Skip to main content

Tocotrienol and Cognitive Dysfunction Induced by Alcohol

  • Chapter
  • First Online:
Alcohol, Nutrition, and Health Consequences

Abstract

Alcoholism, the chronic and excessive consumption of alcohol, is a syndrome characterized by severe peripheral as well as central nervous system toxicity. However, the neurobehavioral deficits induced by alcohol and their impact on quality of life of an individual, are often unrecognized. Over 17 million Americans, that is, 8.5 % of the population, meet the DSM-IV diagnostic criteria for alcohol dependence or alcohol abuse, more commonly referred to as chronic alcoholism [1]. Up to 50–75 % of long-term alcoholics may show permanent cognitive impairment, making chronic alcoholism the second leading cause of dementia behind Alzheimer’s disease [2]. A significant number of alcoholics have clinically relevant cognitive deficits, even when the most severe alcohol-related dementias are excluded [3] (e.g., Wernicke–Korsakoff syndrome or hepatic encephalopathy). Alcoholics consistently show deficits in executive function, declarative memory, and short-term memory and frequently show impairments in spatial learning and memory and impulsivity, effects which indicate hippocampal dysfunction [3, 4]. Parallel to the behavioral and cognitive impairments are observations of “brain shrinkage” or neurodegeneration in alcoholics [5, 6]. Human imaging studies, animal models, and postmortem analysis of brain structure support that chronic alcoholism is closely associated with brain damage or neurodegeneration. Alcoholics show significant volume loss in cortical and subcortical brain structures that includes both gray and white matter shrinkage. These widespread deficits occur in the absence of major nutritional deficiencies, although nutritional deficiencies can cause neurodegeneration and could contribute to alcoholic degeneration. Both postmortem and in vivo imaging studies of brain morphology reveal abnormally reduced brain volumes of gray and white matter across multiple regions. The frontal lobes are the most insulted region in the alcoholic brain with the superior frontal cortex showing significant neuronal loss [6, 7]. The frontal lobes regulate complex cognitive skills such as working memory, temporal ordering, discrimination, and reversal learning that underlie judgment, attention, risk taking, and motivation. Disorders in these behaviors are central if not causal to the consumption of dangerous amounts of alcohol despite the knowledge of negative consequences. Accordingly, chronic alcoholics demonstrate impaired judgment, blunted affect, poor insight, social withdrawal, reduced motivation, distractibility, attention, and impulse-control deficits [3, 4, 6]. Both clinical observations [3, 4] and animal studies have shown a direct relationship between chronic alcohol and learning and memory deficits [8–11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grant BF, Dawson DA, Stinson FS, et al. The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence United States, 1991–1992 and 2001–2002. Drug Alcohol Depend. 2004;74:223–34.

    PubMed  Google Scholar 

  2. Eckardt MJ, Martin PR. Clinical assessment of cognition in alcoholism. Alcohol Clin Exp Res. 1986;10(2): 123–7.

    PubMed  CAS  Google Scholar 

  3. Parsons OA. Impaired neuropsychological cognitive functioning in sober alcoholics. In: Parsons OA. Intellectual impairment in alcoholics: persistent issues. Acta Med Scand Suppl. 1987;717:33–46.

    Google Scholar 

  4. Sullivan EV, Rosenbloom MJ, Pfefferbaum A. Pattern of motor and cognitive deficits in detoxified alcoholic men. Alcohol Clin Exp Res. 2000;24:611–21.

    PubMed  CAS  Google Scholar 

  5. Harper C. The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? J Neuropathol Exp Neurol. 1998;57(2):101–10.

    PubMed  CAS  Google Scholar 

  6. Sullivan EV, Pfefferbaum A. Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology (Berl). 2005;180(4):583–94.

    CAS  Google Scholar 

  7. Kubota M, Nakazaki S, Hirai S, et al. Alcohol consumption and frontal lobe shrinkage: study of 1432 non-­alcoholic subjects. J Neurol Neurosurg Psychiatry. 2001;71(1):104–6.

    PubMed  CAS  Google Scholar 

  8. Bond NW, Di Giusto EL. Impairment of Hebb-Williams maze performance following prolonged alcohol ­consumption in rats. Pharmacol Biochem Behav. 1976;5(1):85–6.

    PubMed  CAS  Google Scholar 

  9. Arendt T, Allen Y, Marchbanks RM, et al. Cholinergic system and memory in the rat: effects of chronic ethanol, embryonic basal forebrain brain transplants and excitotoxic lesions of cholinergic basal forebrain projection system. Neuroscience. 1989;33(3):435–62.

    PubMed  CAS  Google Scholar 

  10. Lukoyanov NV, Madeira MD, Paula-Barbosa MM. Behavioral and neuroanatomical consequences of chronic ethanol intake and withdrawal. Physiol Behav. 1999;66(2):337–46.

    PubMed  CAS  Google Scholar 

  11. Matthews DB, Morrow AL. Effects of acute and chronic ethanol exposure on spatial cognitive processing and hippocampal function in the rat. Hippocampus. 2000;10(1):122–30.

    PubMed  CAS  Google Scholar 

  12. O’Leary CM. Fetal alcohol syndrome: diagnosis, epidemiology, and developmental outcomes. J Paediatr Child Health. 2004;40(1–2):2–7.

    PubMed  Google Scholar 

  13. Abel EL, Sokol RJ. A revised conservative estimate of the incidence of FAS and its economic impact. Alcohol Clin Exp Res. 1991;15:514–24.

    PubMed  CAS  Google Scholar 

  14. Cohen-Kerem R, Koren G. Antioxidants and fetal protection against ethanol teratogenicity. I. Review of the experimental data and implications to humans. Neurotoxicol Teratol. 2003;25(1):1–9.

    PubMed  CAS  Google Scholar 

  15. Breese CR, Sonntag WE. Effect of ethanol on plasma and hepatic insulin-like growth factor regulation in pregnant rats. Alcohol Clin Exp Res. 1995;19(4):867–73.

    PubMed  CAS  Google Scholar 

  16. Scott HC, Sun GY, Zoeller RT. Prenatal ethanol exposure selectively reduces the mRNA encoding alpha-1 thyroid hormone receptor in fetal rat brain. Alcohol Clin Exp Res. 1998;22(9):2111–7.

    PubMed  CAS  Google Scholar 

  17. Nixon K, Crews FT. Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J Neurochem. 2002;83:1087–93.

    PubMed  CAS  Google Scholar 

  18. Butterfield DA, Castegna A, Drake J, et al. Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr Neurosci. 2002;5:229–39.

    PubMed  CAS  Google Scholar 

  19. Behl C, Moosmann B. Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem. 2002;383:521–36.

    PubMed  CAS  Google Scholar 

  20. Nordmann R, Ribiere C, Rouach H. Ethanol-induced lipid peroxidation and oxidative stress in extrahepatic tissues. Alcohol Alcohol. 1990;25:231–7.

    PubMed  CAS  Google Scholar 

  21. Sagara Y, Dargusch R, Chambers D, et al. Cellular mechanisms of resistance to chronic oxidative stress. Free Radic Biol Med. 1998;24:1375–89.

    PubMed  CAS  Google Scholar 

  22. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59:1609–23.

    PubMed  CAS  Google Scholar 

  23. Siler-Marsiglio KI, Paiva M, Madorsky I, et al. Protective mechanisms of pycnogenol® in Ethanol-insulted cerebellar granule cells. J Neurobiol. 2004;61:267–76.

    PubMed  CAS  Google Scholar 

  24. Abel EL, Hannigan JH. Maternal risk factors in Fetal Alcohol Syndrome: provocative and permissive influences. Neurotoxicol Teratol. 1995;17(4):445–62.

    PubMed  CAS  Google Scholar 

  25. Konovko OO, Morozov YE, Kalinichenko SG, Dyuzen IV, Motavkin PA. Induction of NO-synthase and acetaldehyde dehydrogenase in neurons of human cerebellar cortex during chronic alcohol intoxication. Bull Exp Biol Med. 2004;137(2):211–4.

    PubMed  CAS  Google Scholar 

  26. Murray J, Taylor SW, Zhang B, et al. Oxidative damage to mitochondrial complex I due to peroxynitrite. J Biol Chem. 2003;278:37223–30.

    PubMed  CAS  Google Scholar 

  27. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35:605–23.

    PubMed  CAS  Google Scholar 

  28. O’Neill LAJ, Kaltschmidt CH. NF-kappaB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 1997;20:252–8.

    PubMed  Google Scholar 

  29. Crews F, Nixon K, Kim D, et al. BHT blocks NF-kB activation and ethanol-induced brain damage. Alcohol Clin Exp Res. 2006;30(11):1938–49.

    PubMed  CAS  Google Scholar 

  30. Oak S, Mandrekar P, Catalano D, et al. TLR2- and TLR4- mediated signals determine attenuation or augmentation of inflammation by acute alcohol in monocytes. J Immunol. 2006;176:7628–35.

    PubMed  CAS  Google Scholar 

  31. Zou JY, Crews FT. TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res. 2005;1034:11–24.

    PubMed  CAS  Google Scholar 

  32. Davis RL, Syapin PJ. Acute ethanol exposure modulates expression of inducible nitric-oxide synthase in human astroglia: evidence for a transcriptional mechanism. Alcohol. 2004;32(3):195–202.

    PubMed  CAS  Google Scholar 

  33. Knapp DJ, Crews FT. Induction of cyclooxygenase-2 in brain during acute and chronic ethanol treatment and ethanol withdrawal. Alcohol Clin Exp Res. 1999;23:633–43.

    PubMed  CAS  Google Scholar 

  34. Qin L, He J, Hanes RN, et al. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation. 2008;5:10.

    PubMed  Google Scholar 

  35. Kukielka E, Dicker E, Cederbaum AI. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Arch Biochem Biophys. 1994;309:377–86.

    PubMed  CAS  Google Scholar 

  36. Kono H, Rusyn I, Bradford BU, et al. Allopurinol prevents early alcohol-induced liver injury in rats. J Pharmacol Exp Ther. 2000;293:296–303.

    PubMed  CAS  Google Scholar 

  37. Valles SL, Blanco AM, Pascual M, et al. Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol. 2004;14(4):365–71.

    PubMed  CAS  Google Scholar 

  38. Izumi Y, Kitabayashi R, Funatsu M, et al. A single day of ethanol exposure during development has persistent effects on bi-directional plasticity, N-methyl-D-aspartate receptor function and ethanol sensitivity. Neuroscience. 2005;136:269–79.

    PubMed  CAS  Google Scholar 

  39. Jung ME, Gatch MB, Simpkins JW. Estrogen neuroprotection against the neurotoxic effects of ethanol withdrawal: potential mechanisms. Exp Biol Med (Maywood). 2005;230(1):8–22.

    CAS  Google Scholar 

  40. Basheer R, Rainnie DG, Porkka-Heiskanen T, et al. Adenosine, prolonged wakefulness, and A1-activated NF-kappaB DNA binding in the basal forebrain of the rat. Neuroscience. 2001;104:731–9.

    PubMed  CAS  Google Scholar 

  41. Cartwright MM, Tessmer LL, Smith SM. Ethanol-induced neural crest apoptosis is coincident with their ­endogenous death, but is mechanistically distinct. Alcohol Clin Exp Res. 1998;22:142–9.

    PubMed  CAS  Google Scholar 

  42. De A, Boyadjieva NI, Pastorcic M, et al. Cyclic AMP and ethanol interact to control apoptosis and differentiation in hypothalamic B-endorphin neurons. J Biol Chem. 1994;269:26697–705.

    PubMed  CAS  Google Scholar 

  43. Ikonomidou C, Bittigau P, Ishimaru MJ, et al. Ethanol-induced apoptotic neurodegeneration and the fetal alcohol syndrome. Science. 2000;287:1056–60.

    PubMed  CAS  Google Scholar 

  44. Light KE, Belcher SM, Pierce DR. Time course and manner of Purkinje neuron death following a single ethanol exposure on postnatal day 4 in the developing rat. Neuroscience. 2002;114:327–37.

    PubMed  CAS  Google Scholar 

  45. Napper RMA, West JR. Permanent neuronal cell loss in the inferior olive of adult rats exposed to alcohol during the brain growth spurt: a stereological study. Alcohol Clin Exp Res. 1995;19:1321–6.

    PubMed  CAS  Google Scholar 

  46. D’Mello SR, Kuan CY, Flavell RA, et al. Caspase-3 is required for apoptosis associated DNA fragmentation but not for cell death in neurons deprived of potassium. J Neurosci Res. 2000;59(1):24–31.

    PubMed  Google Scholar 

  47. O’Neill LA. The role of MyD88-like adapters in Toll-like receptor signal transduction. Biochem Soc Trans. 2003;31:643–7.

    PubMed  Google Scholar 

  48. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.

    PubMed  CAS  Google Scholar 

  49. Mishra BB, Gundra UM, Teale JM. Expression and distribution of Toll-like receptors 11–13 in the brain during murine neurocysticercosis. J Neuroinflammation. 2008;5:53–63.

    PubMed  Google Scholar 

  50. Owens T, Babcock AA, Millward JM, et al. Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Res Brain Res Rev. 2005;48:178–84.

    PubMed  CAS  Google Scholar 

  51. Trendelenburg G. Acute neurodegeneration and the inflammasome: central processor for danger signals and the inflammatory response? J Cereb Blood Flow Metab. 2008;28:867–81.

    PubMed  CAS  Google Scholar 

  52. Jin JJ, Kim HD, Maxwell JA, et al. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation. 2008;5:23–32.

    PubMed  Google Scholar 

  53. Okun E, Griffioen KJ, Lathia JD, et al. Toll-like receptors in neurodegeneration. Brain Res Rev. 2009;59:278–92.

    PubMed  CAS  Google Scholar 

  54. Chen H, Koustova E, Shults C, et al. Differential effect of resuscitation on Toll-like receptors in a model of hemorrhagic shock without a septic challenge. Resuscitation. 2007;74:526–37.

    PubMed  CAS  Google Scholar 

  55. Caso JR, Pradillo JM, Hurtado O, et al. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation. 2007;115:1599–608.

    PubMed  CAS  Google Scholar 

  56. Tang SC, Arumugam TV, Xu X, et al. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci USA. 2007;104:13798–803.

    PubMed  CAS  Google Scholar 

  57. Tang SC, Lathia JD, Selvaraj PK, et al. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol. 2008;213:114–21.

    PubMed  CAS  Google Scholar 

  58. Kilic U, Kilic E, Matter CM, et al. TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis. 2008;31:33–40.

    PubMed  CAS  Google Scholar 

  59. Salaria S, Badkoobehi H, Rockenstein E, et al. Toll-like receptor pathway gene expression is associated with human immunodeficiency virus-associated neurodegeneration. J Neurovirol. 2007;13:496–503.

    PubMed  CAS  Google Scholar 

  60. Blanco AM, Valles SL, Pascual M, et al. Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol. 2005;175:6893–9.

    PubMed  CAS  Google Scholar 

  61. Fernandez-Lizarbe S, Pascual M, Gascon MS, et al. Lipid rafts regulate ethanol-induced activation of TLR4 signaling in murine macrophages. Mol Immunol. 2008;45:2007–16.

    PubMed  CAS  Google Scholar 

  62. Chandler LJ, Newsom H, Sumners C, et al. Chronic ethanol exposure potentiates NMDA excitotoxicity in cerebral cortical neurons. J Neurochem. 1993;60:1578–81.

    PubMed  CAS  Google Scholar 

  63. Prendergast MA, Harris BR, Mullholland PJ, et al. Hippocampal CA1 region neurodegeneration produced by ethanol withdrawal requires activation of intrinsic polysynaptic hippocampal pathways and function of N-methyl-D-aspartate receptors. Neuroscience. 2004;124:869–77.

    PubMed  CAS  Google Scholar 

  64. Choi DW. Calcium: still center-stage in hypoxic ischemic neuronal death. Trends Neurosci. 1995;18:58–60.

    PubMed  CAS  Google Scholar 

  65. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today. 1997;18:44–51.

    PubMed  CAS  Google Scholar 

  66. Thomas JD, Riley EP. Fetal alcohol syndrome: does alcohol withdrawal play a role? Alcohol Health Res World. 1998;22:47–53.

    PubMed  CAS  Google Scholar 

  67. Thomas JD, Weinert SP, Sharif S, et al. MK-801 administration during ethanol withdrawal in neonatal rat pups attenuates ethanol-induced behavioral deficits. Alcohol Clin Exp Res. 1997;21:1218–25.

    PubMed  CAS  Google Scholar 

  68. Kimelberg HK, Aschner M. Astrocyte and Their Functions, Past and Present, vol. 27. Bethesda: NIAAA; 1994.

    Google Scholar 

  69. Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol. 2000;62:649–71.

    PubMed  CAS  Google Scholar 

  70. Korbo L. Glial cell loss in the hippocampus of alcoholics. Alcohol Clin Exp Res. 1999;23:164–8.

    PubMed  CAS  Google Scholar 

  71. Rintala J, Jaatinen P, Kiianmaa K, et al. Dose-dependent decrease in glial fibrillary acidic proteinimmunoreactivity in rat cerebellum after lifelong ethanol consumption. Alcohol. 2001;23:1–8.

    PubMed  CAS  Google Scholar 

  72. Miguel-Hidalgo JJ. Lower packing density of glial fibrillary acidic proteinimmunoreactive astrocytes in the prelimbic cortex of alcohol-naive and alcohol-drinking alcohol-preferring rats as compared with alcohol-nonpreferring and Wistar rats. Alcohol Clin Exp Res. 2005;29:766–72.

    PubMed  CAS  Google Scholar 

  73. Goodlett CR, Horn KH, Zhou FC. Alcohol teratogenesis: mechanisms of damage and strategies for intervention. Exp Biol Med (Maywood). 2005;230:394–6.

    CAS  Google Scholar 

  74. Obernier JA, Bouldin TW, Crews FT. Binge ethanol exposure in adult rats causes necrotic cell death. Alcohol Clin Exp Res. 2002;26:547–57.

    PubMed  CAS  Google Scholar 

  75. Obernier JA, White AM, Swartzwelder HS, et al. Cognitive deficits and CNS damage after a 4-day binge ethanol exposure in rats. Pharmacol Biochem Behav. 2002;72:521–32.

    PubMed  CAS  Google Scholar 

  76. Walker DW, Barnes DE, Zornetzer SF, et al. Neuronal loss in hippocampus induced by prolonged ethanol consumption in rats. Science. 1980;209:711–3.

    PubMed  CAS  Google Scholar 

  77. Shors TJ, Miesegaes G, Beylin A, et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372–6.

    PubMed  CAS  Google Scholar 

  78. Herrera DG, Yague AG, Johnsen-Soriano S, et al. Selective impairment of hippocampal neurogenesis by chronic alcoholism: protective effects of an antioxidant. Proc Natl Acad Sci USA. 2003;100:7919–24.

    PubMed  CAS  Google Scholar 

  79. He J, Nixon K, Shetty AK, et al. Chronic alcohol exposure reduces hippocampal neurogenesis and dendritic growth of newborn neurons. Eur J Neurosci. 2005;21:2711–20.

    PubMed  Google Scholar 

  80. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302(5651):1760–5.

    PubMed  CAS  Google Scholar 

  81. Lee S, Schmidt D, Tilders F, et al. Increased activity of the hypothalamic- pituitary-adrenal axis of rats exposed to alcohol in utero: role of altered pituitary and hypothalamic function. Mol Cell Neurosci. 2000;16:515–28.

    PubMed  CAS  Google Scholar 

  82. Sarkar DK, Kuhn P, Marano J, et al. Alcohol exposure during the developmental period induces beta-endorphin neuronal death and causes alteration in the opioid control of stress axis function. Endocrinology. 2007;148(6):2828–34.

    PubMed  CAS  Google Scholar 

  83. Resnicoff M, Sell C, Ambrose D, et al. Ethanol inhibits the autophosphorylation of the insulin-like growth factor I (IGF-1) receptor and the IGF-I mediated proliferation of 3 T3 cells. J Biol Chem. 1993;268:21777–82.

    PubMed  CAS  Google Scholar 

  84. Zhang FX, Rubin R, Rooney TA. Ethanol promotes apoptosis of rat cerebellar granule cells by interference with IGF-I signaling. J Neurochem. 1998;71:196–204.

    PubMed  CAS  Google Scholar 

  85. Theriault A, Chao J, Wang Q, et al. Tocotrienol: a review of its therapeutic potential. Clin Biochem. 1999;32(5):309–19.

    PubMed  CAS  Google Scholar 

  86. McLaughlin PJ, Weihrauch JL. Vitamin E content of foods. J Am Diet Assoc. 1979;75(6):647–65.

    PubMed  CAS  Google Scholar 

  87. Atkinson J. In: Nesaretnam K. (Ed.), Chemical Investigations of Tocotrienols: Isotope Substitution, Fluorophores and a Curious Curve, Kuching, Malaysia, COSTAM. 2006;22.

    Google Scholar 

  88. Sen CK, Khann S, Roy S. Tocotrienols: vitamin E beyond tocopherols. Life Sci. 2006;78(18):2088–98.

    PubMed  CAS  Google Scholar 

  89. Khanna S, Roy S, Ryu H, et al. Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. J Biol Chem. 2003;278(44):43508–15.

    PubMed  CAS  Google Scholar 

  90. Khanna S, Roy S, Parinandi NL. Characterization of the potent neuroprotective properties of the natural vitamin E alpha-tocotrienol. J Neurochem. 2006;98(5):1474–86.

    PubMed  CAS  Google Scholar 

  91. Sen CK, Khanna S, Roy S, et al. Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60(c-Src) kinase activation and death of HT4 neuronal cells. J Biol Chem. 2000;275(17):13049–55.

    PubMed  CAS  Google Scholar 

  92. Khanna S, Roy S, Slivka A, et al. Neuroprotective properties of the natural vitamin E alphatocotrienol. Stroke. 2005;36(10):2258–64.

    PubMed  Google Scholar 

  93. Pearce BC, Parker RA, Deason ME, et al. Hypocholesterolemic activity of synthetic and natural tocotrienols. J Med Chem. 1992;35(20):3595–606.

    PubMed  CAS  Google Scholar 

  94. Pearce BC, Parker RA, Deason ME, et al. Inhibitors of cholesterol biosynthesis. 2. Hypocholesterolemic and antioxidant activities of benzopyran and tetrahydronaphthalene analogues of the tocotrienols. J Med Chem. 1994;37(4):526–41.

    PubMed  CAS  Google Scholar 

  95. Qureshi AA, Burger WC, Peterson DM, et al. The structure of an inhibitor of cholesterol biosynthesis isolated from barley. J Biol Chem. 1986;261(23):10544–50.

    PubMed  CAS  Google Scholar 

  96. Qureshi AA, Sami SA, Salser WA, et al. Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic humans. Atherosclerosis. 2002;161(1):199–207.

    PubMed  CAS  Google Scholar 

  97. Suzuki YJ, Tsuchiya M, Wassall SR, et al. Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol: implication to the molecular mechanism of their antioxidant potency. Biochemistry. 1993;32(40):10692–9.

    PubMed  CAS  Google Scholar 

  98. Nesaretnam K, Guthrie N, Chambers AF, et al. Effect of tocotrienols on the growth of a human breast cancer cell line in culture. Lipids. 1995;30(12):1139–43.

    PubMed  CAS  Google Scholar 

  99. Osakada F, Hashino A, Kume T, et al. Alpha-tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacology. 2004;47:904–15.

    PubMed  CAS  Google Scholar 

  100. Kamat JP, Devasagayam TP. Tocotrienols from palm oil as potent inhibitors of lipid peroxidation and protein oxidation in rat brain mitochondria. Neurosci Lett. 1995;195(3):179–82.

    PubMed  CAS  Google Scholar 

  101. Serbinova E, Kagan V, Han D, et al. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med. 1991;10(5):263–75.

    PubMed  CAS  Google Scholar 

  102. Kuhad A, Bishnoi M, Tiwari V, et al. Suppression of NF-kappabeta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacol Biochem Behav. 2009;92:251–9.

    PubMed  CAS  Google Scholar 

  103. Kuhad A, Chopra K. Tocotrienol attenuates oxidative–nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology. 2009;57:456–62.

    PubMed  CAS  Google Scholar 

  104. Tiwari V, Kuhad A, Bishnoi M, et al. Chronic treatment with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative–nitrosative stress in rats. Pharmacol Biochem Behav. 2009;93:183–9.

    PubMed  CAS  Google Scholar 

  105. Tiwari V, Kuhad A, Chopra K. Tocotrienol ameliorates behavioral and biochemical alterations in the rat model of alcoholic neuropathy. Pain. 2009;145:129–35.

    PubMed  CAS  Google Scholar 

  106. Tiwari V, Kuhad A, Chopra K. Suppression of neuro-inflammatory signaling cascade by tocotrienol can prevent chronic alcohol-induced cognitive dysfunction in rats. Behav Brain Res. 2009;203:296–303.

    PubMed  CAS  Google Scholar 

  107. Roy S, Lado BH, Khanna S, et al. Vitamin E sensitive genes in the developing rat fetal brain: a high-density oligonucleotide microarray analysis. FEBS Lett. 2002;530:17–23.

    PubMed  CAS  Google Scholar 

  108. Schubert D, Piasecki D. Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J Neurosci. 2001;21(19):7455–62.

    PubMed  CAS  Google Scholar 

  109. Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Curr Top Med Chem. 2001;1(6):497–506.

    PubMed  CAS  Google Scholar 

  110. Khalil R, King MA, Soliman MR. Testosterone reverses ethanol-induced deficit in spatial reference memory in castrated rats. Pharmacology. 2005;75(2):87–92.

    PubMed  CAS  Google Scholar 

  111. Iliev A, Traykov V, Prodanov D, et al. Effect of the acetylcholinesterase inhibitor galanthamine on learning and memory in prolonged alcohol intake rat model of acetylcholine deficit. Methods Find Exp Clin Pharmacol. 1999;21(4):297–301.

    PubMed  CAS  Google Scholar 

  112. Kasdallah-Grissa A, Mornagui B, Aouani E, et al. Protective effect of resveratrol on ethanol-induced lipid peroxidation in rats. Alcohol Alcohol. 2006;41(3):236–9.

    PubMed  CAS  Google Scholar 

  113. Serbinova EA, Packer L. Antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Methods Enzymol. 1994;234:354–66.

    PubMed  CAS  Google Scholar 

  114. Riley EP, McGee CL. Fetal alcohol spectrum disorders: an overview with emphasis on changes in brain and behavior. Exp Biol Med (Maywood). 2005;230(6):357–65.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanwaljit Chopra M.Pharm, Ph.D., MNASc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chopra, K., Tiwari, V. (2013). Tocotrienol and Cognitive Dysfunction Induced by Alcohol. In: Watson, R., Preedy, V., Zibadi, S. (eds) Alcohol, Nutrition, and Health Consequences. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-047-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-047-2_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-046-5

  • Online ISBN: 978-1-62703-047-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics