholar 

  41. Ekstrom G, Ingelman-Sundberg M. Rat liver microsomal BADPH-supported oxidase activity and lipid peroxidation dependent on ethanol inducible cytochrome P450(P-450 IIEI). Biochem Pharmacol. 1989;38:1313–9.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Shimakawa Y, Matsubara S, Yuki N, et al. Evaluation of Bifidobacterium breve strain Yakult-fermented soymilk as a probiotic food. Int J Food Microbiol. 2003;81:131–6.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Suda I, Ishikawa F, Hatakeyama M, et al. Intake of purple sweet potato beverage affects on serum hepatic biomarker levels of healthy adult men with borderline hepatitis. Eur J Clin Nutr. 2008;62:60–7.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Kano Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kano, M., Kubota, N. (2013). Soy Products Affecting Alcohol Absorption and Metabolism. In: Watson, R., Preedy, V., Zibadi, S. (eds) Alcohol, Nutrition, and Health Consequences. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-047-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-047-2_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-046-5

  • Online ISBN: 978-1-62703-047-2

  • eBook Packages: MedicineMedicine (R0)