Skip to main content

Many Pathways to Destruction: The Role of the Centrosome in, and Its Control by Regulated Proteolysis

  • Chapter
  • First Online:
The Centrosome

Abstract

Centrosome duplication must be precisely regulated to ensure the production of a bipolar mitotic spindle. As with other cell cycle events, irreversible protein destruction is critical for the fidelity of centrosome duplication, and the failure to properly destroy any of several critical centrosome regulators leads to the production of excess centrosomes that interfere with bipolar spindle assembly. Many pathways that regulate the degradation of these critical regulators are found at centrosomes, and in some cases the destruction occurs at the centrosome. This chapter discusses the various degradation machineries found at centrosomes, and some of the many aspects of centrosome biology that are controlled by protein degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams IR, Kilmartin JV (2000) Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol 10:329–335

    PubMed  CAS  Google Scholar 

  • Amsterdam A, Pitzer F, Baumeister W (1993) Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis associated with a role in cell cycle control. Proc Natl Acad Sci U S A 90:99–103

    PubMed  CAS  Google Scholar 

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574

    PubMed  CAS  Google Scholar 

  • Anton LC, Schubert U, Bacik I, Princiotta MF, Wearsch PA, Gibbs J, Day PM, Realini C, Rechsteiner MC, Bennink JR, Yewdell JW (1999) Intracellular localization of proteasomal degradation of a viral antigen. J Cell Biol 146:113–124

    PubMed  CAS  Google Scholar 

  • Arrigo AP, Tanaka K, Goldberg AL, Welch WJ (1988) Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 331:192–194

    PubMed  CAS  Google Scholar 

  • Azimzadeh J, Marshall WF (2010) Building the centriole. Curr Biol 20:R816–825

    PubMed  CAS  Google Scholar 

  • Azimzadeh J, Hergert P, Delouvee A, Euteneuer U, Formstecher E, Khodjakov A, Bornens M (2009) hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J Cell Biol 185:101–114

    PubMed  CAS  Google Scholar 

  • Baugh JM, Viktorova EG, Pilipenko EV (2009) Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J Mol Biol 386:814–827

    PubMed  CAS  Google Scholar 

  • Beauchene NA, Diaz-Martinez LA, Furniss K, Hsu WS, Tsai HJ, Chamberlain C, Esponda P, Gimenez-Abian JF, Clarke DJ (2010) Rad21 is required for centrosome integrity in human cells independently of its role in chromosome cohesion. Cell Cycle 9:1774–1780

    PubMed  CAS  Google Scholar 

  • Bembenek J, Yu H (2001) Regulation of the anaphase-promoting complex by the dual specificity phosphatase human Cdc14a. J Biol Chem 276:48237–48242

    PubMed  CAS  Google Scholar 

  • Biggins S, Ivanovska I, Rose MD (1996) Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. J Cell Biol 133:1331–1346

    PubMed  CAS  Google Scholar 

  • Brooks L 3rd, Heimsath EG Jr, Loring GL, Brenner C (2008) FHA-RING ubiquitin ligases in cell division cycle control. Cell Mol Life Sci 65:3458–3466

    PubMed  CAS  Google Scholar 

  • Brown CR, Doxsey SJ, White E, Welch WJ (1994) Both viral (adenovirus E1B) and cellular (hsp 70, p53) components interact with centrosomes. J Cell Physiol 160:47–60

    PubMed  CAS  Google Scholar 

  • Casenghi M, Meraldi P, Weinhart U, Duncan PI, Korner R, Nigg EA (2003) Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell 5:113–125

    PubMed  CAS  Google Scholar 

  • Castiel A, Danieli MM, David A, Moshkovitz S, Aplan PD, Kirsch IR, Brandeis M, Kramer A, Izraeli S (2011) The Stil protein regulates centrosome integrity and mitosis through suppression of Chfr. J Cell Sci 124:532–539

    PubMed  CAS  Google Scholar 

  • Chang P, Giddings TH Jr, Winey M, Stearns T (2003) Epsilon-tubulin is required for centriole duplication and microtubule organization. Nat Cell Biol 5:71–76

    PubMed  CAS  Google Scholar 

  • Chang P, Stearns T (2000) δ-Tubulin and ε-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nat Cell Biol 2:30–35

    PubMed  CAS  Google Scholar 

  • Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD (2002) CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 3:339–350

    PubMed  CAS  Google Scholar 

  • Chin CF, Yeong FM (2010) Safeguarding entry into mitosis: the antephase checkpoint. Mol Cell Biol 30:22–32

    PubMed  CAS  Google Scholar 

  • Cizmecioglu O, Arnold M, Bahtz R, Settele F, Ehret L, Haselmann-Weiss U, Antony C, Hoffmann I (2010) Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J Cell Biol 191:731–739

    PubMed  CAS  Google Scholar 

  • Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1:82–87

    PubMed  CAS  Google Scholar 

  • Corboy MJ, Thomas PJ, Wigley WC (2005) Aggresome formation. Methods Mol Biol 301:305–327

    PubMed  CAS  Google Scholar 

  • Cui Y, Cheng X, Zhang C, Zhang Y, Li S, Wang C, Guadagno TM (2010) Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases. J Biol Chem 285:32988–32998

    PubMed  CAS  Google Scholar 

  • Cunha-Ferreira I, Rodrigues-Martins A, Bento I, Riparbelli M, Zhang W, Laue E, Callaini G, Glover DM, Bettencourt-Dias M (2009) The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr Biol 19:43–49

    PubMed  CAS  Google Scholar 

  • Dammermann A, Muller-Reichert T, Pelletier L, Habermann B, Desai A, Oegema K (2004) Centriole assembly requires both centriolar and pericentriolar material proteins. Dev Cell 7:815–829

    PubMed  CAS  Google Scholar 

  • D’Angiolella V, Donato V, Vijayakumar S, Saraf A, Florens L, Washburn MP, Dynlacht B, Pagano M (2010) SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 466:138–142

    PubMed  Google Scholar 

  • Deak P, Donaldson M, Glover DM (2003) Mutations in makos, a Drosophila gene encoding the Cdc27 subunit of the anaphase promoting complex, enhance centrosomal defects in polo and are suppressed by mutations in twins/aar, which encodes a regulatory subunit of PP2A. J Cell Sci 116:4147–4158

    PubMed  CAS  Google Scholar 

  • Dealy MJ, Nguyen KV, Lo J, Gstaiger M, Krek W, Elson D, Arbeit J, Kipreos ET, Johnson RS (1999) Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nat Genet 23:245–248

    PubMed  CAS  Google Scholar 

  • Delattre M, Canard C, Gonczy P (2006) Sequential protein recruitment in C. elegans centriole formation. Curr Biol 16:1844–1849

    PubMed  CAS  Google Scholar 

  • Deng CX (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 34:1416–1426

    PubMed  CAS  Google Scholar 

  • Diaz-Martinez LA, Beauchene NA, Furniss K, Esponda P, Gimenez-Abian JF, Clarke DJ (2010) Cohesin is needed for bipolar mitosis in human cells. Cell Cycle 9:1764–1773

    PubMed  CAS  Google Scholar 

  • Didier C, Merdes A, Gairin JE, Jabrane-Ferrat N (2008) Inhibition of proteasome activity impairs centrosome-dependent microtubule nucleation and organization. Mol Biol Cell 19:1220–1229

    PubMed  CAS  Google Scholar 

  • Doxsey SJ (2001) Centrosomes as command centres for cellular control. Nat Cell Biol 3:E105–108

    PubMed  CAS  Google Scholar 

  • Dzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I, Riparbelli M, Rodrigues-Martins A, Bettencourt-Dias M, Callaini G, Glover DM (2010) Asterless is a scaffold for the onset of centriole assembly. Nature 467:714–718

    PubMed  CAS  Google Scholar 

  • Edgar BA, Sprenger F, Duronio RJ, Leopold P, O’Farrell PH (1994) Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev 8:440–452

    PubMed  CAS  Google Scholar 

  • Fabunmi RP, Wigley WC, Thomas PJ, DeMartino GN (2000) Activity and regulation of the centrosome-associated proteasome. J Biol Chem 275:409–413

    PubMed  CAS  Google Scholar 

  • Fisk HA (2011) The Mip-ing link: Mip1 links Mps1 to the actin cytoskeleton. Cell Cycle 10:1026–1027

    PubMed  CAS  Google Scholar 

  • Fisk HA, Winey M (2001) The mouse mps1p-like kinase regulates centrosome duplication. Cell 106:95–104

    PubMed  CAS  Google Scholar 

  • Fisk HA, Mattison CP, Winey M (2002) Centrosomes and tumour suppressors. Curr Opin Cell Biol 14:700–705

    PubMed  CAS  Google Scholar 

  • Fisk HA, Mattison CP, Winey M (2003) Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci U S A 100:14875–14880

    PubMed  CAS  Google Scholar 

  • Franck N, Montembault E, Rome P, Pascal A, Cremet JY, Giet R (2010) CDK11 is required for centriole duplication and Plk4 recruitment to mitotic centrosomes. PLoS ONE 6:e14600

    Google Scholar 

  • Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T, Jackson PK (1999) Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev 13:2242–2257

    PubMed  CAS  Google Scholar 

  • Fuentealba LC, Eivers E, Geissert D, Taelman V, De Robertis EM (2008) Asymmetric mitosis: unequal segregation of proteins destined for degradation. Proc Natl Acad Sci U S A 105:7732–7737

    PubMed  CAS  Google Scholar 

  • Gillingham AK, Munro S (2000) The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 1:524–529

    PubMed  CAS  Google Scholar 

  • Gimenez-Abian JF, Diaz-Martinez LA, Beauchene NA, Hsu WS, Tsai HJ, Clarke DJ (2010) Determinants of Rad21 localization at the centrosome in human cells. Cell Cycle 9:1759–1763

    PubMed  CAS  Google Scholar 

  • Golubkov VS, Boyd S, Savinov AY, Chekanov AV, Osterman AL, Remacle A, Rozanov DV, Doxsey SJ, Strongin AY (2005a) Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits an important intracellular cleavage function and causes chromosome instability. J Biol Chem 280:25079–25086

    CAS  Google Scholar 

  • Golubkov VS, Chekanov AV, Doxsey SJ, Strongin AY (2005b) Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice: potential implications for tumorigenesis. J Biol Chem 280:42237–42241

    CAS  Google Scholar 

  • Goto M, Eddy EM (2004) Speriolin is a novel spermatogenic cell-specific centrosomal protein associated with the seventh WD motif of Cdc20. J Biol Chem 279:42128–42138

    PubMed  CAS  Google Scholar 

  • Gstaiger M, Marti A, Krek W (1999) Association of human SCF(SKP2) subunit p19(SKP1) with interphase centrosomes and mitotic spindle poles. Exp Cell Res 247:554–562

    PubMed  CAS  Google Scholar 

  • Guderian G, Westendorf J, Uldschmid A, Nigg EA (2010) Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation. J Cell Sci 123:2163–2169

    PubMed  CAS  Google Scholar 

  • Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7:1140–1146

    PubMed  CAS  Google Scholar 

  • Hames RS, Wattam SL, Yamano H, Bacchieri R, Fry AM (2001) APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J 20:7117–7127

    PubMed  CAS  Google Scholar 

  • Hames RS, Crookes RE, Straatman KR, Merdes A, Hayes MJ, Faragher AJ, Fry AM (2005) Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation. Mol Biol Cell 16:1711–1724

    PubMed  CAS  Google Scholar 

  • Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T (2010) Cep152 interacts with Plk4 and is required for centriole duplication. J Cell Biol 191:721–729

    PubMed  CAS  Google Scholar 

  • Hinchcliffe EH, Sluder G (2002) Two for two: Cdk2 and its role in centrosome doubling. Oncogene 21:6154–6160

    PubMed  CAS  Google Scholar 

  • Hsu LC, White RL (1998) BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci U S A 95:12983–12988

    PubMed  CAS  Google Scholar 

  • Hsu LC, Doan TP, White RL (2001) Identification of a gamma-tubulin-binding domain in BRCA1. Cancer Res 61:7713–7718

    PubMed  CAS  Google Scholar 

  • Huang J, Raff JW (1999) The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J 18:2184–2195

    PubMed  CAS  Google Scholar 

  • Jariel-Encontre I, Bossis G, Piechaczyk M (2008) Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta 1786:153–177

    PubMed  CAS  Google Scholar 

  • Jin S, Gao H, Mazzacurati L, Wang Y, Fan W, Chen Q, Yu W, Wang M, Zhu X, Zhang C, Zhan Q (2009) BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression. J Biol Chem 284:22970–22977

    PubMed  CAS  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    PubMed  CAS  Google Scholar 

  • Johnston JA, Illing ME, Kopito RR (2002) Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil Cytoskeleton 53:26–38

    PubMed  CAS  Google Scholar 

  • Kallio MJ, Beardmore VA, Weinstein J, Gorbsky GJ (2002) Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells. J Cell Biol 158:841–847

    PubMed  CAS  Google Scholar 

  • Kanai M, Ma Z, Izumi H, Kim SH, Mattison CP, Winey M, Fukasawa K (2007) Physical and functional interaction between mortalin and Mps1 kinase. Genes Cells 12:797–810

    PubMed  CAS  Google Scholar 

  • Kasbek C, Yang C-H, Fisk HA (2009) Mps1 as a link between centrosomes and genetic instability. Environ Mol Mutagen 50:654–665

    PubMed  CAS  Google Scholar 

  • Kasbek C, Yang CH, Yusof AM, Chapman HM, Winey M, Fisk HA (2007) Preventing the degradation of mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol Biol Cell 18:4457–4469

    PubMed  CAS  Google Scholar 

  • Kasbek C, Yang CH, Fisk HA (2010) Antizyme restrains centrosome amplification by regulating the accumulation of Mps1 at centrosomes. Mol Biol Cell 21:3879–3889

    Google Scholar 

  • Keller LC, Romijn EP, Zamora I, Yates JR 3rd, Marshall WF (2005) Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr Biol 15:1090–1098

    PubMed  CAS  Google Scholar 

  • Kemp CA, Kopish KR, Zipperlen P, Ahringer J, O’Connell KF (2004) Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev Cell 6:511–523

    PubMed  CAS  Google Scholar 

  • Kim K, Lee S, Chang J, Rhee K (2008) A novel function of CEP135 as a platform protein of C-NAP1 for its centriolar localization. Exp Cell Res 314:3692–3700

    PubMed  CAS  Google Scholar 

  • Kim AH, Puram SV, Bilimoria PM, Ikeuchi Y, Keough S, Wong M, Rowitch D, Bonni A (2009) A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 136:322–336

    PubMed  CAS  Google Scholar 

  • Kitagawa D, Fluckiger I, Polanowska J, Keller D, Reboul J, Gonczy P (2011) PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos. Dev Cell 20:550–562

    PubMed  CAS  Google Scholar 

  • Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13:190–202

    PubMed  CAS  Google Scholar 

  • Kohlmaier G, Loncarek J, Meng X, McEwen BF, Mogensen MM, Spektor A, Dynlacht BD, Khodjakov A, Gonczy P (2009) Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Curr Biol 19:1012–1018

    PubMed  CAS  Google Scholar 

  • Korzeniewski N, Zheng L, Cuevas R, Parry J, Chatterjee P, Anderton B, Duensing A, Munger K, Duensing S (2009) Cullin 1 functions as a centrosomal suppressor of centriole multiplication by regulating polo-like kinase 4 protein levels. Cancer Res 69:6668–6675

    PubMed  CAS  Google Scholar 

  • Korzeniewski N, Cuevas R, Duensing A, Duensing S (2010) Daughter centriole elongation is controlled by proteolysis. Mol Biol Cell 21:3942–3951

    PubMed  CAS  Google Scholar 

  • Kotadia S, Kao LR, Comerford SA, Jones RT, Hammer RE, Megraw TL (2008) PP2A-dependent disruption of centrosome replication and cytoskeleton organization in Drosophila by SV40 small tumor antigen. Oncogene 27:6334–6346

    PubMed  CAS  Google Scholar 

  • Kurasawa Y, Todokoro K (1999) Identification of human APC10/Doc1 as a subunit of anaphase promoting complex. Oncogene 18:5131–5137

    PubMed  CAS  Google Scholar 

  • Leidel S, Gonczy P (2005) Centrosome duplication and nematodes: recent insights from an old relationship. Dev Cell 9:317–325

    PubMed  CAS  Google Scholar 

  • Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC et al (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117:541–552

    PubMed  CAS  Google Scholar 

  • Liu ST, Chan GK, Hittle JC, Fujii G, Lees E, Yen TJ (2003) Human MPS1 kinase is required for mitotic arrest induced by the loss of CENP-E from kinetochores. Mol Biol Cell 14:1638–1651

    PubMed  CAS  Google Scholar 

  • Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 17:6879–6887

    PubMed  CAS  Google Scholar 

  • Mailand N, Diffley JF (2005) CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122:915–926

    PubMed  CAS  Google Scholar 

  • Mangold U, Hayakawa H, Coughlin M, Munger K, Zetter BR (2008) Antizyme, a mediator of ubiquitin-independent proteasomal degradation and its inhibitor localize to centrosomes and modulate centriole amplification. Oncogene 27:604–613

    PubMed  CAS  Google Scholar 

  • Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK (2003) Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 4:813–826

    PubMed  CAS  Google Scholar 

  • Mathe E, Kraft C, Giet R, Deak P, Peters JM, Glover DM (2004) The E2-C vihar is required for the correct spatiotemporal proteolysis of cyclin B and itself undergoes cyclical degradation. Curr Biol 14:1723–1733

    PubMed  CAS  Google Scholar 

  • McBratney S, Winey M (2002) Mutant membrane protein of the budding yeast spindle pole body is targeted to the endoplasmic reticulum degradation pathway. Genetics 162:567–578

    PubMed  CAS  Google Scholar 

  • McDonald HB, Byers B (1997) A proteasome cap subunit required for spindle pole body duplication in yeast. J Cell Biol 137:539–553

    PubMed  CAS  Google Scholar 

  • Mishra A, Godavarthi SK, Maheshwari M, Goswami A, Jana NR (2009) The ubiquitin ligase E6-AP is induced and recruited to aggresomes in response to proteasome inhibition and may be involved in the ubiquitination of Hsp70-bound misfolded proteins. J Biol Chem 284:10537–10545

    PubMed  CAS  Google Scholar 

  • Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10:104–115

    PubMed  CAS  Google Scholar 

  • Murphy TD (2003) Drosophila skpA, a component of SCF ubiquitin ligases, regulates centrosome duplication independently of cyclin E accumulation. J Cell Sci 116:2321–2332

    PubMed  CAS  Google Scholar 

  • Nakamura A, Arai H, Fujita N (2009) Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement. J Cell Biol 187:607–614

    PubMed  CAS  Google Scholar 

  • Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N et al (2000) Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 19:2069–2081

    PubMed  CAS  Google Scholar 

  • Narine KA, Keuling AM, Gombos R, Tron VA, Andrew SE, Young LC (2010) Defining the DNA mismatch repair-dependent apoptotic pathway in primary cells: evidence for p53-independence and involvement of centrosomal caspase 2. DNA Repair (Amst) 9:161–168

    CAS  Google Scholar 

  • Nasmyth K (2005) How do so few control so many? Cell 120:739–746

    PubMed  CAS  Google Scholar 

  • Navon A, Ciechanover A (2009) The 26 S proteasome: from basic mechanisms to drug targeting. J Biol Chem 284:33713–33718

    PubMed  CAS  Google Scholar 

  • O’Connell KF (2002) The ZYG-1 kinase, a mitotic and meiotic regulator of centriole replication. Oncogene 21:6201–6208

    PubMed  Google Scholar 

  • Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103:127–140

    PubMed  CAS  Google Scholar 

  • Osmundson EC, Ray D, Moore FE, Gao Q, Thomsen GH, Kiyokawa H (2008) The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint. J Cell Biol 183:267–277

    PubMed  CAS  Google Scholar 

  • Ouchi M, Fujiuchi N, Sasai K, Katayama H, Minamishima YA, Ongusaha PP, Deng C, Sen S, Lee SW, Ouchi T (2004) BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem 279:19643–19648

    PubMed  CAS  Google Scholar 

  • Pan HW, Chou HY, Liu SH, Peng SY, Liu CL, Hsu HC (2006) Role of L2DTL, cell cycle-regulated nuclear and centrosome protein, in aggressive hepatocellular carcinoma. Cell Cycle 5:2676–2687

    PubMed  CAS  Google Scholar 

  • Parvin JD (2009) The BRCA1-dependent ubiquitin ligase, gamma-tubulin, and centrosomes. Environ Mol Mutagen 50:649–653

    PubMed  CAS  Google Scholar 

  • Pelletier L, O’Toole E, Schwager A, Hyman AA, Muller-Reichert T (2006) Centriole assembly in Caenorhabditis elegans. Nature 444:619–623

    PubMed  CAS  Google Scholar 

  • Pike AN, Fisk HA (2011) Centriole assembly and the role of Mps1: defensible or dispensable? Cell Div 6:9

    PubMed  CAS  Google Scholar 

  • Raff JW, Jeffers K, Huang JY (2002) The roles of Fzy/Cdc20 and Fzr/Cdh1 in regulating the destruction of cyclin B in space and time. J Cell Biol 157:1139–1149

    PubMed  CAS  Google Scholar 

  • Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9:679–690

    PubMed  CAS  Google Scholar 

  • Rieder CL, Khodjakov A, Paliulis LV, Fortier TM, Cole RW, Sluder G (1997) Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc Natl Acad Sci U S A 94:5107–5112

    PubMed  CAS  Google Scholar 

  • Rogers GC, Rusan NM, Roberts DM, Peifer M, Rogers SL (2009) The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J Cell Biol 184:225–239

    PubMed  CAS  Google Scholar 

  • Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409

    PubMed  CAS  Google Scholar 

  • Salisbury J, Suino K, Busby R, Springett M (2002) Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol 12:1287

    PubMed  CAS  Google Scholar 

  • Sankaran S, Starita LM, Simons AM, Parvin JD (2006) Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function. Cancer Res 66:4100–4107

    PubMed  CAS  Google Scholar 

  • Sankaran S, Crone DE, Palazzo RE, Parvin JD (2007) Aurora-A kinase regulates breast cancer associated gene 1 inhibition of centrosome-dependent microtubule nucleation. Cancer Res 67:11186–11194

    PubMed  CAS  Google Scholar 

  • Schatten H (2008) The mammalian centrosome and its functional significance. Histochem Cell Biol 129:667–686

    PubMed  CAS  Google Scholar 

  • Schlaitz AL, Srayko M, Dammermann A, Quintin S, Wielsch N, MacLeod I, de Robillard Q, Zinke A, Yates JR 3rd, Muller-Reichert T et al (2007) The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell 128:115–127

    PubMed  CAS  Google Scholar 

  • Schmidt TI, Kleylein-Sohn J, Westendorf J, Le Clech M, Lavoie SB, Stierhof YD, Nigg EA (2009) Control of centriole length by CPAP and CP110. Curr Biol 19:1005–1011

    PubMed  CAS  Google Scholar 

  • Sears RC (2004) The life cycle of C-myc: from synthesis to degradation. Cell Cycle 3:1133–1137

    PubMed  CAS  Google Scholar 

  • Seki A, Fang G (2007) CKAP2 is a spindle-associated protein degraded by APC/C-Cdh1 during mitotic exit. J Biol Chem 282:15103–15113

    PubMed  CAS  Google Scholar 

  • Sillibourne JE, Bornens M (2010) Polo-like kinase 4: the odd one out of the family. Cell Div 5:25

    PubMed  Google Scholar 

  • Simmons Kovacs LA, Haase SB (2010) Cohesin: it’s not just for chromosomes anymore. Cell Cycle 9:1750–1753

    PubMed  Google Scholar 

  • Simpson-Lavy KJ, Oren YS, Feine O, Sajman J, Listovsky T, Brandeis M (2010) Fifteen years of APC/cyclosome: a short and impressive biography. Biochem Soc Trans 38:78–82

    PubMed  CAS  Google Scholar 

  • Skaar JR, Pagano M (2009) Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr Opin Cell Biol 21:816–824

    PubMed  CAS  Google Scholar 

  • Song MS, Chang JS, Song SJ, Yang TH, Lee H, Lim DS (2005) The centrosomal protein RAS association domain family protein 1A (RASSF1A)-binding protein 1 regulates mitotic progression by recruiting RASSF1A to spindle poles. J Biol Chem 280:3920–3927

    PubMed  CAS  Google Scholar 

  • Song MH, Liu Y, Anderson DE, Jahng WJ, O’Connell KF (2011) Protein phosphatase 2A-SUR-6/B55 regulates centriole duplication in C. elegans by controlling the levels of centriole assembly factors. Dev Cell 20:563–571

    PubMed  CAS  Google Scholar 

  • Soulie P, Carrozzino F, Pepper MS, Strongin AY, Poupon MF, Montesano R (2005) Membrane-type-1 matrix metalloproteinase confers tumorigenicity on nonmalignant epithelial cells. Oncogene 24:1689–1697

    PubMed  CAS  Google Scholar 

  • Spektor A, Tsang WY, Khoo D, Dynlacht BD (2007) Cep97 and CP110 suppress a cilia assembly program. Cell 130:678–690

    PubMed  CAS  Google Scholar 

  • Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP, Gygi SP, Parvin JD (2004) BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 24:8457–8466

    PubMed  CAS  Google Scholar 

  • Stavropoulou V, Xie J, Henriksson M, Tomkinson B, Imreh S, Masucci MG (2005) Mitotic infidelity and centrosome duplication errors in cells overexpressing tripeptidyl-peptidase II. Cancer Res 65:1361–1368

    PubMed  CAS  Google Scholar 

  • Stevens NR, Dobbelaere J, Brunk K, Franz A, Raff JW (2010) Drosophila Ana2 is a conserved centriole duplication factor. J Cell Biol 188:313–323

    PubMed  CAS  Google Scholar 

  • Strnad P, Leidel S, Vinogradova T, Euteneuer U, Khodjakov A, Gonczy P (2007) Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev Cell 13:203–213

    PubMed  CAS  Google Scholar 

  • Su TT, Sprenger F, DiGregorio PJ, Campbell SD, O’Farrell PH (1998) Exit from mitosis in Drosophila syncytial embryos requires proteolysis and cyclin degradation, and is associated with localized dephosphorylation. Genes Dev 12:1495–1503

    PubMed  CAS  Google Scholar 

  • Tang CJ, Fu RH, Wu KS, Hsu WB, Tang TK (2009) CPAP is a cell-cycle regulated protein that controls centriole length. Nat Cell Biol 11:825–831

    PubMed  CAS  Google Scholar 

  • Tomko RJ Jr, Hochstrasser M (2011) Order of the proteasomal ATPases and eukaryotic proteasome assembly. Cell Biochem Biophys 60:13–20

    PubMed  CAS  Google Scholar 

  • Tsang WY, Spektor A, Vijayakumar S, Bista BR, Li J, Sanchez I, Duensing S, Dynlacht BD (2009) Cep76, a centrosomal protein that specifically restrains centriole reduplication. Dev Cell 16:649–660

    PubMed  CAS  Google Scholar 

  • Tsou MF, Stearns T (2006a) Controlling centrosome number: licenses and blocks. Curr Opin Cell Biol 18:74–78

    PubMed  CAS  Google Scholar 

  • Tsou MF, Stearns T (2006b) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442:947–951

    PubMed  CAS  Google Scholar 

  • Tsou MF, Wang WJ, George KA, Uryu K, Stearns T, Jallepalli PV (2009) Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev Cell 17:344–354

    PubMed  CAS  Google Scholar 

  • Tsvetkov P, Reuven N, Shaul Y (2010) Ubiquitin-independent p53 proteasomal degradation. Cell Death Differ 17:103–108

    PubMed  CAS  Google Scholar 

  • Tugendreich S, Tomkiel J, Earnshaw W, Hieter P (1995) CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81:261–268

    PubMed  CAS  Google Scholar 

  • Tyler RK, Chu ML, Johnson H, McKenzie EA, Gaskell SJ, Eyers PA (2009) Phosphoregulation of human Mps1 kinase. Biochem J 417:173–181

    PubMed  CAS  Google Scholar 

  • van Leuken R, Clijsters L, Wolthuis R (2008) To cell cycle, swing the APC/C. Biochim Biophys Acta 1786:49–59

    PubMed  Google Scholar 

  • van Ree JH, Jeganathan KB, Malureanu L, van Deursen JM (2010) Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J Cell Biol 188:83–100

    PubMed  Google Scholar 

  • Wang Y, Zhan Q (2007) Cell cycle-dependent expression of centrosomal ninein-like protein in human cells is regulated by the anaphase-promoting complex. J Biol Chem 282:17712–17719

    PubMed  CAS  Google Scholar 

  • Wang Y, Penfold S, Tang X, Hattori N, Riley P, Harper JW, Cross JC, Tyers M (1999) Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr Biol 9:1191–1194

    PubMed  CAS  Google Scholar 

  • Wang Y, Meriin AB, Zaarur N, Romanova NV, Chernoff YO, Costello CE, Sherman MY (2009) Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. FASEB J 23:451–463

    PubMed  CAS  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145:481–490

    PubMed  CAS  Google Scholar 

  • Wojcik C, Paweletz N, Schroeter D (1995) Localization of proteasomal antigens during different phases of the cell cycle in HeLa cells. Eur J Cell Biol 68:191–198

    PubMed  CAS  Google Scholar 

  • Wojcik C, Schroeter D, Wilk S, Lamprecht J, Paweletz N (1996) Ubiquitin-mediated proteolysis centers in HeLa cells: indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur J Cell Biol 71:311–318

    PubMed  CAS  Google Scholar 

  • Wojcik EJ, Glover DM, Hays TS (2000) The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila. Curr Biol 10:1131–1134

    PubMed  CAS  Google Scholar 

  • Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T, Deng CX (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3:389–395

    PubMed  CAS  Google Scholar 

  • Yang CH, Kasbek C, Majumder S, Mohd Yusof A, Fisk HA (2010) Mps1 phosphorylation sites regulate the function of Centrin 2 in centriole assembly. Mol Biol Cell 21:4361–4372

    PubMed  CAS  Google Scholar 

  • Zetter BR, Mangold U (2005) Ubiquitin-independent degradation and its implication in cancer. Future Oncol 1:567–570

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold A. Fisk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fisk, H.A. (2012). Many Pathways to Destruction: The Role of the Centrosome in, and Its Control by Regulated Proteolysis. In: Schatten, H. (eds) The Centrosome. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-035-9_8

Download citation

Publish with us

Policies and ethics