Skip to main content

Disruption of Centrosome Duplication Control and Induction of Mitotic Instability by the High-Risk Human Papillomavirus Oncoproteins E6 and E7

  • Chapter
  • First Online:
Book cover The Centrosome

Abstract

Centrosome abnormalities and genomic instability are hallmarks of major human malignancies and have been implicated in malignant progression as well as therapy resistance. Since the etiology of most cancers is complex and incompletely understood, it is vital to utilize tumors which are caused by limited oncogenic stimuli to explore causes and consequences of centrosome aberrations in cancer cells. High-risk HPV-associated neoplasms are suitable model systems since only two viral oncoproteins, E6 and E7, are consistently overexpressed in HPV-associated cancers, for example, of the uterine cervix. HPV-16 E6 and E7 have been instrumental in a number of ways to better understand centrosome aberrations in cancer. Using these two oncoproteins, it has been shown that centrosome overduplication and centrosome accumulation are fundamentally different processes but can co-exist in a tumor. In this chapter we highlight the importance of HPV oncoproteins as tools to dissect basic cellular processes in human cancer and to provide a basis for novel translational approaches to prevent and treat cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acilan C, Potter DM, Saunders WS (2007) DNA repair pathways involved in anaphase bridge formation. Genes Chromosomes Cancer 46:522–531

    Article  PubMed  CAS  Google Scholar 

  • Avvakumov N, Torchia J, Mymryk JS (2003) Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene 22:3833–3841

    Article  PubMed  CAS  Google Scholar 

  • Azimzadeh J, Bornens M (2007) Structure and duplication of the centrosome. J Cell Sci 120:2139–2142

    Article  PubMed  CAS  Google Scholar 

  • Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM (1987) Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol 61:962–971

    PubMed  CAS  Google Scholar 

  • Berkhout RJ, Bouwes Bavinck JN, ter Schegget J (2000) Persistence of human papillomavirus DNA in benign and (pre)malignant skin lesions from renal transplant recipients. J Clin Microbiol 38:2087–2096

    PubMed  CAS  Google Scholar 

  • Bernat A, Avvakumov N, Mymryk JS, Banks L (2003) Interaction between the HPV E7 oncoprotein and the transcriptional coactivator p300. Oncogene 22:7871–7881

    Article  PubMed  Google Scholar 

  • Bibbo M, Dytch HE, Alenghat E, Bartels PH, Wied GL (1989) DNA ploidy profiles as prognostic indicators in CIN lesions. Am J Clin Pathol 92:261–265

    PubMed  CAS  Google Scholar 

  • Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121(Suppl 1):1–84

    Article  PubMed  Google Scholar 

  • Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1999) The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J 18:2449–2458

    Article  PubMed  CAS  Google Scholar 

  • Cunha-Ferreira I, Rodrigues-Martins A, Bento I, Riparbelli M, Zhang W, Laue E, Callaini G, Glover DM, Bettencourt-Dias M (2009) The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr Biol 19:43–49

    Article  PubMed  CAS  Google Scholar 

  • de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  PubMed  Google Scholar 

  • Doorbar J, Ely S, Sterling J, McLean C, Crawford L (1991) Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352:824–827

    Article  PubMed  CAS  Google Scholar 

  • Duensing S, Munger K (2002) The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 62:7075–7082

    PubMed  CAS  Google Scholar 

  • Duensing S, Munger K (2003) Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J Virol 77:12331–12335

    Article  PubMed  CAS  Google Scholar 

  • Duensing S, Munger K (2004) Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer 109:157–162

    Article  PubMed  CAS  Google Scholar 

  • Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Munger K (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A 97:10002–10007

    Article  PubMed  CAS  Google Scholar 

  • Duensing S, Duensing A, Crum CP, Munger K (2001a) Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res 61:2356–2360

    PubMed  CAS  Google Scholar 

  • Duensing S, Duensing A, Flores ER, Do A, Lambert PF, Munger K (2001b) Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J Virol 75:7712–7716

    Article  PubMed  CAS  Google Scholar 

  • Duensing A, Liu Y, Perdreau SA, Kleylein-Sohn J, Nigg EA, Duensing S (2007a) Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26:6280–6288

    Article  PubMed  CAS  Google Scholar 

  • Duensing A, Liu Y, Spardy N, Bartoli K, Tseng M, Kwon JA, Teng X, Duensing S (2007b) RNA polymerase II transcription is required for human papillomavirus type 16 E7- and hydroxyurea-induced centriole overduplication. Oncogene 26:215–223

    Article  PubMed  CAS  Google Scholar 

  • Duensing A, Chin A, Wang L, Kuan SF, Duensing S (2008) Analysis of centrosome overduplication in correlation to cell division errors in high-risk human papillomavirus (HPV)-associated anal neoplasms. Virology 372:157–164

    Article  PubMed  CAS  Google Scholar 

  • Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937

    Article  PubMed  CAS  Google Scholar 

  • Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T, Jackson PK (1999) Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev 13:2242–2257

    Article  PubMed  CAS  Google Scholar 

  • Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562

    Article  PubMed  CAS  Google Scholar 

  • Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA (1997) Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 11:2090–2100

    Article  PubMed  CAS  Google Scholar 

  • Gardiol D, Kuhne C, Glaunsinger B, Lee SS, Javier R, Banks L (1999) Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18:5487–5496

    Article  PubMed  CAS  Google Scholar 

  • Gewin L, Myers H, Kiyono T, Galloway DA (2004) Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev 18:2269–2282

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez SL, Stremlau M, He X, Basile JR, Munger K (2001) Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J Virol 75:7583–7591

    Article  PubMed  CAS  Google Scholar 

  • Grassmann K, Rapp B, Maschek H, Petry KU, Iftner T (1996) Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J Virol 70:2339–2349

    PubMed  CAS  Google Scholar 

  • Guarguaglini G, Duncan PI, Stierhof YD, Holmstrom T, Duensing S, Nigg EA (2005) The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Mol Biol Cell 16:1095–1107

    Article  PubMed  CAS  Google Scholar 

  • zur Hausen H (1996) Papillomavirus infections–a major cause of human cancers. Biochim Biophys Acta 1288:F55–78

    Google Scholar 

  • Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7:1140–1146

    Article  PubMed  CAS  Google Scholar 

  • Halbert CL, Demers GW, Galloway DA (1992) The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J Virol 66:2125–2134

    PubMed  CAS  Google Scholar 

  • Hashida T, Yasumoto S (1991) Induction of chromosome abnormalities in mouse and human epidermal keratinocytes by the human papillomavirus type 16 E7 oncogene. J Gen Virol 72(Pt 7):1569–1577

    Article  PubMed  CAS  Google Scholar 

  • Hebner CM, Laimins LA (2006) Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 16:83–97

    Article  PubMed  CAS  Google Scholar 

  • Heck DV, Yee CL, Howley PM, Munger K (1992) Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc Natl Acad Sci U S A 89:4442–4446

    Article  PubMed  CAS  Google Scholar 

  • Heilman SA, Nordberg JJ, Liu Y, Sluder G, Chen JJ (2009) Abrogation of the postmitotic checkpoint contributes to polyploidization in human papillomavirus E7-expressing cells. J Virol 83:2756–2764

    Article  PubMed  CAS  Google Scholar 

  • Heselmeyer K, Schrock E, du Manoir S, Blegen H, Shah K, Steinbeck R, Auer G, Ried T (1996) Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc Natl Acad Sci U S A 93:479–484

    Article  PubMed  CAS  Google Scholar 

  • Hudson JW, Kozarova A, Cheung P, Macmillan JC, Swallow CJ, Cross JC, Dennis JW (2001) Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr Biol 11:441–446

    Article  PubMed  CAS  Google Scholar 

  • Huh KW, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Munger K (2005) Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A 102:11492–11497

    Article  PubMed  CAS  Google Scholar 

  • Huh K, Zhou X, Hayakawa H, Cho JY, Libermann TA, Jin J, Harper JW, Munger K (2007) Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol 81:9737–9747

    Article  PubMed  CAS  Google Scholar 

  • Hwang SG, Lee D, Kim J, Seo T, Choe J (2002) Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem 277:2923–2930

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Alani RM, Munger K (1997) The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev 11:2101–2111

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen RA, Vliet-Gregg P, Xu M, Galloway DA (2009) NFX1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J Virol 83:6446–6456

    Article  PubMed  CAS  Google Scholar 

  • Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M (1997) Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 94:11612–11616

    Article  PubMed  CAS  Google Scholar 

  • Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13:190–202

    Article  PubMed  CAS  Google Scholar 

  • Klingelhutz AJ, Foster SA, McDougall JK (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380:79–82

    Article  PubMed  CAS  Google Scholar 

  • Ko MA, Rosario CO, Hudson JW, Kulkarni S, Pollett A, Dennis JW, Swallow CJ (2005) Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat Genet 37:883–888

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewski N, Zheng L, Cuevas R, Parry J, Chatterjee P, Anderton B, Duensing A, Munger K, Duensing S (2009) Cullin 1 functions as a centrosomal suppressor of centriole multiplication by regulating polo-like kinase 4 protein levels. Cancer Res 69:6668–6675

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewski N, Treat B, Duensing S (2011) The HPV-16 E7 oncoprotein induces centriole multiplication through deregulation of Polo-like kinase 4 expression. Mol Cancer 10:61

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74:9680–9693

    Article  PubMed  CAS  Google Scholar 

  • Li J, Tan M, Li L, Pamarthy D, Lawrence TS, Sun Y (2005) SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing. Neoplasia 7:312–323

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Dakic A, Zhang Y, Dai Y, Chen R, Schlegel R (2009) HPV E6 protein interacts physically and functionally with the cellular telomerase complex. Proc Natl Acad Sci U S A 106:18780–18785

    Article  PubMed  CAS  Google Scholar 

  • Loncarek J, Hergert P, Magidson V, Khodjakov A (2008) Control of daughter centriole formation by the pericentriolar material. Nat Cell Biol 10:322–328

    Article  PubMed  CAS  Google Scholar 

  • Longworth MS, Laimins LA (2004a) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68:362–372

    Article  PubMed  CAS  Google Scholar 

  • Longworth MS, Laimins LA (2004b) The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol 78:3533–3541

    Article  PubMed  CAS  Google Scholar 

  • Lyons TE, Salih M, Tuana BS (2006) Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. Am J Physiol Cell Physiol 290:C189–C199

    Article  PubMed  CAS  Google Scholar 

  • Massimi P, Shai A, Lambert P, Banks L (2008) HPV E6 degradation of p53 and PDZ containing substrates in an E6AP null background. Oncogene 27:1800–1804

    Article  PubMed  CAS  Google Scholar 

  • Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato JY (1994) D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 14:2066–2076

    PubMed  CAS  Google Scholar 

  • McLaughlin-Drubin ME, Munger K (2009a) Oncogenic activities of human papillomaviruses. Virus Res 143:195–208

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin-Drubin ME, Munger K (2009b) The human papillomavirus E7 oncoprotein. Virology 384:335–344

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin-Drubin ME, Huh KW, Munger K (2008) Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol 82:8695–8705

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin-Drubin ME, Crum CP, Munger K (2011) Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci U S A 108:2130–2135

    Article  PubMed  CAS  Google Scholar 

  • Mikhailov A, Cole RW, Rieder CL (2002) DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. Curr Biol 12:1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R (1989) The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63:4417–4421

    PubMed  CAS  Google Scholar 

  • Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527

    Article  PubMed  Google Scholar 

  • Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369–381

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CL, Munger K (2008) Direct association of the HPV16 E7 oncoprotein with cyclin A/CDK2 and cyclin E/CDK2 complexes. Virology 380:21–25

    Article  PubMed  CAS  Google Scholar 

  • Nguyen ML, Nguyen MM, Lee D, Griep AE, Lambert PF (2003) The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J Virol 77:6957–6964

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CL, Eichwald C, Nibert ML, Munger K (2007) Human papillomavirus type 16 E7 oncoprotein associates with the centrosomal component gamma-tubulin. J Virol 81:13533–13543

    Article  PubMed  CAS  Google Scholar 

  • Orth G (1986) Epidermodysplasia verruciformis: a model for understanding the oncogenicity of human papillomaviruses. Ciba Found Symp 120:157–174

    PubMed  CAS  Google Scholar 

  • Paz IB, Cook N, Odom-Maryon T, Xie Y, Wilczynski SP (1997) Human papillomavirus (HPV) in head and neck cancer. An association of HPV 16 with squamous cell carcinoma of Waldeyer’s tonsillar ring. Cancer 79:595–604

    Article  PubMed  CAS  Google Scholar 

  • Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20

    Article  PubMed  CAS  Google Scholar 

  • Phelps WC, Munger K, Yee CL, Barnes JA, Howley PM (1992) Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J Virol 66:2418–2427

    PubMed  CAS  Google Scholar 

  • Pim D, Collins M, Banks L (1992) Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7:27–32

    PubMed  CAS  Google Scholar 

  • Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271

    PubMed  CAS  Google Scholar 

  • Resnitzky D, Gossen M, Bujard H, Reed SI (1994) Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14:1669–1679

    PubMed  CAS  Google Scholar 

  • Riley RR, Duensing S, Brake T, Munger K, Lambert PF, Arbeit JM (2003) Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res 63:4862–4871

    PubMed  CAS  Google Scholar 

  • Rogers GC, Rusan NM, Roberts DM, Peifer M, Rogers SL (2009) The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J Cell Biol 184:225–239

    Article  PubMed  CAS  Google Scholar 

  • Schatten H (2008) The mammalian centrosome and its functional significance. Histochem Cell Biol 129:667–686

    Article  PubMed  CAS  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    Article  PubMed  CAS  Google Scholar 

  • Schiller JT, Lowy DR (2006) Prospects for cervical cancer prevention by human papillomavirus vaccination. Cancer Res 66:10229–10232

    Article  PubMed  CAS  Google Scholar 

  • Schiller JT, Lowy DR (2009) Immunogenicity testing in human papillomavirus virus-like-particle vaccine trials. J Infect Dis 200:166–171

    Article  PubMed  CAS  Google Scholar 

  • Sedman J, Stenlund A (1995) Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J 14:6218–6228

    PubMed  CAS  Google Scholar 

  • Sedman J, Stenlund A (1998) The papillomavirus E1 protein forms a DNA-dependent hexameric complex with ATPase and DNA helicase activities. J Virol 72:6893–6897

    PubMed  CAS  Google Scholar 

  • Southern SA, Lewis MH, Herrington CS (2004) Induction of tetrasomy by human papillomavirus type 16 E7 protein is independent of pRb binding and disruption of differentiation. Br J Cancer 90:1949–1954

    Article  PubMed  CAS  Google Scholar 

  • Straight SW, Hinkle PM, Jewers RJ, McCance DJ (1993) The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol 67:4521–4532

    PubMed  CAS  Google Scholar 

  • Stubenrauch F, Laimins LA (1999) Human papillomavirus life cycle: active and latent phases. Semin Cancer Biol 9:379–386

    Article  PubMed  CAS  Google Scholar 

  • Thomas JT, Laimins LA (1998) Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J Virol 72:1131–1137

    PubMed  CAS  Google Scholar 

  • Thorland EC, Myers SL, Persing DH, Sarkar G, McGovern RM, Gostout BS, Smith DI (2000) Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites. Cancer Res 60:5916–5921

    PubMed  CAS  Google Scholar 

  • Tsou MF, Wang WJ, George KA, Uryu K, Stearns T, Jallepalli PV (2009) Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev Cell 17:344–354

    Article  PubMed  CAS  Google Scholar 

  • White AE, Livanos EM, Tlsty TD (1994) Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev 8:666–677

    Article  PubMed  CAS  Google Scholar 

  • Wilting SM, Snijders PJ, Meijer GA, Ylstra B, van den Ijssel PR, Snijders AM, Albertson DG, Coffa J, Schouten JP, van de Wiel MA, Meijer CJ, Steenbergen RD (2006) Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix. J Pathol 209:220–230

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Mohr I, Fouts E, Lim DA, Nohaile M, Botchan M (1993) The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase. Proc Natl Acad Sci U S A 90:5086–5090

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Chen W, Roman A (2006) The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc Natl Acad Sci U S A 103:437–442

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Duensing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Korzeniewski, N., Duensing, S. (2012). Disruption of Centrosome Duplication Control and Induction of Mitotic Instability by the High-Risk Human Papillomavirus Oncoproteins E6 and E7. In: Schatten, H. (eds) The Centrosome. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-035-9_12

Download citation

Publish with us

Policies and ethics