Dietary Mg Intake and Biomarkers of Inflammation and Endothelial Dysfunction

  • Simin LiuEmail author
  • Sara A. Chacko
Part of the Nutrition and Health book series (NH)


Magnesium (Mg) is an essential mineral found abundantly in whole grains, leafy green vegetables, legumes, and nuts that plays a central role in hundreds of physiological processes in the human body. According to national survey data from National Health and Nutrition Examination Survey (NHANES) 1999–2000, a large proportion of the US population consumes inadequate dietary Mg [1]. Given the fundamental role of Mg in diverse cellular reactions, this is not without consequence. Low dietary Mg intake has been linked to a range of adverse health outcomes including those related to metabolic and inflammatory processes such as hypertension [2, 3], type 2 diabetes (T2D) [4], and metabolic syndrome [2] in both experimental and observational settings. The pathophysiologic mechanisms underlying these relations are not well understood; however, a maturing body of evidence suggests that suboptimal dietary Mg intake status may affect metabolism and inflammation pathways ultimately leading to the clinical manifestation of T2D, metabolic syndrome, and CVD.


Dietary magnesium Inflammation C-reactive protein Endothelial dysfunction Diabetes 


  1. 1.
    Ford ES, Mokdad AH. Dietary magnesium intake in a national sample of US adults. J Nutr. 2003;133(9): 2879–82.PubMedGoogle Scholar
  2. 2.
    Song Y, Ridker PM, Manson JE, Cook NR, Buring JE, Liu S. Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care. 2005;28(6):1438–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Song Y, Sesso HD, Manson JE, Cook NR, Buring JE, Liu S. Dietary magnesium intake and risk of incident hypertension among middle-aged and older US women in a 10-year follow-up study. Am J Cardiol. 2006;98(12):1616–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Song Y, Manson JE, Buring JE, Liu S. Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care. 2004;27(1):59–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med. 2003;24(1–3):27–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta. 2000;294(1–2):1–26.PubMedCrossRefGoogle Scholar
  7. 7.
    Chaudhary DP, Sharma R, Bansal DD. Implications of magnesium deficiency in type 2 diabetes: a review. Biol Trace Elem Res. 2010;134(2):119–29. Epub 2009 Jul 24.PubMedCrossRefGoogle Scholar
  8. 8.
    Wolf FI, Torsello A, Fasanella S, Cittadini A. Cell physiology of magnesium. Mol Aspects Med. 2003;24(1–3):11–26.PubMedCrossRefGoogle Scholar
  9. 9.
    Arnaud MJ. Update on the assessment of magnesium status. Br J Nutr. 2008;99 Suppl 3:S24–36.PubMedGoogle Scholar
  10. 10.
    Elin RJ. Laboratory tests for the assessment of magnesium status in humans. Magnes Trace Elem. 1991;10(2–4): 172–81.PubMedGoogle Scholar
  11. 11.
    Stipanuk MH. Biochemical and physiological aspects of human nutrition. Philadelphia: W.B. Saunders; 2000.Google Scholar
  12. 12.
    Academy N. Dietary reference intakes for calcium, phosphorous, magnesium, vitamin D, and flouride. Washington: National Academy Press; 1997.Google Scholar
  13. 13.
    Colditz GA, Manson JE, Stampfer MJ, Rosner B, Willett WC, Speizer FE. Diet and risk of clinical diabetes in women. Am J Clin Nutr. 1992;55(5):1018–23.PubMedGoogle Scholar
  14. 14.
    Salmeron J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care. 1997;20(4):545–50.PubMedCrossRefGoogle Scholar
  15. 15.
    He K, Liu K, Daviglus ML, Morris SJ, Loria CM, Van Horn L, et al. Magnesium intake and incidence of metabolic syndrome among young adults. Circulation. 2006;113(13):1675–82.PubMedCrossRefGoogle Scholar
  16. 16.
    Abbott RD, Ando F, Masaki KH, Tung KH, Rodriguez BL, Petrovitch H, et al. Dietary magnesium intake and the future risk of coronary heart disease (the Honolulu Heart Program). Am J Cardiol. 2003;92(6):665–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Al-Delaimy WK, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Magnesium intake and risk of coronary heart disease among men. J Am Coll Nutr. 2004;23(1):63–70.PubMedGoogle Scholar
  18. 18.
    Ford ES, Li C, McGuire LC, Mokdad AH, Liu S. Intake of dietary magnesium and the prevalence of the metabolic syndrome among U.S. adults. Obesity (Silver Spring). 2007;15(5):1139–46.CrossRefGoogle Scholar
  19. 19.
    Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA. 1997;277(6):472–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Meyer KA, Kushi LH, Jacobs Jr DR, Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr. 2000;71(4):921–30.PubMedGoogle Scholar
  21. 21.
    Fung TT, Manson JE, Solomon CG, Liu S, Willett WC, Hu FB. The association between magnesium intake and fasting insulin concentration in healthy middle-aged women. J Am Coll Nutr. 2003;22(6):533–8.PubMedGoogle Scholar
  22. 22.
    Paolisso G, Barbagallo M. Hypertension, diabetes mellitus, and insulin resistance: the role of intracellular magnesium. Am J Hypertens. 1997;10(3):346–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Ma J, Folsom AR, Melnick SL, Eckfeldt JH, Sharrett AR, Nabulsi AA, et al. Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. Atherosclerosis risk in communities study. J Clin Epidemiol. 1995;48(7):927–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Guerrero-Romero F, Tamez-Perez HE, Gonzalez-Gonzalez G, Salinas-Martinez AM, Montes-Villarreal J, Trevino-Ortiz JH, et al. Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab. 2004;30(3):253–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Paolisso G, Sgambato S, Gambardella A, Pizza G, Tesauro P, Varricchio M, et al. Daily magnesium supplements improve glucose handling in elderly subjects. Am J Clin Nutr. 1992;55(6):1161–7.PubMedGoogle Scholar
  26. 26.
    Song Y, He K, Levitan EB, Manson JE, Liu S. Effects of oral magnesium supplementation on glycaemic control in type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabet Med. 2006;23(10):1050–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Chacko SA, Sul J, Song Y, Li X, LeBlanc J, You Y, Butch A, Liu S. Magnesium supplementation, metabolic and inflammatory markers, and global genomic and proteomic profiling: a randomized, double-blind, controlled, crossover trial in overweight individuals. Am J Clin Nutr. 2011;93(2):463–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Kandeel FR, Balon E, Scott S, Nadler JL. Magnesium deficiency and glucose metabolism in rat adipocytes. Metabolism. 1996;45(7):838–43.PubMedCrossRefGoogle Scholar
  29. 29.
    Hall S, Keo L, Yu KT, Gould MK. Effect of ionophore A23187 on basal and insulin-stimulated sugar transport by rat soleus muscle. Diabetes. 1982;31(10):846–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Suarez A, Pulido N, Casla A, Casanova B, Arrieta FJ, Rovira A. Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia. 1995;38(11):1262–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996;19(3):257–67.PubMedCrossRefGoogle Scholar
  32. 32.
    Barbagallo M, Dominguez LJ, Galioto A, Ferlisi A, Cani C, Malfa L, et al. Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol Aspects Med. 2003;24(1–3):39–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Mazur A, Maier JA, Rock E, Gueux E, Nowacki W, Rayssiguier Y. Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys. 2007;458(1):48–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Abbatecola AM, Ferrucci L, Grella R, Bandinelli S, Bonafe M, Barbieri M, et al. Diverse effect of inflammatory markers on insulin resistance and insulin-resistance syndrome in the elderly. J Am Geriatr Soc. 2004;52(3):399–404.PubMedCrossRefGoogle Scholar
  35. 35.
    Festa A, D’Agostino Jr R, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS). Circulation. 2000;102(1):42–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999;19(4):972–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu S, Tinker L, Song Y, Rifai N, Bonds DE, Cook NR, et al. A prospective study of inflammatory cytokines and diabetes mellitus in a multiethnic cohort of postmenopausal women. Arch Intern Med. 2007;167(15):1676–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9.PubMedGoogle Scholar
  39. 39.
    Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Hu FB, Meigs JB, Li TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes. 2004;53(3):693–700.PubMedCrossRefGoogle Scholar
  41. 41.
    Krakoff J, Funahashi T, Stehouwer CD, Schalkwijk CG, Tanaka S, Matsuzawa Y, et al. Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care. 2003;26(6):1745–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52(7): 1799–805.PubMedCrossRefGoogle Scholar
  43. 43.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Han TS, Sattar N, Williams K, Gonzalez-Villalpando C, Lean ME, Haffner SM. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care. 2002;25(11):2016–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52(3):812–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Boos CJ, Lip GY. Is hypertension an inflammatory process? Curr Pharm Des. 2006;12(13):1623–35.PubMedCrossRefGoogle Scholar
  47. 47.
    Muir KW, Tyrrell P, Sattar N, Warburton E. Inflammation and ischaemic stroke. Curr Opin Neurol. 2007;20(3):334–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Koenig W, Sund M, Frohlich M, Fischer HG, Lowel H, Doring A, et al. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (monitoring trends and determinants in cardiovascular disease) Augsburg Cohort Study, 1984 to 1992. Circulation. 1999;99(2):237–42.PubMedCrossRefGoogle Scholar
  50. 50.
    Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon 3rd RO, Criqui M, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107(3):499–511.PubMedCrossRefGoogle Scholar
  51. 51.
    Kumar V. Robbins basic pathology, 7th ed updated. Philadelphia: Elsevier Science, 2005.Google Scholar
  52. 52.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Song Y, Manson JE, Tinker L, Rifai N, Cook NR, Hu FB, et al. Circulating levels of endothelial adhesion molecules and risk of diabetes in an ethnically diverse cohort of women. Diabetes. 2007;56(7):1898–904.PubMedCrossRefGoogle Scholar
  54. 54.
    Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation. 2003;107(3):391–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801.PubMedCrossRefGoogle Scholar
  56. 56.
    Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25(1):4–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Ridker PM. Cardiology patient page. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation. 2003;108(12):e81–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J. 1994;8(8):504–12.PubMedGoogle Scholar
  60. 60.
    Rohde LE, Hennekens CH, Ridker PM. Cross-sectional study of soluble intercellular adhesion molecule-1 and cardiovascular risk factors in apparently healthy men. Arterioscler Thromb Vasc Biol. 1999;19(7):1595–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Ferri C, Desideri G, Valenti M, Bellini C, Pasin M, Santucci A, et al. Early upregulation of endothelial adhesion molecules in obese hypertensive men. Hypertension. 1999;34(4 Pt 1):568–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Abe Y, El-Masri B, Kimball KT, Pownall H, Reilly CF, Osmundsen K, et al. Soluble cell adhesion molecules in hypertriglyceridemia and potential significance on monocyte adhesion. Arterioscler Thromb Vasc Biol. 1998;18(5):723–31.PubMedCrossRefGoogle Scholar
  63. 63.
    Hackman A, Abe Y, Insull Jr W, Pownall H, Smith L, Dunn K, et al. Levels of soluble cell adhesion molecules in patients with dyslipidemia. Circulation. 1996;93(7):1334–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Weyer C, Yudkin JS, Stehouwer CD, Schalkwijk CG, Pratley RE, Tataranni PA. Humoral markers of inflammation and endothelial dysfunction in relation to adiposity and in vivo insulin action in Pima Indians. Atherosclerosis. 2002;161(1):233–42.PubMedCrossRefGoogle Scholar
  65. 65.
    Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA. 2004;291(16):1978–86.PubMedCrossRefGoogle Scholar
  66. 66.
    Schram MT, Stehouwer CD. Endothelial dysfunction, cellular adhesion molecules and the metabolic syndrome. Horm Metab Res. 2005;37 Suppl 1:49–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Price DT, Loscalzo J. Cellular adhesion molecules and atherogenesis. Am J Med. 1999;107(1):85–97.PubMedCrossRefGoogle Scholar
  68. 68.
    Nawawi H, Osman NS, Annuar R, Khalid BA, Yusoff K. Soluble intercellular adhesion molecule-1 and interleukin-6 levels reflect endothelial dysfunction in patients with primary hypercholesterolaemia treated with atorvastatin. Atherosclerosis. 2003;169(2):283–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Witte DR, Broekmans WM, Kardinaal AF, Klopping-Ketelaars IA, van Poppel G, Bots ML, et al. Soluble intercellular adhesion molecule 1 and flow-mediated dilatation are related to the estimated risk of coronary heart disease independently from each other. Atherosclerosis. 2003;170(1):147–53.PubMedCrossRefGoogle Scholar
  70. 70.
    Galland L. Magnesium and immune function: an overview. Magnesium. 1988;7(5–6):290–9.PubMedGoogle Scholar
  71. 71.
    McCoy H, Kenney MA. Magnesium and immune function: recent findings. Magnes Res. 1992;5(4):281–93.PubMedGoogle Scholar
  72. 72.
    Malpuech-Brugere C, Nowacki W, Daveau M, Gueux E, Linard C, Rock E, et al. Inflammatory response following acute magnesium deficiency in the rat. Biochim Biophys Acta. 2000;1501(2–3):91–8.PubMedGoogle Scholar
  73. 73.
    Weglicki WB, Phillips TM. Pathobiology of magnesium deficiency: a cytokine/neurogenic inflammation hypothesis. Am J Physiol. 1992;263(3 Pt 2):R734–7.PubMedGoogle Scholar
  74. 74.
    Bussiere FI, Tridon A, Zimowska W, Mazur A, Rayssiguier Y. Increase in complement component C3 is an early response to experimental magnesium deficiency in rats. Life Sci. 2003;73(4):499–507.PubMedCrossRefGoogle Scholar
  75. 75.
    Levy AP, Hochberg I, Jablonski K, Resnick HE, Lee ET, Best L, et al. Haptoglobin phenotype is an independent risk factor for cardiovascular disease in individuals with diabetes: The Strong Heart Study. J Am Coll Cardiol. 2002;40(11):1984–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Blum S, Vardi M, Brown JB, Russell A, Milman U, Shapira C, et al. Vitamin E reduces cardiovascular disease in individuals with diabetes mellitus and the haptoglobin 2-2 genotype. Pharmacogenomics. 2010;11(5):675–84.PubMedCrossRefGoogle Scholar
  77. 77.
    Alcock NW, Shils ME, Lieberman PH, Erlandson RA. Thymic changes in the magnesium-depleted rat. Cancer Res. 1973;33(9):2196–204.PubMedGoogle Scholar
  78. 78.
    Malpuech-Brugere C, Nowacki W, Gueux E, Kuryszko J, Rock E, Rayssiguier Y, et al. Accelerated thymus involution in magnesium-deficient rats is related to enhanced apoptosis and sensitivity to oxidative stress. Br J Nutr. 1999;81(5):405–11.PubMedGoogle Scholar
  79. 79.
    Malpuech-Brugere C, Kuryszko J, Nowacki W, Rock E, Rayssiguier Y, Mazur A. Early morphological and immunological alterations in the spleen during magnesium deficiency in the rat. Magnes Res. 1998;11(3):161–9.PubMedGoogle Scholar
  80. 80.
    Nishio A, Ishiguro S, Miyao N. Toxicological and pharmacological studies on magnesium deficiency in rats: histamine-metabolizing enzymes in some tissues of magnesium-deficient rats. Nihon Juigaku Zasshi. 1983;45(6):699–705.PubMedCrossRefGoogle Scholar
  81. 81.
    Ishiguro S, Nishio A, Miyao N, Morikawa Y, Takeno K, Yanagiya I. Studies on histamine containing cells in the spleen of the magnesium-deficient rats. Nihon Yakurigaku Zasshi. 1987;90(3):141–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Bernardini D, Nasulewic A, Mazur A, Maier JA. Magnesium and microvascular endothelial cells: a role in inflammation and angiogenesis. Front Biosci. 2005;10:1177–82.PubMedCrossRefGoogle Scholar
  83. 83.
    Maier JA, Malpuech-Brugere C, Zimowska W, Rayssiguier Y, Mazur A. Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta. 2004;1689(1):13–21.PubMedCrossRefGoogle Scholar
  84. 84.
    Fullerton DA, Hahn AR, Agrafojo J, Sheridan BC, McIntyre Jr RC. Magnesium is essential in mechanisms of pulmonary vasomotor control. J Surg Res. 1996;63(1):93–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Altura BM, Gebrewold A, Zhang A, Altura BT. Low extracellular magnesium ions induce lipid peroxidation and activation of nuclear factor-kappa B in canine cerebral vascular smooth muscle: possible relation to traumatic brain injury and strokes. Neurosci Lett. 2003;341(3):189–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Rayssiguier Y, Gueux E, Bussiere L, Durlach J, Mazur A. Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. J Am Coll Nutr. 1993;12(2):133–7.PubMedGoogle Scholar
  87. 87.
    Bo S, Durazzo M, Guidi S, Carello M, Sacerdote C, Silli B, et al. Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. Am J Clin Nutr. 2006;84(5):1062–9.PubMedGoogle Scholar
  88. 88.
    Lopez-Garcia E, Schulze MB, Fung TT, Meigs JB, Rifai N, Manson JE, et al. Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr. 2004;80(4):1029–35.PubMedGoogle Scholar
  89. 89.
    Ma Y, Griffith JA, Chasan-Taber L, Olendzki BC, Jackson E, Stanek 3rd EJ, et al. Association between dietary fiber and serum C-reactive protein. Am J Clin Nutr. 2006;83(4):760–6.PubMedGoogle Scholar
  90. 90.
    Ma Y, Hebert JR, Li W, Bertone-Johnson ER, Olendzki B, Pagoto SL, et al. Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative Observational Study. Nutrition. 2008;24(10):941–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Chacko SA, Song Y, Nathan L, Tinker L, de Boer IH, Tylavsky F, Wallace R, Liu S. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care. 2010;33(2):304–310.Google Scholar
  92. 92.
    Song Y, Li TY, van Dam RM, Manson JE, Hu FB. Magnesium intake and plasma concentrations of markers of systemic inflammation and endothelial dysfunction in women. Am J Clin Nutr. 2007;85(4):1068–74.PubMedGoogle Scholar
  93. 93.
    King DE, Mainous 3rd AG, Geesey ME, Woolson RF. Dietary magnesium and C-reactive protein levels. J Am Coll Nutr. 2005;24(3):166–71.PubMedGoogle Scholar
  94. 94.
    Kim DJ, Xun P, Liu K, Loria C, Yokota K, Jacobs Jr DR, et al. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care. 2010;33(12):2604–10.PubMedCrossRefGoogle Scholar
  95. 95.
    de Oliveira Otto MC, Alonso A, Lee DH, Delclos GL, Jenny NS, Jiang R, et al. Dietary micronutrient intakes are associated with markers of inflammation but not with markers of subclinical atherosclerosis. J Nutr. 2011;141(8):1508–15.PubMedCrossRefGoogle Scholar
  96. 96.
    Rodriguez-Moran M, Guerrero-Romero F. Serum magnesium and C-reactive protein levels. Arch Dis Child. 2008;93(8):676–80.PubMedCrossRefGoogle Scholar
  97. 97.
    Guerrero-Romero F, Rodriguez-Moran M. Relationship between serum magnesium levels and C-reactive protein concentration, in non-diabetic, non-hypertensive obese subjects. Int J Obes Relat Metab Disord. 2002;26(4): 469–74.PubMedCrossRefGoogle Scholar
  98. 98.
    Rodriguez-Moran M, Guerrero-Romero F. Elevated concentrations of TNF-alpha are related to low serum magnesium levels in obese subjects. Magnes Res. 2004;17(3):189–96.PubMedGoogle Scholar
  99. 99.
    Almoznino-Sarafian D, Berman S, Mor A, Shteinshnaider M, Gorelik O, Tzur I, et al. Magnesium and C-reactive protein in heart failure: an anti-inflammatory effect of magnesium administration? Eur J Nutr. 2007;46(4): 230–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Nielsen FH, Johnson LK, Zeng H. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res. 2010;23(4):158–68.PubMedGoogle Scholar
  101. 101.
    Barbagallo M, Dominguez LJ, Galioto A, Pineo A, Belvedere M. Oral magnesium supplementation improves vascular function in elderly diabetic patients. Magnes Res. 2010;23(3):131–7.PubMedGoogle Scholar
  102. 102.
    Shechter M, Sharir M, Labrador MJ, Forrester J, Silver B, Bairey Merz CN. Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation. 2000;102(19):2353–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Nielsen FH. Magnesium, inflammation, and obesity in chronic disease. Nutr Rev. 2010;68(6):333–40.PubMedCrossRefGoogle Scholar
  104. 104.
    Agus MS, Agus ZS. Cardiovascular actions of magnesium. Crit Care Clin. 2001;17(1):175–86.PubMedCrossRefGoogle Scholar
  105. 105.
    Nielsen FH, Milne DB, Gallagher S, Johnson L, Hoverson B. Moderate magnesium deprivation results in calcium retention and altered potassium and phosphorus excretion by postmenopausal women. Magnes Res. 2007;20(1): 19–31.PubMedGoogle Scholar
  106. 106.
    Malpuech-Brugere C, Rock E, Astier C, Nowacki W, Mazur A, Rayssiguier Y. Exacerbated immune stress response during experimental magnesium deficiency results from abnormal cell calcium homeostasis. Life Sci. 1998;63(20):1815–22.PubMedCrossRefGoogle Scholar
  107. 107.
    Bussiere FI, Gueux E, Rock E, Mazur A, Rayssiguier Y. Protective effect of calcium deficiency on the inflammatory response in magnesium-deficient rats. Eur J Nutr. 2002;41(5):197–202.PubMedCrossRefGoogle Scholar
  108. 108.
    Dunn MJ, Walser M. Magnesium depletion in normal man. Metabolism. 1966;15(10):884–95.PubMedCrossRefGoogle Scholar
  109. 109.
    Shils ME. Experimental human magnesium depletion. Medicine (Baltimore). 1969;48(1):61–85.CrossRefGoogle Scholar
  110. 110.
    Classen HG. Magnesium and potassium deprivation and supplementation in animals and man: aspects in view of intestinal absorption. Magnesium. 1984;3(4–6):257–64.PubMedGoogle Scholar
  111. 111.
    Kramer JH, Mak IT, Phillips TM, Weglicki WB. Dietary magnesium intake influences circulating pro-inflammatory neuropeptide levels and loss of myocardial tolerance to postischemic stress. Exp Biol Med (Maywood). 2003;228(6):665–73.Google Scholar
  112. 112.
    Dustin ML, Springer TA. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol. 1988;107(1):321–31.PubMedCrossRefGoogle Scholar
  113. 113.
    Yamamoto Y, Gaynor RB. Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr Mol Med. 2001;1(3):287–96.PubMedCrossRefGoogle Scholar
  114. 114.
    U.S. Department of Agriculture and U.S. Department of Health and Human Services. 2010 dietary guidelines for Americans. 7th ed. Washington, DC: U.S. Department of Agriculture and U.S. Department of Health and Human Services; 2010.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.UCLA Departments of Epidemiology, Medicine, and Obstetrics & GynecologyCenter for Metabolic Disease PreventionLos AngelesUSA
  2. 2.UCLA Department of EpidemiologyCenter for Metabolic Disease PreventionLos AngelesUSA

Personalised recommendations