Skip to main content

Maternal Nutrition, Oxidative Stress and Prenatal Devlopmental Outcomes

  • Chapter
  • First Online:

Abstract

Aerobic organisms have adapted themselves to a coexistence with reactive oxygen species (ROS) by developing various and interdependent antioxidant systems that includes enzymatic and non-enzymatic antioxidants. Dietary antioxidants also play important roles in protecting the developing organisms from ROS damage, and both dietary and enzymatic antioxidants are components of interrelated systems that interact with each other to control ROS production. Oxidative stress can arise from an imbalance between generation and elimination of ROS leading to excessive ROS levels that damage all biomolecules. Tightly controlled ROS generation is one of the central elements in the mechanisms of cellular signaling and maintenance of signal transduction pathways involved in cell function, growth, and differentiation. Oxidative stress is considered to be a promoter of several prenatal developmental disorders and complications, importantly defective embryogenesis, embryopathies, embryonic mortality, spontaneous abortion, recurrent pregnancy loss, fetal growth restriction, intrauterine fetal death, low birth weight, preeclampsia, and preterm delivery. Environmental chemicals in food, water, and beverage may contribute to such adverse prenatal developmental outcomes and increase the susceptibility of offspring to disease via impairment of the antioxidant defense systems and enhancement of ROS generation. This chapter deals with the state of knowledge on the association between ROS, oxidative stress, antioxidants, and prenatal developmental outcomes. The importance of maternal antioxidant-rich foods in eliciting favorable effects on women health and prenatal development outcomes is highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    PubMed  CAS  Google Scholar 

  2. Thannickal VJ (2003) The paradox of reactive oxygen species: injury, signaling, or both? Am J Physiol Lung Cell Mol Physiol 284:L24–L25

    PubMed  CAS  Google Scholar 

  3. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  4. Haddad JJ (2004) Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment. Int Immunopharmacol 4:475–493

    PubMed  CAS  Google Scholar 

  5. Janssen-Heininger YM, Mossman BT, Heintz NH et al (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med. 45:1–17

    PubMed  CAS  Google Scholar 

  6. Valko M, Leiter D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    PubMed  CAS  Google Scholar 

  7. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Clarendon Press, Oxford

    Google Scholar 

  8. Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    PubMed  CAS  Google Scholar 

  9. Agarwal A, Gupta S, Sekhon L, Shah R (2008) Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1375–1403

    PubMed  CAS  Google Scholar 

  10. Al-Gubory KH, Fowler PA, Garrel C (2010) The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 42:1634–1650

    PubMed  CAS  Google Scholar 

  11. Myatt L, Cui X (2004) Oxidative stress in the placenta. Histochem Cell Biol 122:369–382

    PubMed  CAS  Google Scholar 

  12. Poston L, Raijmakers MTM (2004) Trophoblast oxidative stress, antioxidants and pregnancy outcome-A Review. Placenta 25 (Suppl A):S72–S78

    Google Scholar 

  13. Agarwal A, Allamaneni SSR (2004) Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online. 9:338–347

    PubMed  CAS  Google Scholar 

  14. Agarwal A, Gupta S, Sharma R (2005) Oxidative stress and its implications in female infertility—a clinician’s perspective. Reprod Biomed Online. 11:641–650

    PubMed  CAS  Google Scholar 

  15. Gupta S, Agarwal A, Banerjee J, Alvarez J (2007) The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: A systematic review. Obstet Gynecol Survey. 62:335–347

    Google Scholar 

  16. Luo ZC, Fraser WD, Julien P et al (2006) Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med Hypotheses 66:38–44

    PubMed  CAS  Google Scholar 

  17. Luo ZC, Liu JM, Fraser WD (2010) Large prospective birth cohort studies on environmental contaminants and child health—Goals, challenges, limitations and needs. Med Hypotheses 74:318–324

    PubMed  Google Scholar 

  18. Barr DB, Needham A, Bishop LL (2007) Concentrations of xenobiotic chemicals in the maternal-fetal unit. Reprod Toxicol 23:260–266

    PubMed  CAS  Google Scholar 

  19. McCord I, Fridovich JM (1969) Superoxide dismutase. an enzymatic function for erythrocuprein. J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  20. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    PubMed  CAS  Google Scholar 

  21. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    PubMed  CAS  Google Scholar 

  22. Higuchi Y (2003) Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem Pharmacol 66:1527–1535

    PubMed  CAS  Google Scholar 

  23. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  24. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    PubMed  CAS  Google Scholar 

  25. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    PubMed  CAS  Google Scholar 

  26. Marla SS, Lee J, Groves JT (1997) Peroxynitrite rapidly permeates phospholipids membranes. Proc Natl Acad Sci. 94:14243–14248

    PubMed  CAS  Google Scholar 

  27. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    PubMed  CAS  Google Scholar 

  28. Li J, Billiar TR, Talanian RV, Kim YM (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240:419–424

    PubMed  CAS  Google Scholar 

  29. Mannick JB, Hausladen A, Liu L et al (1999) Fas-induced caspase denitrosylation. Science 284:651–654

    PubMed  CAS  Google Scholar 

  30. Kirkinezos IG, Moraes CT (2001) Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 12:449–457

    PubMed  CAS  Google Scholar 

  31. Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J. 284:1–13

    PubMed  CAS  Google Scholar 

  32. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645

    PubMed  CAS  Google Scholar 

  33. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    PubMed  CAS  Google Scholar 

  34. Lacza Z, Puskar M, Figueroa JP et al (2001) Mitochondrial nitric oxide synthase is constitutively active and is functionally upregulated in hypoxia. Free Radic Biol Med. 31:1609–1615

    PubMed  CAS  Google Scholar 

  35. Lacza Z, Snipes JA, Zhang J et al (2003) Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS. Free Radic Biol Med. 35:1217–1228

    PubMed  CAS  Google Scholar 

  36. Yoon SJ, Choi KH, Lee KA (2002) Nitric oxide-mediated inhibition of follicular apoptosis is associated with HSP70 induction and Bax suppression. Mol Reprod Dev 61:504–510

    PubMed  CAS  Google Scholar 

  37. Jee BC, Kim SH, Moon SY (2003) The role of nitric oxide on apoptosis in human luteinized granulosa cells. Immunocytochemical evidence. Gynecol Obstet Invest. 56:143–147

    CAS  Google Scholar 

  38. Brown GC (2007) Nitric oxide and mitochondria. Front Biosci. 12:1024–1033

    PubMed  CAS  Google Scholar 

  39. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  40. Zangar RC, Davydov DR, Verma S (2004) Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol 199:316–331

    PubMed  CAS  Google Scholar 

  41. Jezek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503

    PubMed  CAS  Google Scholar 

  42. Weisiger RA, Fridovich I (1973) Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localisation. J Biol Chem 248:4791–4793

    Google Scholar 

  43. Marklund SL (1982) Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci. 79:7634–7638

    PubMed  CAS  Google Scholar 

  44. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  45. Brigelius-Flohé R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med. 27:951–965

    PubMed  Google Scholar 

  46. Kirsch M, De Groot H (2001) NAD(P)H, a directly operating antioxidant? FASEP. J 15:1569–1574

    CAS  Google Scholar 

  47. Pandolfi PP, Sonati F, Rivi R et al (1995) Targeted disruption of the house keeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 14:5209–5215

    PubMed  CAS  Google Scholar 

  48. Jo SH, Son MK, Koh HJ et al (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 276:16168–16176

    PubMed  CAS  Google Scholar 

  49. Lee SM, Koh HJ, Park DC et al (2002) Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med. 32:1185–1196

    PubMed  CAS  Google Scholar 

  50. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 30:1191–1212

    PubMed  CAS  Google Scholar 

  51. Dickinson DA, Forman HJ (2002) Glutathione in defense and signaling: lessons from a small thiol. Ann N Y Acad Sci 973:488–504

    PubMed  CAS  Google Scholar 

  52. Yildirim Z, Kiliç N, Ozer C et al (2007) Effects of taurine in cellular responses to oxidative stress in young and middle-aged rat liver. Ann N Y Acad Sci 1100:553–561

    PubMed  CAS  Google Scholar 

  53. Parvez S, Tabassum H, Banerjee BD, Raisuddin S (2008) Taurine prevents tamoxifen-induced mitochondrial oxidative damage in mice. Basic Clin Pharmacol Toxicol 102:382–387

    PubMed  CAS  Google Scholar 

  54. Métayer S, Seiliez I, Collin A et al (2008) Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. J Nutr Biochem 19:207–215

    PubMed  Google Scholar 

  55. Dröge W (2005) Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Philos Trans R Soc. 360:2355–2372

    Google Scholar 

  56. Elshorbagy AK, Nurk E, Gjesdal CG et al (2008) Homocysteine, cysteine, and body composition in the Hordaland Homocysteine Study: does cysteine link amino acid and lipid metabolism? Am J Clin Nutr 88:738–746

    PubMed  CAS  Google Scholar 

  57. Stipanuk MH (2004) Role of the liver in regulation of body cysteine and taurine levels: a brief review. Neurochem Res 29:105–110

    PubMed  CAS  Google Scholar 

  58. Ubuka T, Okada A, Nakamura H (2008) Production of hypotaurine from L-cysteinesulfinate by rat liver mitochondria. Amino Acids 35:53–58

    PubMed  CAS  Google Scholar 

  59. Nishimura T, Sai Y, Fujii J et al (2010) Roles of TauT and system A in cytoprotection of rat syncytiotrophoblast cell line exposed to hypertonic stress. Placenta 31:1003–10009

    PubMed  CAS  Google Scholar 

  60. Whiteman M, Armstrong JS, Chu SH et al (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite scavenger? J Neurochem 90:765–768

    PubMed  CAS  Google Scholar 

  61. Ali MY, Ping CY, Mok YY et al (2006) Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br J Pharmacol 149:625–634

    PubMed  CAS  Google Scholar 

  62. Li L, Moore PK (2007) An overview of the biological significance of endogenous gases: new roles for old molecules. Biochem Soc Trans 35:1138–1141

    PubMed  CAS  Google Scholar 

  63. Elrod JW, Calvert JW, Morrison J et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A. 104:15560–15565

    PubMed  CAS  Google Scholar 

  64. Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev 6:917–935

    CAS  Google Scholar 

  65. Zhao W, Ndisang JF, Wang R (2003) Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol 81:848–853

    PubMed  CAS  Google Scholar 

  66. Patel P, Vatish M, Heptinstall J et al (2009) The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod Biol Endocrinol 7:10

    PubMed  Google Scholar 

  67. Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935

    PubMed  Google Scholar 

  68. Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids. 2010 Feb 27 [Epub ahead of print]

    Google Scholar 

  69. Kimura Y, Goto Y, Kimura H (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12:1–13

    PubMed  CAS  Google Scholar 

  70. Tyagi N, Moshal KS, Sen U et al (2009) H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid Redox Signal 11:25–33

    PubMed  CAS  Google Scholar 

  71. Yin WL, He JQ, Hu B et al (2009) Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85:269–275

    PubMed  CAS  Google Scholar 

  72. Mishra PK, Tyagi N, Sen U et al (2010) H2S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. Am J Physiol Heart Circ Physiol 298:H451–H456

    PubMed  CAS  Google Scholar 

  73. Young AJ, Phillip D, Lowe GL. In: Krinsky NI, Mayne ST, Sies H, eds. (2004) Carotenoid antioxidant activity. Carotenoids in Health and Disease. Marcel Dekker Inc, New York, 105–126 (Chap. 5)

    Google Scholar 

  74. Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27

    PubMed  CAS  Google Scholar 

  75. Bramley PM, Elmadfa I, Kafatos A et al (2000) Vitamin E. J Sci Food Agric 80:913–938

    CAS  Google Scholar 

  76. Johnson LJ, Meacham SL, Kruskall LJ (2003) The antioxidants—vitamin C, vitamin E, selenium, and carotenoids. J Agromedicine. 9:65–82

    PubMed  Google Scholar 

  77. Debier C, Larondelle Y (2005) Vitamins A and E: metabolism, roles and transfer to offspring. Br J Nutr 93:153–174

    PubMed  CAS  Google Scholar 

  78. Seifried HE, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579

    PubMed  CAS  Google Scholar 

  79. Stahl W, Nicolai S, Briviba K et al (1997) Biological activities of natural and synthetic carotenoids: induction of gap junctional communication and singlet oxygen quenching. Carcinogenesis 18:89–92

    PubMed  CAS  Google Scholar 

  80. Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1:441–445

    PubMed  CAS  Google Scholar 

  81. Herrera E, Barbas C (2001) Vitamin E: action, metabolism and perspectives. J Physiol Biochem 57:43–56

    CAS  Google Scholar 

  82. Tappel A, Zalkin H (1960) Inhibition of lipid peroxidation in microsomes by vitamin E. Nature 185:35

    PubMed  CAS  Google Scholar 

  83. Valk EE, Hornstra G (2000) Relationship between vitamin E requirement and polyunsaturated fatty acid intake in man: a review. Int J Vitam Nutr Res 70:31–42

    PubMed  CAS  Google Scholar 

  84. Gavazza MB, Catalá A (2006) The effect of alpha-tocopherol on lipid peroxidation of microsomes and mitochondria from rat testis. Prostaglandins Leukot Essent Fatty Acids 74:247–254

    PubMed  CAS  Google Scholar 

  85. Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43:4–15

    PubMed  CAS  Google Scholar 

  86. Mertz W (1981) The essential trace elements. Science 213:1332–1338

    PubMed  CAS  Google Scholar 

  87. Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutr 81(1 Suppl):215S–217S

    PubMed  CAS  Google Scholar 

  88. Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452

    PubMed  CAS  Google Scholar 

  89. Wilding M, Dale B, Marino M et al (2011) Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod 16:909–917

    Google Scholar 

  90. Smith LC, Thundathil J, Filion F (2005) Role of mitochondrial genome in preimplantation development and assisted reproductive techniques. Reprod Fert Develop 17:15–22

    CAS  Google Scholar 

  91. Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K (2009) Mitochondrial function and redox state in mammalian embryos. Semin Cell Dev Biol 20:346–353

    PubMed  CAS  Google Scholar 

  92. Dennery PA (2007) Effects of oxidative stress on embryonic development. Birth Defects Res Part C Embryo Today 81:155–162

    CAS  Google Scholar 

  93. Dumollard R, Duchen M, Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21–49

    PubMed  CAS  Google Scholar 

  94. Bartmann AK, Romão GS (2004) Ramos Eda S, Ferriani RA. Why do older women have poor implantation rates? A possible role of the mitochondria. J Assist Reprod Genet 21:79–83

    PubMed  Google Scholar 

  95. Pierce GB, Parchment RE, Lewellyn AL (1991) Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation. 46:181–186

    PubMed  CAS  Google Scholar 

  96. Nasr-Esfahani MH, Aitken JR, Johnson MH (1990) Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 109:501–507

    PubMed  CAS  Google Scholar 

  97. Gagioti S, Colepicolo P, Bevilacqua E (1995) Post-implantation mouse embryos have the capability to generate and release reactive oxygen species. Reprod Fertil Dev 7:1111–1116

    PubMed  CAS  Google Scholar 

  98. Thomas M, Jain S, Kumar GP, Laloraya MA (1997) Programmed oxyradical burst causes hatching of mouse blastocysts. J Cell Sci 110:1597–1602

    PubMed  CAS  Google Scholar 

  99. Laloraya M, Kumar GP, Laloraya MM (1991) Changes in the superoxide radical and superoxide dismutase levels in the uterus of Rattus norvegicus during the estrous cycle and a possible role for superoxide radical in uterine oedema and cell proliferation at proestrus. Biochem Cell Biol 69:313–316

    PubMed  CAS  Google Scholar 

  100. Laloraya M, Kumar GP, Laloraya MM (1989) A possible role of superoxide anion radical in the process of blastocyst implantation in Mus musculus. Biochem Biophys Res Commun 161:762–770

    PubMed  CAS  Google Scholar 

  101. Jain S, Saxena D, Kumar GP, Laloraya M (2000) NADPH dependent superoxide generation in the ovary and uterus of mice during estrous cycle and early pregnancy. Life Sci 66:1139–1146

    PubMed  CAS  Google Scholar 

  102. Harvey MB, Arcellana-Panlilio MY, Zhang X, Schultz GA, Watson AJ (1995) Expression of genes encoding antioxidant enzymes in preimplantation mouse and cow embryos and primary bovine oviduct cultures employed for embryo coculture. Biol Reprod 53:532–540

    PubMed  CAS  Google Scholar 

  103. El Mouatassim S, Guérin P, Ménézo Y (1999) Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod 5:720–725

    PubMed  CAS  Google Scholar 

  104. Guérin P, El Mouatassim S, Ménézo Y (2001) Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod 7:175–189

    Google Scholar 

  105. Orsi NM, Leese HJ (2001) Protection against reactive oxygen species during mouse pre-implantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol Reprod Dev 59:44–53

    PubMed  CAS  Google Scholar 

  106. Blomberg LA, Long EL, Sonstegard TS et al (2005) Serial analysis of gene expression during elongation of the peri-implantation porcine trophectoderm (conceptus). Physiol Genomics 20:188–194

    PubMed  CAS  Google Scholar 

  107. Al-Gubory KH, Bolifraud P, Garrel C (2008) Regulation of key antioxidant enzymatic systems in the sheep endometrium by ovarian steroids. Endocrinology 149:4428–4434

    PubMed  CAS  Google Scholar 

  108. Takehara Y, Yoshioka T, Sasaki J (1990) Changes in the levels of lipoperoxide and antioxidant factors in human placenta during gestation. Acta Med Okayama 44:103–111

    PubMed  CAS  Google Scholar 

  109. Qanungo S, Sen A, Mukherjea M (1999) Antioxidant status and lipid peroxidation in human feto-placental unit. Clin Chim Acta 285:1–12

    PubMed  CAS  Google Scholar 

  110. Qanungo S, Mukherjea M (2000) Ontogenic profile of some antioxidants and lipid peroxidation in human placental and fetal tissues. Mol Cell Biochem 215:11–19

    PubMed  CAS  Google Scholar 

  111. Garrel C, Fowler PA, Al-Gubory KH (2010) Developmental changes in antioxidant enzymatic defences against oxidative stress in sheep placentomes. J Endocrinol 205:107–116

    Google Scholar 

  112. Al-Gubory KH, Garrel C, Delatouche L et al (2010) Antioxidant adaptive responses of extraembryonic tissues from cloned and non-cloned bovine conceptuses to oxidative stress during early pregnancy. Reproduction 140:175–181

    PubMed  CAS  Google Scholar 

  113. Fall CH, Yajnik CS, Rao S et al (2003) Micronutrients and fetal growth. J Nutr 133(Suppl 2):1747S–1756S

    PubMed  CAS  Google Scholar 

  114. Ashworth CJ, Antipatis C (2001) Micronutrient programming of development throughout pregnancy. Reproduction 122:527–535

    PubMed  CAS  Google Scholar 

  115. Moore VM, Davies MJ (2005) Diet during pregnancy, neonatal outcomes and later health. Reprod Fertil Dev 17:341–348

    PubMed  Google Scholar 

  116. Osorio JC, Cruz E, Milanés M et al (2011) Influence of maternal redox status on birth weight. Reprod Toxicol 31:35–40

    PubMed  CAS  Google Scholar 

  117. Keen CL, Hanna LA, Lanoue L et al (2003) Developmental consequences of trace mineral deficiencies in rodents: acute and long-term effects. J Nutr 133:1477S–1480S

    PubMed  CAS  Google Scholar 

  118. Gamsbling L, McArdle HJ (2004) Iron, copper and fetal development. Proc Nutr Soc 63:553–562

    Google Scholar 

  119. Uriu-Adams JY, Keen CL (2010) Zinc and reproduction: effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res B Dev Reprod Toxicol 89:313–325

    PubMed  CAS  Google Scholar 

  120. Kharb S (2000) Vitamin E and C in preeclampsia. Eur J Obstet Gynecol Reprod Biol 93:37–39

    PubMed  CAS  Google Scholar 

  121. Lee BE, Hong YC, Lee KH et al (2004) Influence of maternal serum levels of vitamins C and E during the second trimester on birth weight and length. Eur J Clin Nutr 58:1365–1371

    PubMed  CAS  Google Scholar 

  122. Atamer Y, Koçyigit Y, Yokus B et al (2005) Lipid peroxidation, antioxidant defense, status of trace metals and leptin levels in preeclampsia. Eur J Obstet Gynecol Reprod Biol 119:60–66

    PubMed  CAS  Google Scholar 

  123. Ahn YM, Kim YJ, Park H et al (2007) Prenatal vitamin C status is associated with placental apoptosis in normal-term human pregnancies. Placenta 28:31–38

    PubMed  CAS  Google Scholar 

  124. Jansson T, Powell TL (2007) Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clinica Science 113:1–13

    CAS  Google Scholar 

  125. Hawk SN, Lanoue L, Keen CL et al (2003) Copper-deficient rat embryos are characterized by low superoxide dismutase activity and elevated superoxide anions. Biol Reprod 68:896–903

    PubMed  CAS  Google Scholar 

  126. Keen CL, Clegg MS, Hanna LA et al (2003) The plausibility of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications. J Nutr 133:1597S–1605S

    PubMed  CAS  Google Scholar 

  127. Gow AJ, Farkouh CR, Munson DA et al (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 287:L262–L268

    PubMed  CAS  Google Scholar 

  128. Bagi Z, Toth E, Koller A, Kaley G (2004) Microvascular dysfunction after transient high glucose is caused by superoxide-dependent reduction in the bioavailability of NO and BH(4). Am J Physiol Heart Circ Physiol 287:H626–H633

    PubMed  CAS  Google Scholar 

  129. Tiboni GM, Giampietro F, Di Giulio C (2003) The nitric oxide synthesis inhibitor N{omega}-nitro-l-arginine methyl ester (l-NAME) causes limb defects in mouse fetuses: protective effect of acute hyperoxia. Pediatr Res 54:69–76

    PubMed  CAS  Google Scholar 

  130. Pathak P, Kapil U (2004) Role of trace elements zinc, copper and magnesium during pregnancy and its outcome. Indian J Pediatr 71:1003–1005

    PubMed  Google Scholar 

  131. Gupta P, Narang M, Banerjee BD, Basu S (2004) Oxidative stress in term small for gestational age neonates born to undernourished mothers: a case control study. BMC Pediatr 4:14–23

    PubMed  Google Scholar 

  132. Jenkins C, Wilson R, Roberts J et al (2000) Antioxidants: their role in pregnancy and miscarriage. Antioxidant Redox Signal 2:623–628

    CAS  Google Scholar 

  133. Cederberg J, Simán CM, Eriksson UJ (2001) Combined treatment with vitamin E and vitamin C decreases oxidative stress and improves fetal outcome in experimental diabetic pregnancy. Pediatr Res 49:755–762

    Google Scholar 

  134. Cederberg J, Eriksson UJ (2005) Antioxidative treatment of pregnant diabetic rats diminishes embryonic dysmorphogenesis. Birth Defects Res A Clin Mol Teratol 73:498–505

    PubMed  CAS  Google Scholar 

  135. Jishage K, Arita M, Igarashi K et al (2001) α-Tocopherol transfer protein is important for the normal development of placental labyrinth trophoblasts in mice. J Biol Chem 276:1669–1672

    PubMed  CAS  Google Scholar 

  136. Brigelius-Flohé R, Kelly FJ, Salonen JT et al (2002) The European perspective on vitamin E: current knowledge and future research. Am J Clin Nutr 76:703–716

    PubMed  Google Scholar 

  137. Tarin JJ, Perez-Albala S, Pertusa JF, Cano A (2002) Oral administration of pharmacological doses of vitamins C and E reduces reproductive fitness and impairs the ovarian and uterine functions of female mice. Theriogenology 57:1539–1550

    PubMed  CAS  Google Scholar 

  138. Rumbold A, Crowther CA (2005) Vitamin C supplementation in pregnancy Cochrane database Syst Rev Issue 1. Art. No.: CD004072. doi: 10.1002/14651858.CD004072.pub2

  139. Rumbold A, Crowther CA (2005) Vitamin E supplementation in pregnancy. Cochrane Database Syst Rev Issue 2. Art. No.: CD004069. doi: 10.1002/14651858.CD004069.pub2

  140. Cetin I, Berti C, Calabrese S (2010) Role of micronutrients in the periconceptional period. Hum Reprod Update 16:80–95

    PubMed  CAS  Google Scholar 

  141. Boskovic R, Gargaun L, Oren D et al (2005) Pregnancy outcome following high Vitamin E supplementation. Reprod Toxicol 20:85–88

    PubMed  CAS  Google Scholar 

  142. Beazley D, Ahokas R, Livingston J et al (2005) Vitamin C and E supplementation in women at high risk for preeclampsia: a double-blind, placebo-controlled trial. Am J Obstet Gynaecol 192:520–521

    CAS  Google Scholar 

  143. Debier C (2007) Vitamin E during pre- and postnatal periods. Vitm Horm 76:357–373

    CAS  Google Scholar 

  144. Uusitalo L, Kenward MG, Virtanen SM et al (2008) Intake of antioxidant vitamins and trace elements during pregnancy and risk of advanced beta cell autoimmunity in the child. Am J Clin Nutr 88:458–464

    PubMed  CAS  Google Scholar 

  145. Astley SB, Lindsay DG (2002) European Research on the Functional Effects of Dietary Antioxidants (EUROFEDA). Conclusions Mol Aspects Med 23:287–291

    Google Scholar 

  146. Visioli F (2000) Antioxidants in Mediterranean diets. World Rev Nutr Diet 87:43–55

    PubMed  CAS  Google Scholar 

  147. Sköldstam L, Hagfors L, Johansson G (2003) An experimental study of a Mediterranean diet intervention for patients with rheumatoid arthritis. Ann Rheum Dis 62:208–214

    PubMed  Google Scholar 

  148. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348:2599–2608

    PubMed  Google Scholar 

  149. Mitrou PN, Kipnis V, Thiebaut AC et al (2007) Mediterranean dietary pattern and prediction of all-cause mortality in a US population: results from the NIH-AARP Diet and Health Study. Arch Intern Med 167:2461–2468

    PubMed  Google Scholar 

  150. Stachowska E, Wesołowska T, Olszewska M et al (2005) Elements of Mediterranean diet improve oxidative status in blood of kidney graft recipients. Br J Nutr 93:345–352

    PubMed  CAS  Google Scholar 

  151. Fitó M, Guxens M, Corella D et al (2007) Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med 167:1195–1203

    PubMed  Google Scholar 

  152. Dai J, Jones DP, Goldberg J et al (2008) Association between adherence to the Mediterranean diet and oxidative stress. Am J Clin Nutr 88:1364–1370

    PubMed  CAS  Google Scholar 

  153. Sofi F, Abbate R, Gensini G et al (2008) Adherence to Mediterranean diet and health status: meta-analysis. BMJ 337–344

    Google Scholar 

  154. Martinez-Gonzalez MA, Bes-Rastrollo M, Serra-Majem L et al (2009) Mediterranean food pattern and the primary prevention of chronic disease: recent developments. Nutr Rev 67(Suppl 1):S111–S116

    PubMed  Google Scholar 

  155. Vujkovic M, de Vries JH, Lindemans J et al (2010) The preconception Mediterranean dietary pattern in couples undergoing in vitro fertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy. Fertil Steril 94:2096–2101

    PubMed  Google Scholar 

  156. Barger MK (2010) Maternal nutrition and perinatal outcomes. J Midwifery Womens Health 55:502–511

    PubMed  Google Scholar 

  157. Bateson P, Barker D, Clutton-Brock T et al (2004) Developmental plasticity and human health. Nature 430:419–421

    PubMed  CAS  Google Scholar 

  158. Miller KP, Borgeest C, Greenfeld C et al (2004) In utero effects of chemicals on reproductive tissues in females. Toxicol Appl Pharmacol 198:111–131

    PubMed  CAS  Google Scholar 

  159. Sanderson JT (2006) The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci 94:3–21

    PubMed  CAS  Google Scholar 

  160. Buczyńska A, Tarkowski S (2005) Environmental exposure and birth outcomes. Int J Occup Med Environ Health 18:225–232

    PubMed  Google Scholar 

  161. Nicol CJ, Zielenski J, Tsui LC, Wells PG (2000) An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. FASEB J 14:111–127

    PubMed  CAS  Google Scholar 

  162. Fowler PA, Dorà NJ, McFerran H et al (2008) In utero exposure to low doses of environmental pollutants disrupts fetal ovarian development in sheep. Mol Hum Reprod 14:269–280

    PubMed  CAS  Google Scholar 

  163. Wells PG, Bhuller Y, Chen CS et al (2005) Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol Appl Pharmacol 207(2 Suppl):354–366

    PubMed  Google Scholar 

  164. Wan J, Winn LM (2006) In utero-initiated cancer: the role of reactive oxygen species. Birth Defects Res C Embryo Today. 78:326–332

    PubMed  CAS  Google Scholar 

  165. Davis JM, Auten RL (2010) Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med 15:191–195

    PubMed  Google Scholar 

  166. Takahashi O, Oishi S (2000) Disposition of orally administered 2,2-Bis(4-hydroxyphenyl) propane (Bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect 108:931–935

    PubMed  CAS  Google Scholar 

  167. Shin BS, Yoo SD, Cho CY et al (2002) Maternal-fetal disposition of bisphenol a in pregnant Sprague-Dawley rats. J Toxicol Environ Health A 65:395–406

    PubMed  CAS  Google Scholar 

  168. Zalko D, Soto AM, Dolo L et al (2003) Biotransformations of bisphenol A in a mammalian model: answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environ Health Perspect 111:309–319

    PubMed  CAS  Google Scholar 

  169. Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol 254–255:179–186

    PubMed  Google Scholar 

  170. Vandenberg LN, Hauser R, Marcus M et al (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24:139–177

    PubMed  CAS  Google Scholar 

  171. Le HH, Carlson EM, Chua JP, Belcher SM (2008) Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett 176:149–156

    PubMed  CAS  Google Scholar 

  172. Kabuto H, Hasuike S, Minagawa N, Shishibori T (2003) Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ Res 93:31–35

    PubMed  CAS  Google Scholar 

  173. Kabuto H, Amakawa M, Shishibori T (2004) Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice. Life Sci 74:2931–2940

    PubMed  CAS  Google Scholar 

  174. Rubin BS, Murray MK, Damassa DA et al (2001) Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect 109:675–680

    PubMed  CAS  Google Scholar 

  175. Markey CM, Wadia PR, Rubin BS et al (2005) Long-term effects of fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mouse genital tract. Biol Reprod 72:1344–1351

    PubMed  CAS  Google Scholar 

  176. Savabieasfahani M, Kannan K, Astapova O et al (2006) Developmental programming: differential effects of prenatal exposure to bisphenol-A or methoxychlor on reproductive function. Endocrinology 147:5956–5966

    PubMed  CAS  Google Scholar 

  177. Berger RG, Foster WG, de Catanzaro D (2010) Bisphenol-A exposure during the period of blastocyst implantation alters uterine morphology and perturbs measures of estrogen and progesterone receptor expression in mice. Reprod Toxicol 30:393–400

    PubMed  CAS  Google Scholar 

  178. Huang H, Leung LK (2009) Bisphenol A downregulates CYP19 transcription in JEG-3 cells. Toxicol Lett 189:248–252

    PubMed  CAS  Google Scholar 

  179. Csapo AI, Pulkkinen MO, Ruttner B, Sauvage JP, Wiest WG (1972) The significance of the human corpus luteum in pregnancy maintenance. I. Preliminary studies. Am J Obstet Gynecol 112:1061–1067

    PubMed  CAS  Google Scholar 

  180. Al-Gubory KH, Solari A, Mirman B (1999) Effects of luteectomy on the maintenance of pregnancy, circulating progesterone concentrations and lambing performance in sheep. Reprod Fertil Dev 11:317–322

    PubMed  CAS  Google Scholar 

  181. Behrman HR, Aten RF (1991) Evidence that hydrogen peroxide blocks hormone-sensitive cholesterol transport into mitochondria of rat luteal cells. Endocrinology 128:2958–2966

    PubMed  CAS  Google Scholar 

  182. Thompson J, Bannigan J (2008) Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol 25:304–315

    PubMed  CAS  Google Scholar 

  183. Dreiem A, Gertz CC, Seegal RF (2005) The effects of methylmercury on mitochondrial function and reactive oxygen species formation in rat striatal synaptosomes are age-dependent. Toxicol Sci 87:156–162

    Google Scholar 

  184. Uzbekov MG, Bubnova NI, Kulikova GV (2007) Effect of prenatal lead exposure on superoxide dismutase activity in the brain and liver of rat fetuses. Bull Exp Biol Med 144:783–785

    PubMed  CAS  Google Scholar 

  185. Chater S, Douki T, Favier A, Garrel C et al (2008) Influence of static magnetic field on cadmium toxicity: study of oxidative stress and DNA damage in pregnant rat tissues. Electromagn Biol Med 27:393–401

    PubMed  CAS  Google Scholar 

  186. Chater S, Douki T, Garrel C et al (2008) Cadmium-induced oxidative stress and DNA damage in kidney of pregnant female rats. C R Biol 331:426–432

    PubMed  CAS  Google Scholar 

  187. Stringari J, Nunes AK, Franco JL et al (2008) Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 227:147–154

    PubMed  CAS  Google Scholar 

  188. Herrera E (2002) Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development—a review. Placenta 23(Suppl A):S9–S19

    Google Scholar 

  189. Alessandri JM, Guesnet P, Vancassel S et al (2004) Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev 44:509–538

    PubMed  CAS  Google Scholar 

  190. Mccann JC, Ames BN (2005) Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr 82:281–295

    PubMed  CAS  Google Scholar 

  191. Innis SM (2007) Dietary (n3) fatty acids and brain development. J Nutr 137:855–859

    PubMed  CAS  Google Scholar 

  192. Wathes DC, Abayasekara DR, Aitken RJ (2007) Polyunsaturated fatty acids in male and female reproduction. Biol Reprod 77:190–201

    PubMed  CAS  Google Scholar 

  193. Coyne GS, Kenny DA, Childs S, Sreenan JM, Waters SM (2008) Dietary n-3 polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus. Theriogenology 70:772–782

    PubMed  CAS  Google Scholar 

  194. Al-Ardhi FM, Al-Ani MR (2008) Maternal fish consumption and prenatal methylmercury exposure: a review. Nutr Health 19:289–297

    PubMed  CAS  Google Scholar 

  195. Davidson PW, Strain JJ, Myers GJ et al (2008) Neurodevelopmental effects of maternal nutritional status and exposure to methylmercury from eating fish during pregnancy. Neurotoxicology 29:767–775

    PubMed  CAS  Google Scholar 

  196. Sharp DS, Eskenazi B (1986) Delayed health hazards of pesticide exposure. Ann Rev Public Health. 7:441–471

    CAS  Google Scholar 

  197. Bengtsson S, Berglöf T, Kylin H (2007) Near infrared reflectance spectroscopy as a tool to predict pesticide sorption in soil. Bull Environ Contam Toxicol 78:295–298

    PubMed  CAS  Google Scholar 

  198. Anderson B, Phillips B, Hunt J et al (2011) Pesticide and toxicity reduction using an integrated vegetated treatment system. Environ Toxicol Chem. doi:10.1002/etc.471

    Google Scholar 

  199. Keikotlhaile BM, Spanoghe P, Steurbaut W (2010) Effects of food processing on pesticide residues in fruits and vegetables: a meta-analysis approach. Food Chem Toxicol 48:1–6

    PubMed  CAS  Google Scholar 

  200. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    PubMed  CAS  Google Scholar 

  201. Slaninova A, Smutna M, Modra H, Svobodova Z (2009) A review: oxidative stress in fish induced by pesticides. Neuro Endocrinol Lett. 30:2–12

    PubMed  CAS  Google Scholar 

  202. Koner BC, Banerjee BD, Ray A (1998) Organochlorine pesticide-induced oxidative stress and immune suppression in rats. Indian J Exp Biol 36:395–398

    PubMed  CAS  Google Scholar 

  203. Sahoo A, Samanta L, Chainy GB (2000) Mediation of oxidative stress in HCH-induced neurotoxicity in rat. Arch Environ Contam Toxicol 39:7–12

    PubMed  CAS  Google Scholar 

  204. Ranjbar A, Pasalar P, Abdollahi M (2002) Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Hum Exp Toxicol 21:179–182

    PubMed  CAS  Google Scholar 

  205. Shadnia S, Azizi E, Hosseini R et al (2005) Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Hum Exp Toxicol 24:439–445

    PubMed  CAS  Google Scholar 

  206. Rastogi SK, Satyanarayan PV, Ravishankar D, Tripathi S (2009) A study on oxidative stress and antioxidant status of agricultural workers exposed to organophosphorus insecticides during spraying. Indian J Occup Environ Med. 13:131–134

    PubMed  CAS  Google Scholar 

  207. Falcon M, Olive J, Osuna E et al (2004) HCH and DDT residues in human placentas in Murcia (Spain). Toxicology 195:203–208

    PubMed  CAS  Google Scholar 

  208. Pathak R, Suke SG, Ahmed RS et al (2008) Endosulfan and other organochlorine pesticide residues in maternal and cord blood in North Indian population. Bull Environ Contam Toxicol 81:216–219

    PubMed  CAS  Google Scholar 

  209. Pathak R, Suke SG, Ahmed T et al (2010) Organochlorine pesticide residue levels and oxidative stress in preterm delivery cases. Hum Exp Toxicol 29:351–358

    PubMed  CAS  Google Scholar 

  210. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    PubMed  CAS  Google Scholar 

  211. Hathout Y (2007) Approaches to the study of the cell secretome. Expert Rev Proteomics 4:239–248

    PubMed  CAS  Google Scholar 

  212. Shankar R, Gude N, Cullinane F et al (2005) An emerging role for comprehensive proteome analysis in human pregnancy research. Reproduction 129:685–696

    PubMed  CAS  Google Scholar 

  213. Buhimschi IA, Buhimschi CS (2008) Proteomics of the amniotic fluid in assessment of the placenta. Relevance for preterm birth. Placenta 29 (Suppl A):S95–S101

    Google Scholar 

  214. Di Quinzio MK, Georgiou HM, Holdsworth-Carson SJ et al (2008) Proteomic analysis of human cervico-vaginal fluid displays differential protein expression in association with labor onset at term. J Proteome Res 7:1916–1921

    PubMed  Google Scholar 

  215. Ferrero S, Gillott DJ, Remorgida V et al (2007) Proteomic analysis of peritoneal fluid in women with endometriosis. J Proteome Res 6:3402–3411

    PubMed  CAS  Google Scholar 

  216. Fowler PA, Tattum J, Bhattacharya S et al (2007) An investigation of the effects of endometriosis on the proteome of human eutopic endometrium: a heterogeneous tissue with a complex disease. Proteomics 7:130–142

    PubMed  CAS  Google Scholar 

  217. Buhimschi IA, Zhao G, Funai EF, et al. (2008) Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as biomarkers of preeclampsia. Am J Obstet Gynecol 199:551.e1–551.e16

    Google Scholar 

  218. Romero R, Espinoza J, Rogers WT et al (2008) Proteomic analysis of amniotic fluid to identify women with preterm labor and intra-amniotic inflammation/infection: the use of a novel computational method to analyze mass spectrometric profiling. J Matern Fetal Neonatal Med 21:367–388

    PubMed  CAS  Google Scholar 

  219. Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB (2009) The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod 15:271–277

    PubMed  CAS  Google Scholar 

  220. Hoang VM, Foulk R, Clauser K, Burlingame A, Gibson BW, Fisher SJ (2001) Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry 40:4077–4086

    PubMed  CAS  Google Scholar 

  221. Zhang Y, Zhang YL, Feng C et al (2008) Comparative proteomic analysis of human placenta derived from assisted reproductive technology. Proteomics 8:4344–4356

    PubMed  CAS  Google Scholar 

  222. Domínguez F, Garrido-Gómez T, López JA et al (2009) Proteomic analysis of the human receptive versus non-receptive endometrium using differential in-gel electrophoresis and MALDI-MS unveils stathmin 1 and annexin A2 as differentially regulated. Hum Reprod 24:2607–2617

    PubMed  Google Scholar 

  223. Arianmanesh M, McIntosh R, Lea RG, Fowler PA, Al-Gubory KH (2011) Ovine corpus luteum proteins, with functions including oxidative stress and lipid metabolism, show complex alterations during implantation. J Endocrinol (2011 in press)

    Google Scholar 

  224. Wang J, Li D, Dangott LJ, Wu G (2006) Proteomics and its role in nutrition research. J Nutr 136:1759–1762

    PubMed  CAS  Google Scholar 

  225. Franco Mdo C, Ponzio BF, Gomes GN et al (2009) Micronutrient prenatal supplementation prevents the development of hypertension and vascular endothelial damage induced by intrauterine malnutrition. Life Sci 85:327–333

    Google Scholar 

  226. Hennig B, Ettinger AS, Jandacek RJ et al (2007) Using nutrition for intervention and prevention against environmental chemical toxicity and associated diseases. Environ Health Perspect 115:493–495

    PubMed  CAS  Google Scholar 

  227. Wolfe KL, Kang X, He X et al (2008) Cellular antioxidant activity of common fruits. J Agric Food Chem 56:8418–8426

    PubMed  CAS  Google Scholar 

  228. Song W, Derito CM, Liu MK et al (2010) Cellular antioxidant activity of common vegetables. J Agric Food Chem 58:6621–6629

    PubMed  CAS  Google Scholar 

  229. Limón-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674:137–147

    PubMed  Google Scholar 

  230. Dalle-Donne I, Scaloni A, Giustarini D et al (2005) Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 24:55–99

    PubMed  CAS  Google Scholar 

  231. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    PubMed  CAS  Google Scholar 

  232. Tsukahara H (2007) Biomarkers for oxidative stress: clinical application in pediatric medicine. Curr Med Chem 14:339–351

    PubMed  CAS  Google Scholar 

  233. Celi P (2010) Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol Immunotoxicol. 2010 Sep 18 [Epub ahead of print]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaïs Hussain Al-Gubory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Al-Gubory, K.H. (2013). Maternal Nutrition, Oxidative Stress and Prenatal Devlopmental Outcomes. In: Agarwal, A., Aziz, N., Rizk, B. (eds) Studies on Women's Health. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-041-0_1

Download citation

Publish with us

Policies and ethics