Advertisement

Magnesium and Traumatic Brain Injury

  • Renée J. TurnerEmail author
  • Robert Vink
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Magnesium is one of the most important ions in the body and is present in high concentrations within all cells. It is indispensable in terms of maintenance and regulation of general cellular metabolism and function due to the central roles it plays in nearly every aspect of cell function, including energy metabolism and maintenance of ionic gradients. Given that magnesium is so essential for normal cellular function, disruption of magnesium homeostasis has deleterious consequences. Indeed, the detrimental effects of the disruption of magnesium homeostasis are clearly observed following trauma to the CNS, leading to serious biochemical changes. Accordingly, the aim of this chapter is to review both the role of magnesium in secondary injury following traumatic brain injury (TBI) and also the efficacy of the experimental and clinical administration of magnesium as a novel therapeutic for the treatment of TBI.

Keywords

Traumatic brain injury Magnesium Secondary injury Central nervous system 

References

  1. 1.
    Finfer SR, Cohen J. Severe traumatic brain injury. Resuscitation. 2001;48(1):77–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Hsiang J, Marshall LF. Head injury. In: Swash M, editor. Outcomes in neurological and neurosurgical disorders. New York: Cambridge University Press; 1998. p. 157–80.CrossRefGoogle Scholar
  3. 3.
    McAllister TW. Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci. 2011;13(3):287–300.PubMedGoogle Scholar
  4. 4.
    Finnie JW, Blumbergs PC. Traumatic brain injury. Vet Pathol. 2002;39(6):679–89.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith DH, Meaney DF, Shull WH. Diffuse axonal injury in head trauma. J Head Trauma Rehabil. 2003;18(4):307–16.PubMedCrossRefGoogle Scholar
  6. 6.
    De Girolami U, Frosch MP, Anthony DC. The central nervous system. In: Cotran CR, Kumar V, Collins T, editors. Robbins pathological basis of disease. Philadelphia: W. B. Saunders Company; 1999. p. 1293–357.Google Scholar
  7. 7.
    McIntosh TK, Smith DH, Garde E. Therapeutic approaches for the prevention of secondary brain injury. Eur J Anaesthesiol. 1996;13(3):291–309.PubMedCrossRefGoogle Scholar
  8. 8.
    Bullock R. Injury and cell function. In: Reilly P, Bullock R, editors. Head injury: pathophysiology and management of severe closed injury. London: Chapman and Hall; 1997. p. 121–41.Google Scholar
  9. 9.
    Povlishock JT, Christman CW. The pathophysiology of traumatic brain injury. In: Salzman SK, Faden AI, editors. The neurobiology of central nervous system trauma. New York: Oxford University Press; 1994. p. 109–20.Google Scholar
  10. 10.
    Birch NJ. Magnesium and the cell. London: Academic; 1993.Google Scholar
  11. 11.
    Ebel H, Gunther T. Magnesium metabolism: a review. J Clin Chem Clin Biochem. 1980;18(5):257–70.PubMedGoogle Scholar
  12. 12.
    Terasaki M, Rubin H. Evidence that intracellular magnesium is present in cells at a regulatory concentration for protein synthesis. Proc Natl Acad Sci U S A. 1985;82(21):7324–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Bara M, Guiet-Bara A. Potassium, magnesium and membranes. Review of present status and new findings. Magnesium. 1984;3(4–6):215–25.PubMedGoogle Scholar
  14. 14.
    Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36(10):2871–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Vink R, McIntosh TK, Yamakami I, Faden AI. 31P NMR characterization of graded traumatic brain injury in rats. Magn Reson Med. 1988;6(1):37–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Tavazzi B, Signoretti S, Lazzarino G, et al. Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery. 2005;56(3):582–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP. Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for preclinical trials: dose–response and time -window profiles for administration of the calcium channel blocker Ziconotide in experimental brain injury. J Neurosurg. 2000;93:829–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Vink R, Cernak I. Regulation of intracellular free magnesium in central nervous system injury. Front Biosci. 2000;5:D656–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta. 2009;1787(11):1395–401.PubMedCrossRefGoogle Scholar
  20. 20.
    Sherwood L. Human physiology: from cells to systems. Belmont: Wadsworth Publishing Company; 1997.Google Scholar
  21. 21.
    Hovda DA, Becker DP, Katayama Y. Secondary injury and acidosis. J Neurotrauma. 1992;9 Suppl 1:S47–60.PubMedGoogle Scholar
  22. 22.
    McIntosh TK, Vink R, Soares H, Hayes R, Simon R. Effect of noncompetitive blockade of N-methyl-D-aspartate receptors on the neurochemical sequelae of experimental brain injury. J Neurochem. 1990;55(4):1170–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Mendelow AD, Crawford PJ. Primary and secondary brain injury. In: Reilly P, Bullock R, editors. Head injury: pathophysiology and management of severe closed injury. London: Chapman and Hall; 1997. p. 72–88.Google Scholar
  24. 24.
    Scheff SW, Sullivan PG. Cyclosporin A significantly ameliorates cortical damage following experimental traumatic brain injury in rodents. J Neurotrauma. 1999;16(9):783–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Iseri LT, French JH. Magnesium: nature’s physiologic calcium blocker. Am Heart J. 1984;108(1):188–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Hallak M, Berman RF, Irtenkauf SM, Janusz CA, Cotton DB. Magnesium sulfate treatment decreases N-methyl-D-aspartate receptor binding in the rat brain: an autoradiographic study. J Soc Gynecol Investig. 1994;1(1):25–30.PubMedGoogle Scholar
  27. 27.
    Brocard JB. Glutamate induced increases in intracellular free Mg(2+) in cultured cortical neurons. Neuron. 1993;11(4):751–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Choi DW. Excitotoxic cell death. J Neurobiol. 1992;23(9):1261–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984;309(5965):261–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Ascher P. Measuring and controlling the extracellular glycine concentration at the NMDA receptor level. Adv Exp Med Biol. 1990;268:13–6.PubMedGoogle Scholar
  31. 31.
    Faden AI, Demediuk P, Panter SS, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science. 1989;244(4906):798–800.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang L, Rzigalinski BA, Ellis EF, Satin LS. Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons. Science. 1996;274(5294):1921–3.PubMedCrossRefGoogle Scholar
  33. 33.
    Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. TINS. 1988;11(10):465–9.PubMedGoogle Scholar
  34. 34.
    Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21(1):2–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Globus MY, Alonso O, Dietrich WD, Busto R, Ginsberg MD. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem. 1995;65(4):1704–11.PubMedCrossRefGoogle Scholar
  36. 36.
    Awasthi D, Church DF, Torbati D, Carey ME, Pryor WA. Oxidative stress following traumatic brain injury in rats. Surg Neurol. 1997;47(6):575–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma. 2000;17(10):871–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J Neurochem. 1997;68(1):255–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Mark RJ, Pang Z, Geddes JW, Uchida K, Mattson MP. Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci. 1997;17(3):1046–54.PubMedGoogle Scholar
  40. 40.
    Weglicki WB, Phillips TM. Pathobiology of magnesium deficiency: a cytokine/neurogenic inflammation hypothesis. Am J Physiol. 1992;263(3 Pt 2):R734–7.PubMedGoogle Scholar
  41. 41.
    Nimmo AJ, Cernak I, Heath DL, Hu X, Bennett CJ, Vink R. Neurogenic inflammation is associated with development of edema and functional deficits following traumatic brain injury in rats. Neuropeptides. 2004;38(1):40–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Black PH. Stress and the inflammatory response: a review of neurogenic inflammation. Brain Behav Immun. 2002;16(6):622–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V. The tachykinin peptide family. Pharmacol Rev. 2002;54(2):285–322.PubMedCrossRefGoogle Scholar
  44. 44.
    Donkin JJ, Nimmo AJ, Cernak I, Blumbergs PC, Vink R. Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab. 2009;29(8):1388–98.PubMedCrossRefGoogle Scholar
  45. 45.
    Turner RJ, Blumbergs PC, Sims NR, Helps SC, Rodgers KM, Vink R. Increased substance P immunoreactivity and edema formation following reversible ischemic stroke. Acta Neurochir Suppl. 2006;96:263–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Turner RJ, Helps SC, Thornton E, Vink R. A substance P antagonist improves outcome when administered 4 h after onset of ischaemic stroke. Brain Res. 2011;1393:84–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Vink R, Young A, Bennett CJ, et al. Neuropeptide release influences brain edema formation after diffuse traumatic brain injury. Acta Neurochir Suppl. 2003;86:257–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Donkin JJ, Turner RJ, Hassan I, Vink R. Substance P in traumatic brain injury. Prog Brain Res. 2007;161:97–109.PubMedCrossRefGoogle Scholar
  49. 49.
    Malpuech-Brugere C, Nowacki W, Daveau M, et al. Inflammatory response following acute magnesium deficiency in the rat. Biochim Biophys Acta. 2000;1501(2–3):91–8.PubMedGoogle Scholar
  50. 50.
    Shogi T, Oono H, Nakagawa M, Miyamoto A, Ishiguro S, Nishio A. Effects of a low extracellular magnesium concentration and endotoxin on IL-1beta and TNF-alpha release from, and mRNA levels in, isolated rat alveolar macrophages. Magnes Res. 2002;15(3–4):147–52.PubMedGoogle Scholar
  51. 51.
    Hutchinson PJ, O’Connell MT, Rothwell NJ, et al. Inflammation in human brain injury: intracerebral concentrations of IL-1alpha, IL-1beta, and their endogenous inhibitor IL-1ra. J Neurotrauma. 2007;24(10):1545–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Morganti-Kossman MC, Lenzlinger PM, Hans V, et al. Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry. 1997;2(2):133–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Taupin V, Toulmond S, Serrano A, Benavides J, Zavala F. Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre- and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. J Neuroimmunol. 1993;42(2):177–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhu HD, Martin R, Meloni B, et al. Magnesium sulfate fails to reduce infarct volume following transient focal cerebral ischemia in rats. Neurosci Res. 2004;49(3):347–53.PubMedCrossRefGoogle Scholar
  55. 55.
    Molina-Holgado E, Ortiz S, Molina-Holgado F, Guaza C. Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br J Pharmacol. 2000;131(1):152–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Rothwell N. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav Immun. 2003;17(3):152–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Shohami E, Ginis I, Hallenbeck JM. Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev. 1999;10(2):119–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke. 1998;29(3):705–18.PubMedCrossRefGoogle Scholar
  59. 59.
    Hicks RR, Smith DH, Lowenstein DH, Saint Marie R, McIntosh TK. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. J Neurotrauma. 1993;10(4):405–14.PubMedCrossRefGoogle Scholar
  60. 60.
    Murasato Y, Harada Y, Ikeda M, Nakashima Y, Hayashida Y. Effect of magnesium deficiency on autonomic circulatory regulation in conscious rats. Hypertension. 1999;34(2):247–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Vink R, Nimmo AJ, Cernak I. An overview of new and novel pharmacotherapies for use in traumatic brain injury. Clin Exp Pharmacol Physiol. 2001;28(11):919–21.PubMedCrossRefGoogle Scholar
  62. 62.
    Ravishankar S, Ashraf QM, Fritz K, Mishra OP, Delivoria-Papadopoulos M. Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate. Brain Res. 2001;901(1–2):23–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Kowaltowski AJ, Netto LE, Vercesi AE. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. J Biol Chem. 1998;273(21):12766–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Muir JK, Raghupathi R, Emery DL, Bareyre FM, McIntosh TK. Postinjury magnesium treatment attenuates traumatic brain injury-induced cortical induction of p53 mRNA in rats. Exp Neurol. 1999;159(2):584–93.PubMedCrossRefGoogle Scholar
  65. 65.
    Raghupathi R, Graham DI, McIntosh TK. Apoptosis after traumatic brain injury. J Neurotrauma. 2000;17(10):927–38.PubMedCrossRefGoogle Scholar
  66. 66.
    Dong GX, Singh DK, Dendle P, Prasad RM. Regional expression of Bcl-2 mRNA and mitochondrial cytochrome c release after experimental brain injury in the rat. Brain Res. 2001;903(1–2):45–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Vink R, McIntosh TK, Demediuk P, Faden AI. Decrease in total and free magnesium concentration following traumatic brain injury in rats. Biochem Biophys Res Commun. 1987;149(2):594–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Vink R, McIntosh TK, Demediuk P, Weiner MW, Faden AI. Decline in intracellular free Mg2+ is associated with irreversible tissue injury after brain trauma. J Biol Chem. 1988;263(2):757–61.PubMedGoogle Scholar
  69. 69.
    Vink R, Nechifor M, editors. Magnesium in the CNS. Adelaide: Adelaide University Press; 2011.Google Scholar
  70. 70.
    Cernak I, Savic VJ, Kotur J, Prokic V, Veljovic M, Grbovic D. Characterization of plasma magnesium concentration and oxidative stress following graded traumatic brain injury in humans. J Neurotrauma. 2000;17(1):53–68.PubMedCrossRefGoogle Scholar
  71. 71.
    Heath DL, Vink R. Traumatic brain axonal injury produces sustained decline in intracellular free magnesium concentration. Brain Res. 1996;738(1):150–3.PubMedCrossRefGoogle Scholar
  72. 72.
    Smith DH, Cecil KM, Meaney DF, et al. Magnetic resonance spectroscopy of diffuse brain trauma in the pig. J Neurotrauma. 1998;15(9):665–74.PubMedCrossRefGoogle Scholar
  73. 73.
    Suzuki M, Nishina M, Endo M, et al. Decrease in cerebral free magnesium concentration following closed head injury and effects of VA-045 in rats. Gen Pharmacol. 1997;28(1):119–21.PubMedCrossRefGoogle Scholar
  74. 74.
    McIntosh TK, Faden AI, Yamakami I, Vink R. Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats: 31P magnetic resonance spectroscopy and behavioral studies. J Neurotrauma. 1988;5(1):17–31.PubMedCrossRefGoogle Scholar
  75. 75.
    Vink R, Heath DL, McIntosh TK. Acute and prolonged alterations in brain free magnesium following fluid percussion-induced brain trauma in rats. J Neurochem. 1996;66(6):2477–83.PubMedCrossRefGoogle Scholar
  76. 76.
    Cook NL, Van Den Heuvel C, Vink R. Are the transient receptor potential melastatin (TRPM) channels important in magnesium homeostasis following traumatic brain injury? Magnes Res. 2009;22(4):225–34.PubMedGoogle Scholar
  77. 77.
    Heath DL, Vink R. Neuroprotective effects of MgSO4 and MgCl2 in closed head injury: a comparative phosphorus NMR study. J Neurotrauma. 1998;15(3):183–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Heath DL, Vink R. Improved motor outcome in response to magnesium therapy received up to 24 hours after traumatic diffuse axonal brain injury in rats. J Neurosurg. 1999;90(3):504–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Heath DL, Vink R. Concentration of brain free magnesium following severe brain injury correlates with neurologic motor outcome. J Clin Neurosci. 1999;6(6):505–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Heath DL, Vink R. Optimization of magnesium therapy after severe diffuse axonal brain injury in rats. J Pharmacol Exp Ther. 1999;288(3):1311–6.PubMedGoogle Scholar
  81. 81.
    Hoane MR, Barbay S, Barth TM. Large cortical lesions produce enduring forelimb placing deficits in un-treated rats and treatment with NMDA antagonists or anti-oxidant drugs induces behavioral recovery. Brain Res Bull. 2000;53(2):175–86.PubMedCrossRefGoogle Scholar
  82. 82.
    McDonald JW, Silverstein FS, Johnston MV. Magnesium reduces N-methyl-D-aspartate (NMDA)-mediated brain injury in perinatal rats. Neurosci Lett. 1990;109(1–2):234–8.PubMedCrossRefGoogle Scholar
  83. 83.
    McIntosh TK, Vink R, Yamakami I, Faden I. Magnesium protects against neurological deficit after brain injury. Brain Res. 1989;482:252–60.PubMedCrossRefGoogle Scholar
  84. 84.
    Smith DH, Okiyama K, Gennarelli TA, McIntosh TK. Magnesium and ketamine attenuate cognitive dysfunction following experimental brain injury. Neurosci Lett. 1993;157(2):211–4.PubMedCrossRefGoogle Scholar
  85. 85.
    Heath DL, Vink R. Magnesium sulphate improves neurologic outcome following severe closed head injury in rats. Neurosci Lett. 1997;228(3):175–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Hoane MR, Barth TM. The behavioral and anatomical effects of MgCl2 therapy in an electrolytic lesion model of cortical injury in the rat. Magnes Res. 2001;14(1–2):51–63.PubMedGoogle Scholar
  87. 87.
    Muir KW, Lees KR. A randomized, double-blind, placebo-controlled pilot trial of intravenous magnesium sulfate in acute stroke. Stroke. 1995;26(7):1183–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Muir KW, Lees KR. Dose optimization of intravenous magnesium sulfate after acute stroke. Stroke. 1998;29(5):918–23.PubMedCrossRefGoogle Scholar
  89. 89.
    Saatman KE, Bareyre FM, Grady MS, McIntosh TK. Acute cytoskeletal alterations and cell death induced by experimental brain injury are attenuated by magnesium treatment and exacerbated by magnesium deficiency. J Neuropathol Exp Neurol. 2001;60(2):183–94.PubMedGoogle Scholar
  90. 90.
    Marinov MB, Harbaugh KS, Hoopes PJ, Pikus HJ, Harbaugh RE. Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg. 1996;85(1):117–24.PubMedCrossRefGoogle Scholar
  91. 91.
    Schanne FA, Gupta RK, Stanton PK. 31P-NMR study of transient ischemia in rat hippocampal slices in vitro. Biochim Biophys Acta. 1993;1158(3):257–63.PubMedCrossRefGoogle Scholar
  92. 92.
    Sirin BH, Coskun E, Yilik L, Ortac R, Sirin H, Tetik C. Neuroprotective effects of preischemia subcutaneous magnesium sulfate in transient cerebral ischemia. Eur J Cardiothorac Surg. 1998;14(1):82–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Duley L. Pre-eclampsia, eclampsia, and hypertension. Clin Evid (Online). 2011;2011.Google Scholar
  94. 94.
    Flather M, Pipilis A, Collins R, et al. Randomized controlled trial of oral captopril, of oral isosorbide mononitrate and of intravenous magnesium sulphate started early in acute myocardial infarction: safety and haemodynamic effects. ISIS-4 (Fourth International Study of Infarct Survival) Pilot Study Investigators. Eur Heart J. 1994;15(5):608–19.PubMedGoogle Scholar
  95. 95.
    Ma L, Liu WG, Zhang JM, Chen G, Fan J, Sheng HS. Magnesium sulphate in the management of patients with aneurysmal subarachnoid haemorrhage: a meta-analysis of prospective controlled trials. Brain Inj. 2010;24(5):730–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Gorelick PB, Ruland S. IMAGES and FAST-MAG: magnesium for acute ischaemic stroke. Lancet Neurol. 2004;3(6):330.PubMedCrossRefGoogle Scholar
  97. 97.
    Muir KW, Lees KR, Ford I, Davis S. Magnesium for acute stroke (intravenous magnesium efficacy in Stroke trial): randomised controlled trial. Lancet. 2004;363(9407):439–45.PubMedCrossRefGoogle Scholar
  98. 98.
    Temkin NR, Anderson GD, Winn HR, et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol. 2007;6:29–38.PubMedCrossRefGoogle Scholar
  99. 99.
    Dhandapani SS, Gupta A, Vivekanandhan S, Sharma BS, Mahapatra AK. Randomized controlled trial of magnesium sulphate in severe closed traumatic brain injury. Ind J Neurotrauma. 2008;5:27–33.Google Scholar
  100. 100.
    Yang Y, Qiu L, Fayyaz A, Shuaib A. Survival and histological evaluation of therapeutic window of post-ischemia treatment with magnesium sulfate in embolic stroke model of rat. Neurosci Lett. 2000;285:119–22.PubMedCrossRefGoogle Scholar
  101. 101.
    McKee JA, Brewer RP, Macy GE, et al. Analysis of the brain bioavailability of peripherally administered magnesium sulfate: a study in humans with acute brain injury undergoing prolonged induced hypermagnesemia. Crit Care Med. 2005;33(3):661–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Brewer RP, Parra A, Borel CO, Hopkins MB, Reynolds JD. Intravenous magnesium sulfate does not increase ventricular CSF ionized magnesium concentration of patients with intracranial hypertension. Clin Neuropharmacol. 2001;24(6):341–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Lee JH, Roy J, Sohn HM, et al. Magnesium in a polyethylene glycol formulation provides neuroprotection after unilateral cervical spinal cord injury. Spine. 2010;35(23):2041–8.PubMedGoogle Scholar
  104. 104.
    Meloni BP, Zhu H, Knuckey NW. Is magnesium neuroprotective following global and focal cerebral ischaemia? A review of published studies. Magnes Res. 2006;19(2):123–37.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Adelaide Centre for Neuroscience Research, School of Medical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations