Skip to main content

Centrosome Regulation and Breast Cancer

  • Chapter
  • First Online:
The Centrosome

Abstract

Chromosomal instability and aneuploidy are commonly observed in breast tumor cells. Loss of function of the breast- and ovarian-specific tumor suppressor gene, BRCA1, results in supernumerary centrosomes that are likely to contribute to the genetic instability and tumorigenesis in breast cancer cells. Other DNA repair proteins also contribute to the regulation of the centrosome along with several oncogenic and tumor suppressor proteins. A number of centrosome regulators that are known to be involved in breast cancer will be discussed with a focused discussion of BRCA1 and its ubiquitin ligase activity in the regulation of centrosome number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR (1995) Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 130:105–115

    Article  PubMed  CAS  Google Scholar 

  • Barr FA, Sillje HH, Nigg EA (2004) Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5:429–440

    Article  PubMed  CAS  Google Scholar 

  • Bertrand P, Lambert S, Joubert C, Lopez BS (2003) Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Oncogene 22:7587–7592

    Article  PubMed  CAS  Google Scholar 

  • Brinkley BR, Goepfert TM (1998) Supernumerary centrosomes and cancer: Boveri’s hypothesis resurrected. Cell Motil Cytoskelet 41:281–288

    Article  CAS  Google Scholar 

  • Carroll PE, Okuda M, Horn HF, Biddinger P, Stambrook PJ, Gleich LL, Li YQ, Tarapore P, Fukasawa K (1999) Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18:1935–1944

    Article  PubMed  CAS  Google Scholar 

  • Collis SJ, Ciccia A, Deans AJ, Horejsi Z, Martin JS, Maslen SL, Skehel JM, Elledge SJ, West SC, Boulton SJ (2008) FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell 32:313–324

    Article  PubMed  CAS  Google Scholar 

  • Duensing A, Liu Y, Spardy N, Bartoli K, Tseng M, Kwon JA, Teng X, Duensing S (2007) RNA polymerase II transcription is required for human papillomavirus type 16 E7- and hydroxyurea-induced centriole overduplication. Oncogene 26:215–223

    Article  PubMed  CAS  Google Scholar 

  • Duensing A, Liu Y, Tseng M, Malumbres M, Barbacid M, Duensing S (2006) Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 25:2943–2949

    Article  PubMed  CAS  Google Scholar 

  • Dutertre S, Hamard-Peron E, Cremet JY, Thomas Y, Prigent C (2005) The absence of p53 aggravates polyploidy and centrosome number abnormality induced by Aurora-C overexpression. Cell Cycle 4:1783–1787

    Article  PubMed  CAS  Google Scholar 

  • Faivre J, Frank-Vaillant M, Poulhe R, Mouly H, Jessus C, Brechot C, Sobczak-Thepot J (2002) Centrosome overduplication, increased ploidy and transformation in cells expressing endoplasmic reticulum-associated cyclin A2. Oncogene 21:1493–1500

    Article  PubMed  CAS  Google Scholar 

  • Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA (1998a) C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141:1563–1574

    Article  PubMed  CAS  Google Scholar 

  • Fry AM, Meraldi P, Nigg EA (1998b) A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 17:470–481

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa K (2007) Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer 7:911–924

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271:1744–1747

    Article  PubMed  CAS  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282

    Article  PubMed  CAS  Google Scholar 

  • Glover DM, Leibowitz MH, McLean DA, Parry H (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81:95–105

    Article  PubMed  CAS  Google Scholar 

  • Griffin CS, Simpson PJ, Wilson CR, Thacker J (2000) Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol 2:757–761

    Article  PubMed  CAS  Google Scholar 

  • Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K, Pandolfi PP (2005) Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437:147–153

    Article  PubMed  CAS  Google Scholar 

  • Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7:1140–1146

    Article  PubMed  CAS  Google Scholar 

  • Hsu LC, White RL (1998) BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci U S A 95:12983–12988

    Article  PubMed  CAS  Google Scholar 

  • Kais Z, Parvin JD (2008) Regulation of centrosomes by the BRCA1-dependent ubiquitin ligase. Cancer Biol Ther 7:1540–1543

    Article  PubMed  CAS  Google Scholar 

  • Ko MJ, Murata K, Hwang DS, Parvin JD (2006) Inhibition of BRCA1 in breast cell lines causes the centrosome duplication cycle to be disconnected from the cell cycle. Oncogene 25:298–303

    Article  PubMed  CAS  Google Scholar 

  • Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, Swaminathan S, van Buul PP, Errami A, Tan RT et al (2002) Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol 22:669–679

    Article  PubMed  CAS  Google Scholar 

  • Lane HA, Nigg EA (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 135:1701–1713

    Article  PubMed  CAS  Google Scholar 

  • Li JJ, Li SA (2006) Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol Ther 111:974–984

    Article  PubMed  CAS  Google Scholar 

  • Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U S A 95:2950–2955

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Kanai M, Kawamura K, Kaibuchi K, Ye K, Fukasawa K (2006) Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication. Mol Cell Biol 26:9016–9034

    Article  PubMed  CAS  Google Scholar 

  • Mayor T, Hacker U, Stierhof YD, Nigg EA (2002) The mechanism regulating the dissociation of the centrosomal protein C-Nap1 from mitotic spindle poles. J Cell Sci 115:3275–3284

    PubMed  CAS  Google Scholar 

  • Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/-cells. EMBO J 21:483–492

    Article  PubMed  CAS  Google Scholar 

  • Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA (1999) Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1:88–93

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi Y, Iwao K, Egawa C, Noguchi S (2001) Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer 92:370–373

    Article  PubMed  CAS  Google Scholar 

  • Moritz M, Braunfeld MB, Sedat JW, Alberts B, Agard DA (1995) Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature 378:638–640

    Article  PubMed  CAS  Google Scholar 

  • Morris VB, Brammall J, Noble J, Reddel R (2000) p53 localizes to the centrosomes and spindles of mitotic cells in the embryonic chick epiblast, human cell lines, and a human primary culture: An immunofluorescence study. Exp Cell Res 256:122–130

    Article  PubMed  CAS  Google Scholar 

  • Mussman JG, Horn HF, Carroll PE, Okuda M, Tarapore P, Donehower LA, Fukasawa K (2000) Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19:1635–1646

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi A, Han X, Saito H, Taguchi K, Ohta Y, Imajoh-Ohmi S, Miki Y (2007) Interference with BRCA2, which localizes to the centrosome during S and early M phase, leads to abnormal nuclear division. Biochem Biophys Res Commun 355:34–40

    Article  PubMed  CAS  Google Scholar 

  • Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE et al (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103:127–140

    Article  PubMed  CAS  Google Scholar 

  • Oricchio E, Saladino C, Iacovelli S, Soddu S, Cundari E (2006) ATM is activated by default in mitosis, localizes at centrosomes and monitors mitotic spindle integrity. Cell Cycle 5:88–92

    Article  PubMed  CAS  Google Scholar 

  • Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V, Kirchhoff T, Gold B et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39:1338–1349

    Article  PubMed  CAS  Google Scholar 

  • Ransburgh DJ, Chiba N, Ishioka C, Toland AE, Parvin JD (2010) Identification of breast tumor mutations in BRCA1 that abolish its function in homologous DNA recombination. Cancer Res 70:988–995

    Article  PubMed  CAS  Google Scholar 

  • Salisbury JL (2001) The contribution of epigenetic changes to abnormal centrosomes and genomic instability in breast cancer. J Mammary Gland Biol Neoplasia 6:203–212

    Article  PubMed  CAS  Google Scholar 

  • Sankaran S, Crone DE, Palazzo RE, Parvin JD (2007a) Aurora-A kinase regulates breast cancer associated gene 1 inhibition of centrosome-dependent microtubule nucleation. Cancer Res 67:11186–11194

    Article  PubMed  CAS  Google Scholar 

  • Sankaran S, Crone DE, Palazzo RE, Parvin JD (2007b) BRCA1 regulates gamma-tubulin binding to centrosomes. Cancer Biol Ther 6:1853–1857

    Article  PubMed  CAS  Google Scholar 

  • Sankaran S, Parvin JD (2006) Centrosome function in normal and tumor cells. J Cell Biochem 99:1240–1250

    Article  PubMed  CAS  Google Scholar 

  • Sankaran S, Starita LM, Groen AC, Ko MJ, Parvin JD (2005) Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination. Mol Cell Biol 25:8656–8668

    Article  PubMed  CAS  Google Scholar 

  • Sankaran S, Starita LM, Simons AM, Parvin JD (2006) Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function. Cancer Res 66:4100–4107

    Article  PubMed  CAS  Google Scholar 

  • Shimada M, Komatsu K (2009) Emerging connection between centrosome and DNA repair machinery. J Radiat Res (Tokyo) 50:295–301

    Article  CAS  Google Scholar 

  • Shimada M, Sagae R, Kobayashi J, Habu T, Komatsu K (2009) Inactivation of the Nijmegen breakage syndrome gene leads to excess centrosome duplication via the ATR/BRCA1 pathway. Cancer Res 69:1768–1775

    Article  PubMed  CAS  Google Scholar 

  • Shinmura K, Bennett RA, Tarapore P, Fukasawa K (2007) Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene 26:2939–2944

    Article  PubMed  CAS  Google Scholar 

  • Shinmura K, Tarapore P, Tokuyama Y, George KR, Fukasawa K (2005) Characterization of centrosomal association of nucleophosmin/B23 linked to Crm1 activity. FEBS Lett 579:6621–6634

    Article  PubMed  CAS  Google Scholar 

  • Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP, Gygi SP, Parvin JD (2004) BRCA1-Dependent Ubiquitination of {gamma}-Tubulin Regulates Centrosome Number. Mol Cell Biol 24:8457–8466

    Article  PubMed  CAS  Google Scholar 

  • Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I (2005) Polo-like kinases (Plks) and cancer. Oncogene 24:287–291

    Article  PubMed  CAS  Google Scholar 

  • Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K (2001) Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276:21529–21537

    Article  PubMed  CAS  Google Scholar 

  • Vargas DA, Takahashi S, Ronai Z (2003) Mdm2: a regulator of cell growth and death. Adv Cancer Res 89:1–34

    Article  PubMed  CAS  Google Scholar 

  • Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182

    Article  PubMed  CAS  Google Scholar 

  • Wang HF, Takenaka K, Nakanishi A, Miki Y (2011) BRCA2 and nucleophosmin coregulate centrosome amplification and form a complex with the Rho effector kinase ROCK2. Cancer Res 71:68–77

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Xie S, Chen J, Fukasawa K, Naik U, Traganos F, Darzynkiewicz Z, Jhanwar-Uniyal M, Dai W (2002) Cell cycle arrest and apoptosis induced by human polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol 22:3450–3459

    Article  PubMed  CAS  Google Scholar 

  • Warnke S, Kemmler S, Hames RS, Tsai HL, Hoffmann-Rohrer U, Fry AM, Hoffmann I (2004) Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr Biol 14:1200–1207

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Iwai Y, Sonoda E, Sasaki MS, Morrison C, Haraguchi T, Hiraoka Y, Yamashita YM, Yagi T, Takata M, Price C et al (1999) Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J 18:6619–6629

    Article  PubMed  CAS  Google Scholar 

Further readings

  • Note: Two papers relevant to this chapter have been recently published and are placed further readings

    Google Scholar 

  • Kais Z, Barsky SH, Mathsyaraja H, Zha A, Ransburgh DJ, He G, Pilarski RT, Shapiro CL, Huang K, Parvin JD. (2011) KIAA0101 Interacts with BRCA1 and regulates centrosome number. Mol Cancer Res 9(8):1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Kais Z, Chiba N, Ishioka C, Parvin JD. (2011) Functional differences among BRCA1 missense mutations in the control of centrosome duplication. Oncogene 31(6):799–804

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the NIH/NCI (R01 CA141090 and R01 CA111480) to J.D.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Parvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kais, Z., Parvin, J.D. (2012). Centrosome Regulation and Breast Cancer. In: Schatten, H. (eds) The Centrosome. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-035-9_14

Download citation

Publish with us

Policies and ethics