Skip to main content

Methods for Detection of ROS in the Female Reproductive System

  • Chapter
  • First Online:
Studies on Women's Health

Abstract

The role of reactive oxygen species (ROS) within the female reproductive system is complex and can contribute to multiple gynecological diseases including infertility. This chapter will describe the various methods available to measure both ROS and other markers of oxidative stress in female infertility. Methods including chemiluminescence, flow cytometry, ELISA, metabolomics that utilize various markers of oxidative stress will be discussed. The effects of these markers in various female diseases are also briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma RK, Agarwal A (1996) Role of reactive oxygen species in male infertility. Urology 48(6):835–850

    PubMed  CAS  Google Scholar 

  2. Sharma RK, Agarwal A (2004) Role of reactive oxygen species in gynecologic diseases. Reprod Med Biol 3(4):177–199

    CAS  Google Scholar 

  3. Agarwal A, Cocuzza M, Abdelrazik H, Sharma R (2008) Oxidative stress measurement in patients with male or female factor infertility. Network 2008(2):195–218

    Google Scholar 

  4. Rosselli M, Dubey RK, Imthurn B, Macas E, Keller PJ (1995) Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum Reprod 10:1786–1790

    PubMed  CAS  Google Scholar 

  5. Rosselli M, Keller PJ, Dubey RK (1998) Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 4(1):3–24

    PubMed  CAS  Google Scholar 

  6. Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79:829–843

    PubMed  Google Scholar 

  7. Agarwal A, Gupta S, Sharma R (2005) Oxidative stress and its implications in female infertility—a clinician’s perspective. Reprod Biomed Online 11(5):641–650

    PubMed  CAS  Google Scholar 

  8. Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 14(3):28

    Google Scholar 

  9. Agarwal A, Gupta S, Sekhon L, Shah R (2008) Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal 10(8):1375–1403

    PubMed  CAS  Google Scholar 

  10. de Matos DG, Furnus CC (2000) The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development effect of beta-mercaptoethanol, cysteine and cystine. Theriogenology 53(3):761–771

    PubMed  Google Scholar 

  11. Agarwal A, Allamaneni SS (2004) Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online 9(3):338–347

    PubMed  CAS  Google Scholar 

  12. Agarwal A, Allamaneni SS, Said TM (2004) Chemiluminescence technique for measuring reactive oxygen species. Reprod Biomed Online 9(4):466–468

    PubMed  CAS  Google Scholar 

  13. Kobayashi H, Gil-Guzman E, Mahran AM, Sharma RK, Nelson DR, Thomas AJ Jr, Agarwal A (2001) Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl 22:568–574

    PubMed  CAS  Google Scholar 

  14. Berthold F, Herick K, Siewe RM (2000) Luminometer design and low light detection. Methods Enzymol 305:62–87

    PubMed  CAS  Google Scholar 

  15. Aitken RJ, Baker MA, O’Bryan M (2004) Shedding light on chemiluminescence: the application of chemiluminescence in diagnostic andrology. J Androl 25(4):455–65. Review

    Google Scholar 

  16. Shekarriz M, DeWire DM, Thomas AJ Jr, Agarwal A (1995) A method of human semen centrifugation to minimize the iatrogenic sperm injuries caused by reactive oxygen species. Eur Urol 28(1):31–35

    PubMed  CAS  Google Scholar 

  17. Stanley PE (1999) Commercially available fluorometers, luminometers and imaging devices for low-light level measurements and allied kits and reagents: survey update 6. Luminescence 14(4):201–213

    PubMed  CAS  Google Scholar 

  18. Mahfouz RZ, Sharma RK, Said TM, Erenpreiss J, Agarwal A (2009) Association of sperm apoptosis and DNA ploidy with sperm chromatin quality in human spermatozoa. Fertil Steril 91(4):1110–1118

    PubMed  Google Scholar 

  19. Wheeler CR, Salzman JA, Elsayed NM et al (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184:193–199

    PubMed  CAS  Google Scholar 

  20. Johansson LH, Borg LAH (1988) A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174:331–336

    PubMed  CAS  Google Scholar 

  21. Takagi Y, Nikaido T, Toki T, Kita N, Kanai M, Ashida T, Ohira S, Konishi I (2004) Levels of oxidative stress and redox-related molecules in the placenta in preeclampsia and fetal growth restriction. Virchows Arch 444:49–55

    PubMed  CAS  Google Scholar 

  22. Dong M, Shi Y, Cheng Q, Hao M (2001) Increased nitric oxide in peritoneal fluid from women with idiopathic infertility and endometriosis. J Reprod Med 46:887–891

    PubMed  CAS  Google Scholar 

  23. Osborn BH, Haney AF, Misukonis MA, Weinberg JB (2002) Inducible nitric oxide synthase expression by peritoneal macrophages in endometriosis-associated infertility. Fertil Steril 77:46–51

    PubMed  Google Scholar 

  24. Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW (2000) Relationships between concentrations of tumor necrosis factor-alpha and nitric oxide in follicular fluid and oocyte quality. J Assist Reprod Genet 17(4):222–228

    PubMed  CAS  Google Scholar 

  25. Guichardant M, Chantegrel B, Deshayes C, Doutheau A, Moliere P, Lagarde M (2004) Specific markers of lipid peroxidation issued from n-3 and n-6 fatty acids. Biochem Soc Trans 32:139–140

    PubMed  CAS  Google Scholar 

  26. Campos PC, Ferriani RA, dos Reis RM, de Moura MD, Jordão AA Jr, Navarro PA (2008) Lipid peroxidation and vitamin E in serum and follicular fluid of infertile women with peritoneal endometriosis submitted to controlled ovarian hyperstimulation: a pilot study. Fertil Steril 90:2080–2085

    Google Scholar 

  27. Wang Y, Sharma RK, Agarwal A (1997) Effect of cryopreservation and sperm concentration on lipid peroxidation in human semen. Urology 50:409–413

    PubMed  CAS  Google Scholar 

  28. Pasqualotto EB, Agarwal A, Sharma RK, Izzo VM, Pinotti JA, Joshi NJ et al (2004) Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril 81:973–976

    PubMed  CAS  Google Scholar 

  29. Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266(4):2005–2008

    PubMed  CAS  Google Scholar 

  30. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    PubMed  CAS  Google Scholar 

  31. Jiang ZY, Hunt JV, Wolf SP (1992) Detection of lipid hydroperoxides using fox method. Anal Biochem 202:384–389

    PubMed  CAS  Google Scholar 

  32. Jackson LW, Schisterman EF, Dey-Rao R, Browne R, Armstrong D (2005) Oxidative stress and endometriosis. Hum Reprod 20(7):2014–2020

    PubMed  CAS  Google Scholar 

  33. Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation—a review. Curr Med Chem 10:1723–1740

    PubMed  CAS  Google Scholar 

  34. Rokach J, Kim S, Bellone S, Lawson JA, Pratico D, Powell WS, FitzGerald GA (2004) Total synthesis of isoprostanes: discovery and quantitation in biological systems. Chem Phys Lipids 128:35–56

    PubMed  CAS  Google Scholar 

  35. Browne RW, Armstrong D (1998) Simultaneous determination of serum retinol, tocopherols, and carotenoids by HPLC. Methods Mol Biol 108:269–275

    PubMed  CAS  Google Scholar 

  36. Singh R, Sinclair KD (2007) Metabolomics: approaches to assessing oocyte and embryo quality. Theriogenology 68(Suppl 1):S56–S62

    PubMed  CAS  Google Scholar 

  37. Wu H, Southam AD, Hines A, Viant MR (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 372(2):204–212

    PubMed  CAS  Google Scholar 

  38. Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH (2007) Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril 88(5):1350–1357

    PubMed  Google Scholar 

  39. Seli E, Botros L, Sakkas D, Burns DH (2008) Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril 90(6):2183–2189

    PubMed  Google Scholar 

  40. Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH (2008) Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril 90(1):77–83

    PubMed  Google Scholar 

  41. Fenton BW, Lin CS, Macedonia C, Schellinger D, Ascher S (2001) The fetus at term: in utero volume-selected proton MR spectroscopy with a breath-hold technique–a feasibility study. Radiology 219(2):563–566

    PubMed  CAS  Google Scholar 

  42. Gupta S, Sekhon L, Kim Y, Agarwal A (2010) The role of oxidative stress and antioxidants in assisted reproduction. In: Gupta S, Agarwal A (eds) Current concepts in assisted reproduction and fertility preservation, Current Women’s Health Reviews, vol 6(3) pp 227–238

    Google Scholar 

  43. Shiotani M, Noda Y, Narimoto K, Imai K, Mori T, Fujimoto K, Ogawa K (1991) Immunohistochemical localization of superoxide dismutase in the human ovary. Hum Reprod 6:1349–1353

    PubMed  CAS  Google Scholar 

  44. Suzuki T, Sugino N, Fukaya T, Sugiyama S, Uda T, Takaya R, Yajima A, Sasano H (1999) Superoxide dismutase in normal cycling human ovaries: immunohistochemical localization and characterization. Fertil Steril 72:720–726

    PubMed  CAS  Google Scholar 

  45. Halliwell B, Gutteridge JM (1988) Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease. Hum Toxicol 7(1):7–13

    PubMed  CAS  Google Scholar 

  46. Tamate K, Sengoku K, Ishikawa M (1995) The role of superoxide dismutase in the human ovary and fallopian tube. J Obstet Gynaecol 21(4):401–409

    CAS  Google Scholar 

  47. Sugino N, Nakata M, Kashida S, Karube A, Takiguchi S, Kato H (2000) Decreased superoxide dismutase expression and increased concentrations of lipid peroxide and prostaglandin F(2alpha) in the decidua of failed pregnancy. Mol Hum Reprod 6:642–647

    PubMed  CAS  Google Scholar 

  48. Paszkowski T, Traub AI, Robinson SY, McMaster D (1995) Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin Chim Acta 236(2):173–180

    PubMed  CAS  Google Scholar 

  49. El Mouatassim S, Guérin P, Ménézo Y (1999) Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod 5(8):720–725

    PubMed  CAS  Google Scholar 

  50. Barrionuevo MJ, Schwandt RA, Rao PS, Graham LB, Maisel LP, Yeko TR (2000) Nitric oxide (NO) and interleukin-1beta (IL-1beta) in follicular fluid and their correlation with fertilization and embryo cleavage. Am J Reprod Immunol 44(6):359–364

    PubMed  CAS  Google Scholar 

  51. Bedaiwy MA, Falcone T (2004) Laboratory testing for endometriosis. Clin Chim Acta 340(1–2):41–56

    PubMed  CAS  Google Scholar 

  52. Ho HN, Wu MY, Chen SU, Chao KH, Chen CD, Yang YS (1997) Total antioxidant status and nitric oxide do not increase in peritoneal fluids from women with endometriosis. Hum Reprod 12(12):2810–2815

    PubMed  CAS  Google Scholar 

  53. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS (1998) Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 13(4):998–1002

    PubMed  CAS  Google Scholar 

  54. Oyawoye O, Abdel Gadir A, Garner A, Constantinovici N, Perrett C, Hardiman P (2003) Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod 18(11):2270–2274

    PubMed  CAS  Google Scholar 

  55. Pasqualotto EB, Lara LV, Salvador M, Sobreiro BP, Borges E, Pasqualotto FF (2009) The role of enzymatic antioxidants detected in the follicular fluid and semen of infertile couples undergoing assisted reproduction. Hum Fertil (Camb) 12(3):166–171

    CAS  Google Scholar 

  56. Sabatini L, Wilson C, Lower A, Al-Shawaf T, Grudzinskas JG (1999) Superoxide dismutase activity in human follicular fluid after controlled ovarian hyperstimulation in women undergoing in vitro fertilization. Fertil Steril 72:1027–1034

    PubMed  CAS  Google Scholar 

  57. Appasamy M, Jauniaux E, Serhal P, Al-Qahtani A, Grome NP, Muttukrishna S (2008) Evaluation of the relationship between follicular fluid oxidative stress, ovarian hormones, and response to gonadotropin stimulation. Fertil Steril 89:912–921

    PubMed  CAS  Google Scholar 

  58. Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P (2009) Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol 7:40

    PubMed  Google Scholar 

  59. Das S, Chattopadhyay R, Ghosh S, Ghosh S, Goswami SK, Chakravarty BN et al (2006) Reactive oxygen species level in follicular fluid–embryo quality marker in IVF? Hum Reprod 21:2403–2407

    PubMed  CAS  Google Scholar 

  60. Attaran M, Pasqualotto E, Falcone T, Goldberg JM, Miller KF, Agarwal A, Sharma RK (2000) The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med 45:314–320

    PubMed  CAS  Google Scholar 

  61. Jana SK, K NB, Chattopadhyay R, Chakravarty B, Chaudhury K (2010) Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable.Reprod Toxicol 29:447–51

    Google Scholar 

  62. Wiener-Megnazi Z, Vardi L, Lissak A, Shnizer S, Teznick AZ, Ishai D, Lahav-Baratz S, Shiloh H, Koifman M, Dirnfeld M (2004) Oxidative stress indices in follicular fluid as measured by thermochemiluminescence assay correlate with outcome parameters in vitro fertilization. Fertil Steril 82:1171–1176

    PubMed  CAS  Google Scholar 

  63. Paszkowski T, Clarke RN (1996) Antioxidant capacity of preimplantation embryo culture medium declines following the incubation of poor quality embryos. Hum Reprod 11:2493–2495

    PubMed  CAS  Google Scholar 

  64. Raicević S, Cubrilo D, Arsenijević S, Vukcević G, Zivković V, Vuletić M, Barudzić N, Andjelković N, Antonović O, Jakovljević V (2010) Oxidative stress in fetal distress: potential prospects for diagnosis. Oxid Med Cell Longev 3(3):214–218

    PubMed  Google Scholar 

  65. Burlingame JM, Esfandiari N, Sharma RK, Mascha E, Falcone T (2003) Total antioxidant capacity and reactive oxygen species in amniotic fluid. Obstet Gynecol 101(4):756–761

    PubMed  CAS  Google Scholar 

  66. Morales H, Tilquin P, Rees JF, Massip A, Dessy F, Van Langendonckt A (1999) Pyruvate prevents peroxide-induced injury of in vitro preimplantation bovine embryos. Mol Reprod Dev 52(2):149–157

    PubMed  CAS  Google Scholar 

  67. Gupta, S, Surti, N, Metterle, L, Chandra, A, Agarwal, A (2009) Antioxidants and female reproductive pathologies. Review Article. Arch of Med Sci 5(1A):S151–S173

    Google Scholar 

  68. Bedaiwy MA, Goldberg JM, Falcone T, Singh M, Nelson D, Azab H et al (2002) Relationship between oxidative stress and embryotoxicity of hydrosalpingeal fluid. Hum Reprod 17:601–604

    PubMed  Google Scholar 

  69. Kubo A, Sasada M, Nishimura T, Moriguchi T, Kakita T, Yamamoto K, Uchino H (1987) Oxygen radical generation by polymorphonuclear leucocytes of beige mice. Clin Exp Immunol 70(3):658–663

    PubMed  CAS  Google Scholar 

  70. Gupta S, Agarwal A, Banerjee J, Alvarez JG (2007) The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: a systematic review. Obstet Gynecol Surv 62(5):335–347

    PubMed  Google Scholar 

  71. Myatt L (2010) Review: reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta (31Suppl):S66–S69

    Google Scholar 

  72. Palacio JR, Iborra A, Ulcova-Gallova Z, Badia R, Martinez P (2006) The presence of antibodies to oxidative modified proteins in serum from polycystic ovary syndrome patients. Clin Exp Immunol 144:217–222

    PubMed  CAS  Google Scholar 

  73. Sugino N (2007) The role of oxygen radical-mediated signaling pathways in endometrial function. Placenta 28:S133–S136

    PubMed  Google Scholar 

  74. Ota H, Igarashi S, Tanaka T (2001) Xanthine oxidase in eutopic and ectopic endometrium in endometriosis and adenomyosis. Fertil Steril 75:785–790

    PubMed  CAS  Google Scholar 

  75. Sugino N, Takiguchi S, Kashida S, Karube A, Nakamura Y, Kato H (2000) Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy. Mol Hum Reprod 6:19–25

    PubMed  CAS  Google Scholar 

  76. Sugino N, Karube-Harada A, Sakata A, Takiguchi S, Kato H (2002) Nuclear factor-kappa B is required for tumor necrosis factor-alpha-induced manganese superoxide dismutase expression in human endometrial stromal cells. J Clin Endocrinol Metab 87(8):3845–3850

    PubMed  CAS  Google Scholar 

  77. Sugino N (2004) Withdrawal of ovarian steroids stimulates prostaglandin F2alpha production through nuclear factor-kappaB activation via oxygen radicals in human endometrial stromal cells: potential relevance to menstruation. J Reprod Dev 50:215–225

    PubMed  CAS  Google Scholar 

  78. Sugino N (2007) The role of oxygen radical-mediated signaling pathways in endometrial function. Placenta 28:S133–S136

    PubMed  Google Scholar 

  79. Bedaiwy MA, Falcone T (2003) Peritoneal fluid environment in endometriosis. Clinicopathological implications. Minerva Ginecol 55(4):333–345

    PubMed  CAS  Google Scholar 

  80. Berbic M, Schulke L, Markham R, Tokushige N, Russell P, Fraser IS (2009) Macrophage expression in endometrium of women with and without endometriosis. Hum Reprod 24(2):325–332

    PubMed  CAS  Google Scholar 

  81. Bedaiwy MA, Falcone T, Sharma RK, Goldberg JM, Attaran M, Nelson DR, Agarwal A (2002) Prediction of endometriosis with serum and peritoneal fluid markers: a prospective controlled trial. Hum Reprod 17:426–431

    PubMed  CAS  Google Scholar 

  82. Montagna P, Capellino S, Villaggio B, Remorgida V, Ragni N, Cutolo M, Ferrero S (2008) Peritoneal fluid macrophages in endometriosis: correlation between the expression of estrogen receptors and inflammation. Fertil Steril 90(1):156–164

    PubMed  CAS  Google Scholar 

  83. Murphy AA, Palinski W, Rankin S, Morales AJ, Parthasarathy S (1998) Evidence for oxidatively modified lipid-protein complexes in endometrium and endometriosis. Fertil Steril 69:1092–1094

    PubMed  CAS  Google Scholar 

  84. Ngô C, Chéreau C, Nicco C, Weill B, Chapron C, Batteux F (2009) Reactive oxygen species controls endometriosis progression. Am J Pathol 175(1):225–234

    PubMed  Google Scholar 

  85. Alexandre J, Nicco C, Chereau C, Laurent A, Weill B, Goldwasser F, Batteux F (2006) Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst 98:236–244

    PubMed  CAS  Google Scholar 

  86. Gupta S, Agarwal A, Krajcir N, Alvarez JG (2006) Role of oxidative stress in endometriosis. Reprod Biomed Online 13:126–134

    PubMed  CAS  Google Scholar 

  87. Zeller JM, Henig I, Radwanska E, Dmowski WP (1987) Enhancement of human monocyte and peritoneal macrophage chemiluminescence activities in women with endometriosis. Am J Reprod Immunol Microbiol 13(3):78–82

    PubMed  CAS  Google Scholar 

  88. Arumugam K, Dip YC (1995) Endometriosis and infertility: the role of exogenous lipid peroxides in the peritoneal fluid. Fertil Steril 63:198–199

    PubMed  CAS  Google Scholar 

  89. Shanti A, Santanam N, Morales AJ, Parthasarathy S, Murphy AA (1999) Autoantibodies to markers of oxidative stress are elevated in women with endometriosis. Fertil Steril 71:1115–1118

    PubMed  CAS  Google Scholar 

  90. Szczepańska M, Koźlik J, Skrzypczak J, Mikołajczyk M (2003) Oxidative stress may be a piece in the endometriosis puzzle. Fertil Steril 79(6):1288–1293

    PubMed  Google Scholar 

  91. Saito H, Seino T, Kaneko T, Nakahara K, Toya M, Kurachi H (2002) Endometriosis and oocyte quality. GynecolObstet Invest 53(Suppl 1):46–51

    Google Scholar 

  92. Khorram O, Lessey BA (2002) Alterations in expression of endometrial endothelial nitric oxide synthase and alpha(v)beta(3) integrin in women with endometriosis. Fertil Steril 78:860–864

    PubMed  Google Scholar 

  93. Oak MK, Chantler EN, Williams CA, Elstein M (1985) Sperm survival studies in peritoneal fluid from infertile women with endometriosis and unexplained infertility. Clin Reprod Fertil 3(4):297–303

    PubMed  CAS  Google Scholar 

  94. Polak G, Koziol-Montewka M, Gogacz M, Blaszkowska I, Kotarski J (2001) Total antioxidant status of peritoneal fluid in infertile women. Eur J Obstet Gynecol Reprod Biol 94:261–263

    PubMed  CAS  Google Scholar 

  95. Storey BT (1997) Biochemistry of the induction and prevention of lipoperoxidative damage in human spermatozoa. Mol Hum Reprod 3:203–213

    PubMed  CAS  Google Scholar 

  96. do Amaral VF, Bydlowski SP, Peranovich TC, Navarro PA, Subbiah MT, Ferriani RA (2005) Lipid peroxidation in the peritoneal fluid of infertile women with peritoneal endometriosis. Eur J Obstet Gynecol Reprod Biol 1:119(1):72–5

    Google Scholar 

  97. Wang Y, Sharma RK, Falcone T, Goldberg J, Agarwal A (1997) Importance of reactive oxygen species in the peritoneal fluid of women with endometriosis or idiopathic infertility. Fertil Steril 68(5):826–830

    PubMed  CAS  Google Scholar 

  98. Eskenazi B, Warner ML (1997) Epidemiology of endometriosis. Obstet Gynecol Clin North Am 24(2):235–258

    PubMed  CAS  Google Scholar 

  99. Gleicher N, el-Roeiy A, Confino E, Friberg J (1987) Is endometriosis an autoimmune disease? Obstet Gynecol 70(1):115–122

    PubMed  CAS  Google Scholar 

  100. Gleicher N (1987) A potential animal model for autoimmune reproductive failure. Am J Reprod Immunol Microbiol. 14(4):122

    PubMed  CAS  Google Scholar 

  101. Van Langendonckt A, Casanas-Roux F, Donnez J (2002) Oxidative stress and peritoneal endometriosis. Fertil Steril 77(5):861–870

    PubMed  Google Scholar 

  102. Kodaman PH, Duleba AJ (2008) Statins in the treatment of polycystic ovary syndrome. Semin Reprod Med 26(1):127–138

    PubMed  CAS  Google Scholar 

  103. Gonzalez F, Rote NS, Minium J, Kirwan JP (2006) Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab 91:336–340

    PubMed  CAS  Google Scholar 

  104. González F, Rote NS, Minium J, Weaver AL, Kirwan JP (2010) Elevated circulating levels of macrophage migration inhibitory factor in polycystic ovary syndrome. Cytokine 51(3):240–244

    PubMed  Google Scholar 

  105. Dumesic DA, Padmanabhan V, Abbott DH (2008) Polycystic ovary syndrome and oocyte developmental competence. Obstet Gynecol Surv 63(1):39–48

    PubMed  Google Scholar 

  106. Dincer Y, Akcay T, Erdem T, Ilker Saygili E, Gundogdu S (2005) DNA damage, DNA susceptibility to oxidation and glutathione level in women with polycystic ovary syndrome. Scand J Clin Lab Invest 65:721–728

    CAS  Google Scholar 

  107. Ishihara O, Hayashi M, Osawa H, Kobayashi K, Takeda S, Vessby B, Basu S (2004) Isoprostanes, prostaglandins and tocopherols in pre-eclampsia, normal pregnancy and non-pregnancy. Free Radic Res 38:913–918

    PubMed  CAS  Google Scholar 

  108. Sidiqui IA, Jaleel A, Tamimi W, Al Kadri HM (2010) Role of oxidative stress in the pathogenesis of preeclampsia. Arch Gynecol Obstet 282(5):469–474

    Google Scholar 

  109. Wang Y, Walsh SW (1996) Antioxidant activities and mRNA expression of superoxide dismutase, catalase, and glutathione peroxidase in normal and preeclamptic placentas. J Soc Gynecol Investig 3:179–184

    PubMed  CAS  Google Scholar 

  110. Hubel CA (1999) Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med 222(3):222–235

    PubMed  CAS  Google Scholar 

  111. Holthe MR, Staff AC, Berge LN, Lyberg T (2004) Leukocyte adhesion molecules and reactive oxygen species in preeclampsia. Obstet Gynecol 103(5 Pt 1):913–922

    PubMed  CAS  Google Scholar 

  112. Davidge ST, Hubel CA, Brayden RD, Capeless EC, McLaughlin MK (1992) Sera antioxidant activity in uncomplicated and preeclamptic pregnancies. Obstet Gynecol 79(6):897–901

    PubMed  CAS  Google Scholar 

  113. Matsubara K, Matsubara Y, Hyodo S, Katayama T, Ito MJ (2010) Role of nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Obstet Gynaecol Res 36(2):239–247

    CAS  Google Scholar 

  114. Cooke CL, Brockelsby JC, Baker PN, Davidge ST (2003) The receptor for advanced glycation end products (RAGE) is elevated in women with preeclampsia. Hypertens Pregnancy 22(2):173–184

    PubMed  CAS  Google Scholar 

  115. Roggensack AM, Zhang Y, Davidge ST (1999) Evidence for peroxynitrite formation in the vasculature of women with preeclampsia. Hypertension 33(1):83–89

    PubMed  CAS  Google Scholar 

  116. Diamant S, Kissilevitz R, Diamant Y (1980) Lipid peroxidation system in human placental tissue: general properties and the influence of gestational age. Biol Reprod 23(4):776–781

    PubMed  CAS  Google Scholar 

  117. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288(2):481–487

    PubMed  CAS  Google Scholar 

  118. Pasupathi P, Manivannan U, Manivannan P, Deepa M (2010) Cardiac troponins and oxidative stress markers in non-pregnant, pregnant and preeclampsia women. Bangladesh Med Res Counc Bull 36(1):4–9

    PubMed  Google Scholar 

  119. Djordjevic A, Spasic S, Jovanovic-Galovic A, Djordjevic R, Grubor-Lajsic G (2004) Oxidative stress in diabetic pregnancy: SOD, CAT and GSH-Px activity and lipid peroxidation products. J Matern Fetal Neonatal Med 16:367–372

    PubMed  CAS  Google Scholar 

  120. Cederberg J, Basu S, Eriksson UJ (2001) Increased rate of lipid peroxidation and protein carbonylation in experimental diabetic pregnancy. Diabetologia 44(6):766–774

    PubMed  CAS  Google Scholar 

  121. Pedersen L, Tygstrup I, Pedersen J (1964) Congenital malformations in newborn infants of diabetic women correlation with maternal diabetic vascular complications. Lancet 1(7343):1124–1126

    PubMed  CAS  Google Scholar 

  122. Simán CM, Eriksson UJ (1997) Vitamin C supplementation of the maternal diet reduces the rate of malformation in the offspring of diabetic rats. Diabetologia 40(12):1416–1424

    PubMed  Google Scholar 

  123. Trocino RA, Akazawa S, Ishibashi M, Matsumoto K, Matsuo H, Yamamoto H, Goto S, Urata Y, Kondo T, Nagataki S (1995) Significance of glutathione depletion and oxidative stress in early embryogenesis in glucose-induced rat embryo culture. Diabetes 44(8):992–998

    PubMed  CAS  Google Scholar 

  124. Eriksson UJ, Borg LA (1991) Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia 34(5):325–331

    PubMed  CAS  Google Scholar 

  125. Falcone T, Hurd W (2007) Clinical Reproductive Medicine and Surgery. Mosby Elsevier, Philadelphia, p.123

    Google Scholar 

  126. Burton GJ, Hempstock J, Jauniaux E (2003) Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod Biomed Online 6(1):84–96

    PubMed  Google Scholar 

  127. Hempstock J, Jauniaux E, Greenwold N, Burton GJ (2003) The contribution of placental oxidative stress to early pregnancy failure. Hum Pathol 34(12):1265–1275

    PubMed  CAS  Google Scholar 

  128. Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ (2000) Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol 157:2111–2122

    PubMed  CAS  Google Scholar 

  129. Sane AS, Chokshi SA, Mishra VV, Barad DP, Shah VC, Nagpal S (1991) Serum lipoperoxides in induced and spontaneous abortions. Gynecol Obstet Invest 31(3):172–175

    PubMed  CAS  Google Scholar 

  130. Simşek M, Naziroğlu M, Simşek H, Cay M, Aksakal M, Kumru S (1998) Blood plasma levels of lipoperoxides, glutathione peroxidase, beta carotene, vitamin A and E in women with habitual abortion. Cell Biochem Funct 16(4):227–231

    PubMed  Google Scholar 

  131. Gil-Villa AM, Cardona-Maya W, Agarwal A, Sharma R, Cadavid A (2010) Assessment of sperm factors possibly involved in early recurrent pregnancy loss. Fertil Steril 94(4):1465–1472

    PubMed  Google Scholar 

  132. Gil-Villa AM, Cardona-Maya W, Agarwal A, Sharma R, Cadavid A (2009) Role of male factor in early recurrent embryo loss: do antioxidants have any effect? Case report. Fertil Steril 92:565–571

    Google Scholar 

  133. Gomes FM, Navarro PA, de Abreu LG, Ferriani RA, dos Reis RM, de Moura MD (2008) Effect of peritoneal fluid from patients with minimal/mild endometriosis on progesterone release by human granulosa-lutein cells obtained from infertile patients without endometriosis: a pilot study. Eur J Obstet Gynecol Reprod Biol 138(1):60–65

    PubMed  CAS  Google Scholar 

  134. Larson KL, DeJonge CJ, Barnes AM, Jost LK, Evenson DP (2000) Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod 15(8):1717–1722

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, R.K., Reynolds, N., Rakhit, M., Agarwal, A. (2013). Methods for Detection of ROS in the Female Reproductive System. In: Agarwal, A., Aziz, N., Rizk, B. (eds) Studies on Women's Health. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-041-0_2

Download citation

Publish with us

Policies and ethics