Skip to main content

PPAR/PGC-1 Regulation of Metabolism in Cardiac Disease

  • Chapter
  • First Online:
Translational Cardiology

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

The mammalian myocardium relies on multiple substrates to meet its tremendous energy demands. Fuel preference is regulated at several critical points, including at the transcriptional level. The peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors and the PGC-1 family of coactivators are key regulators of cardiac metabolism. The PPAR–PGC-1 complex controls gene expression for enzymes involved in fatty acid and glucose metabolism as well as mitochondrial biogenesis and function. Certain pathologic conditions like heart failure and diabetes alter cardiac metabolism. Murine models of overexpression and “knockout” of many members of the PPAR and PGC-1 have been described and have helped establish our understanding of their role in cardiac metabolism at baseline and with certain diseases. In addition, human data are emerging that have also provided important insight into the role of PPAR–PGC-1 in disease and how they may be potential therapeutic targets. In this chapter, we describe the PPAR–PGC-1 family members and the current understanding of their role in energy metabolism and cardiac function in response to physiologic and pathophysiologic stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chung S, Arrell DK, Faustino RS, Terzic A, Dzeja PP. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol. 2010;48:725–34.

    PubMed  CAS  Google Scholar 

  2. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med. 2007;4 Suppl 1:S60–7.

    PubMed  CAS  Google Scholar 

  3. St John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells. 2005;7:141–53.

    PubMed  CAS  Google Scholar 

  4. Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 2010;56:130–40.

    PubMed  CAS  Google Scholar 

  5. Schaffer JE, Lodish HF. Expression cloning and characterization of a novel adipocyte long-chain fatty acid transport protein. Cell. 1994;79:427–36.

    PubMed  CAS  Google Scholar 

  6. Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiaion. Homology with human cd36. J Biol Chem. 1993;268: 17665–8.

    PubMed  CAS  Google Scholar 

  7. Binas B, Danneberg H, McWhir J, Mullins L, Clark AJ. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J. 1999;13:805–12.

    PubMed  CAS  Google Scholar 

  8. Banke NH, Wende AR, Leone TC, O’Donnell JM, Abel ED, Kelly DP, Lewandowski ED. Preferential oxidation of triacylglyceride-derived fatty acids in heart is augmented by the nuclear receptor pparalpha. Circ Res. 2010;107:233–41.

    PubMed  CAS  Google Scholar 

  9. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science. 2006;312:734–7.

    PubMed  CAS  Google Scholar 

  10. Brandt JM, Djouadi F, Kelly DP. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase i gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem. 1998;273:23786–92.

    PubMed  CAS  Google Scholar 

  11. Brown NF, Weis BC, Husti JE, Foster DW, McGarry JD. Mitochondrial carnitine palmitoyltransferase i isoform switching in the developing rat heart. J Biol Chem. 1995;270:8952–7.

    PubMed  CAS  Google Scholar 

  12. Mascar C, Acosta E, Ortiz JA, Marrero PF, Hegardt FG, Haro D. Control of human muscle-type carnitine palmitoyltransferase i gene transcription by peroxisome proliferator-activated receptor ‡. J Biol Chem. 1998;273:8560–3.

    Google Scholar 

  13. Steffen ML, Harrison WR, Elder FF, Cook GA, Park EA. Expression of the rat liver carnitine palmitoyltransferase i (cpt-iα) gene is regulated by sp1 and nuclear factor y: chromosomal localization and promoter characterization. Biochem J. 1999;340:425–32.

    PubMed  CAS  Google Scholar 

  14. Yu GS, Lu YC, Gulick T. Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase i· gene promoters by fatty acid enzyme substrate. J Biol Chem. 1998;273: 32901–9.

    PubMed  CAS  Google Scholar 

  15. McGarry JD, Woeltje KF, Kuwajima M, Foster DW. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev. 1989;5:271–84.

    PubMed  CAS  Google Scholar 

  16. Kelly DP, Strauss AW. Inherited cardiomyopathies. N Engl J Med. 1994;330:913–9.

    PubMed  CAS  Google Scholar 

  17. Fayssoil A. Heart diseases in mitochondrial encephalomyopathy, lactic acidosis, and stroke syndrome. Congest Heart Fail. 2009;15:284–7.

    PubMed  CAS  Google Scholar 

  18. Hill MR, Clarke S, Rodgers K, Thornhill B, Peters JM, Gonzalez FJ, Gimble JM. Effect of peroxisome proliferator-activated receptor alpha activators on tumor necrosis factor expression in mice during endotoxemia. Infect Immun. 1999;67:3488–93.

    PubMed  CAS  Google Scholar 

  19. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (ppars): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res. 2000;49:497–505.

    PubMed  CAS  Google Scholar 

  20. Feinstein DL, Spagnolo A, Akar C, Weinberg G, Murphy P, Gavrilyuk V. Dello Russo C. Receptor-independent actions of ppar thiazolidinedione agonists: Is mitochondrial function the key? Biochem Pharmacol. 2005;70:177–88.

    PubMed  CAS  Google Scholar 

  21. Vega RB, Huss JM, Kelly DP. The coactivator pgc-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000;20:1868–76.

    PubMed  CAS  Google Scholar 

  22. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829–39.

    PubMed  CAS  Google Scholar 

  23. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347:645–50.

    PubMed  CAS  Google Scholar 

  24. Cook WS, Yeldandi AV, Rao MS, Hashimoto T, Reddy JK. Less extrahepatic induction of fatty acid beta-oxidation enzymes by ppar alpha. Biochem Biophys Res Commun. 2000;278: 250–7.

    PubMed  CAS  Google Scholar 

  25. Aasum E, Belke DD, Severson DL, Riemersma RA, Cooper M, Andreassen M, Larsen TS. Cardiac function and metabolism in type 2 diabetic mice after treatment with bm 17.0744, a novel ppar-alpha activator. Am J Physiol Heart Circ Physiol. 2002;283:H949–57.

    PubMed  CAS  Google Scholar 

  26. Aasum E, Cooper M, Severson DL, Larsen TS. Effect of bm 17.0744, a pparalpha ligand, on the metabolism of perfused hearts from control and diabetic mice. Can J Physiol Pharmacol. 2005;83:183–90.

    PubMed  CAS  Google Scholar 

  27. Duncan JG, Bharadwaj KG, Fong JL, Mitra R, Sambandam N, Courtois MR, Lavine KJ, Goldberg IJ, Kelly DP. Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators. Circulation. 2010;121:426–35.

    PubMed  CAS  Google Scholar 

  28. Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yanagisawa M, Kodama T, Sakai J. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA. 2003;100:15924–9.

    PubMed  CAS  Google Scholar 

  29. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    PubMed  CAS  Google Scholar 

  30. Gilde AJ, van der Lee KA, Willemsen PH, Chinetti G, van der Leij FR, van der Vusse GJ, Staels B, van Bilsen M. Peroxisome proliferator-activated receptor (ppar) alpha and pparbeta/delta, but not ppargamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res. 2003;92:518–24.

    PubMed  CAS  Google Scholar 

  31. Caglayan E, Stauber B, Collins AR, Lyon CJ, Yin F, Liu J, Rosenkranz S, Erdmann E, Peterson LE, Ross RS, Tangirala RK, Hsueh WA. Differential roles of cardiomyocyte and macrophage peroxisome proliferator-activated receptor gamma in cardiac fibrosis. Diabetes. 2008;57:2470–9.

    PubMed  CAS  Google Scholar 

  32. Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha (pparalpha) in the cellular fasting response: the pparalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA. 1999;96:7473–8.

    PubMed  CAS  Google Scholar 

  33. Panagia M, Gibbons GF, Radda GK, Clarke K. Ppar-alpha activation required for decreased glucose uptake and increased susceptibility to injury during ischemia. Am J Physiol Heart Circ Physiol. 2005;288:H2677–83.

    PubMed  CAS  Google Scholar 

  34. Sambandam N, Morabito D, Wagg C, Finck BN, Kelly DP, Lopaschuk GD. Chronic activation of pparalpha is detrimental to cardiac recovery after ischemia. Am J Physiol Heart Circ Physiol. 2006;290:H87–95.

    PubMed  CAS  Google Scholar 

  35. Campbell FM, Kozak R, Wagner A, Altarejos JY, Dyck JR, Belke DD, Severson DL, Kelly DP, Lopaschuk GD. A role for peroxisome proliferator-activated receptor alpha (pparalpha) in the control of cardiac malonyl-coa levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking pparalpha are associated with higher concentrations of malonyl-coa and reduced expression of malonyl-coa decarboxylase. J Biol Chem. 2002;277:4098–103.

    PubMed  CAS  Google Scholar 

  36. Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem. 2000;275:22293–9.

    PubMed  CAS  Google Scholar 

  37. Luptak I, Balschi JA, Xing Y, Leone TC, Kelly DP, Tian R. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation. 2005;112:2339–46.

    PubMed  CAS  Google Scholar 

  38. Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, Evans RM, Schneider MD, Brako FA, Xiao Y, Chen YE, Yang Q. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med. 2004;10:1245–50.

    PubMed  CAS  Google Scholar 

  39. Wang P, Liu J, Li Y, Wu S, Luo J, Yang H, Subbiah R, Chatham J, Zhelyabovska O, Yang Q. Peroxisome proliferator-activated receptor delta is an essential transcriptional regulator for mitochondrial protection and biogenesis in adult heart. Circ Res. 2010;106:911–9.

    PubMed  CAS  Google Scholar 

  40. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM. Ppar gamma is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999;4:585–95.

    PubMed  CAS  Google Scholar 

  41. Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice. Circ Res. 2005;97:372–9.

    PubMed  CAS  Google Scholar 

  42. Ding G, Fu M, Qin Q, Lewis W, Kim HW, Fukai T, Bacanamwo M, Chen YE, Schneider MD, Mangelsdorf DJ, Evans RM, Yang Q. Cardiac peroxisome proliferator-activated receptor gamma is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc Res. 2007;76:269–79.

    PubMed  CAS  Google Scholar 

  43. Finck BN, Kelly DP. Peroxisome proliferator-activated receptor alpha (pparalpha) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart. J Mol Cell Cardiol. 2002;34:1249–57.

    PubMed  Google Scholar 

  44. Harris IS, Treskov I, Rowley MW, Heximer S, Kaltenbronn K, Finck BN, Gross RW, Kelly DP, Blumer KJ, Muslin AJ. G-protein signaling participates in the development of diabetic cardiomyopathy. Diabetes. 2004;53:3082–90.

    PubMed  CAS  Google Scholar 

  45. Park SY, Cho YR, Finck BN, Kim HJ, Higashimori T, Hong EG, Lee MK, Danton C, Deshmukh S, Cline GW, Wu JJ, Bennett AM, Rothermel B, Kalinowski A, Russell KS, Kim YB, Kelly DP, Kim JK. Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver. Diabetes. 2005;54:2514–24.

    PubMed  CAS  Google Scholar 

  46. Yang J, Sambandam N, Han X, Gross RW, Courtois M, Kovacs A, Febbraio M, Finck BN, Kelly DP. Cd36 deficiency rescues lipotoxic cardiomyopathy. Circ Res. 2007;100:1208–17.

    PubMed  CAS  Google Scholar 

  47. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP. A critical role for pparalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci USA. 2003;100:1226–31.

    PubMed  CAS  Google Scholar 

  48. Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/pgc-1alpha gene regulatory pathway. Circulation. 2007;115:909–17.

    PubMed  CAS  Google Scholar 

  49. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP. The cardiac phenotype induced by pparalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. 2002;109:121–30.

    PubMed  CAS  Google Scholar 

  50. Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, Shoghi K, Welch MJ, Kelly DP. Nuclear receptors pparbeta/delta and pparalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117:3930–9.

    PubMed  CAS  Google Scholar 

  51. Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs MJ, Huang LS, Goldberg IJ. Cardiomyocyte expression of ppargamma leads to cardiac dysfunction in mice. J Clin Invest. 2007;117:2791–801.

    PubMed  CAS  Google Scholar 

  52. Son NH, Yu S, Tuinei J, Arai K, Hamai H, Homma S, Shulman GI, Abel ED, Goldberg IJ. Ppargamma-induced cardiolipotoxicity in mice is ameliorated by pparalpha deficiency despite increases in fatty acid oxidation. J Clin Invest. 2010;120:3443–54.

    PubMed  CAS  Google Scholar 

  53. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1beta (pgc-1beta), a novel pgc-1-related transcription coactivator associated with host cell factor. J Biol Chem. 2002;277:1645–8.

    PubMed  CAS  Google Scholar 

  54. Andersson U, Scarpulla RC. Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol. 2001;21:3738–49.

    PubMed  CAS  Google Scholar 

  55. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP. Transcriptional coactivators pgc-1alpha and pgc-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22:1948–61.

    PubMed  CAS  Google Scholar 

  56. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106:847–56.

    PubMed  CAS  Google Scholar 

  57. Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300-mediated chromatin remodeling and trap/mediator function through coactivator pgc-1alpha. Mol Cell. 2003;12:1137–49.

    PubMed  CAS  Google Scholar 

  58. Roeder RG. Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett. 2005;579:909–15.

    PubMed  CAS  Google Scholar 

  59. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O’Malley B, Spiegelman BM. Activation of ppargamma coactivator-1 through transcription factor docking. Science. 1999;286:1368–71.

    PubMed  CAS  Google Scholar 

  60. Sano M, Izumi Y, Helenius K, Asakura M, Rossi DJ, Xie M, Taffet G, Hu L, Pautler RG, Wilson CR, Boudina S, Abel ED, Taegtmeyer H, Scaglia F, Graham BH, Kralli A, Shimizu N, Tanaka H, Makela TP, Schneider MD. Menage-a-trois 1 is critical for the transcriptional function of ppargamma coactivator 1. Cell Metab. 2007;5:129–42.

    PubMed  CAS  Google Scholar 

  61. Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM. Direct coupling of transcription and mrna processing through the thermogenic coactivator pgc-1. Mol Cell. 2000;6:307–16.

    PubMed  CAS  Google Scholar 

  62. Lin J, Handschin C, Spiegelman BM. Metabolic control through the pgc-1 family of transcription coactivators. Cell Metab. 2005;1:361–70.

    PubMed  Google Scholar 

  63. Finck BN, Kelly DP. Pgc-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116:615–22.

    PubMed  CAS  Google Scholar 

  64. Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1alpha (pgc-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within pgc-1alpha. J Biol Chem. 2002;277:40265–74.

    PubMed  CAS  Google Scholar 

  65. Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A. The transcriptional coactivator pgc-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (erralpha). J Biol Chem. 2003;278:9013–8.

    PubMed  CAS  Google Scholar 

  66. Huss JM, Torra IP, Staels B, Giguere V, Kelly DP. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol. 2004;24:9079–91.

    PubMed  CAS  Google Scholar 

  67. Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M, Evans RM, Blanchette M, Giguere V. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors erralpha and gamma. Cell Metab. 2007;5:345–56.

    PubMed  CAS  Google Scholar 

  68. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator pgc-1. Cell. 1999;98:115–24.

    PubMed  CAS  Google Scholar 

  69. Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002;1576:1–14.

    PubMed  CAS  Google Scholar 

  70. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18:357–68.

    PubMed  CAS  Google Scholar 

  71. Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res. 2004;95: 68–78.

    PubMed  CAS  Google Scholar 

  72. Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest. 2005;115:547–55.

    PubMed  CAS  Google Scholar 

  73. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP. Pgc-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3:e101.

    PubMed  Google Scholar 

  74. Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking ppar-gamma coactivator 1alpha. Proc Natl Acad Sci USA. 2006;103:10086–91.

    PubMed  CAS  Google Scholar 

  75. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM. Transcriptional coactivator pgc-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1:259–71.

    PubMed  CAS  Google Scholar 

  76. Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, Bjursell M, Parker N, Curtis K, Campbell M, Hu P, Zhang D, Litwin SE, Zaha VG, Fountain KT, Boudina S, Jimenez-Linan M, Blount M, Lopez M, Meirhaeghe A, Bohlooly YM, Storlien L, Stromstedt M, Snaith M, Oresic M, Abel ED, Cannon B, Vidal-Puig A. Ablation of pgc-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol. 2006;4:e369.

    PubMed  Google Scholar 

  77. Sonoda J, Mehl IR, Chong LW, Nofsinger RR, Evans RM. Pgc-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci USA. 2007;104:5223–8.

    PubMed  CAS  Google Scholar 

  78. Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, Medeiros DM, Valencik ML, McDonald JA, Kelly DP. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res. 2004;94:525–33.

    PubMed  CAS  Google Scholar 

  79. Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD. Contribution of oxidative metabolism and glycolysis to atp production in hypertrophied hearts. Am J Physiol. 1994;267:H742–50.

    PubMed  CAS  Google Scholar 

  80. Christe MD, Rodgers RL. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol. 1994;26:1371–5.

    PubMed  CAS  Google Scholar 

  81. Massie BM, Schaefer S, Garcia J, McKirnan MD, Schwartz GG, Wisneski JA, Weiner MW, White FC. Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation. 1995;91:1814–23.

    PubMed  CAS  Google Scholar 

  82. Taegtmeyer H, Overturf ML. Effects of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension. 1988;11:416–26.

    PubMed  CAS  Google Scholar 

  83. Dewald O, Sharma S, Adrogue J, Salazar R, Duerr GD, Crapo JD, Entman ML, Taegtmeyer H. Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation. 2005;112:407–15.

    PubMed  CAS  Google Scholar 

  84. Huss JM, Levy FH, Kelly DP. Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid x receptor gene regulatory pathway in cardiac myocytes: a mechanism for o2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem. 2001;276: 27605–12.

    PubMed  CAS  Google Scholar 

  85. Di Napoli P, Taccardi AA, Barsotti A. Long term cardioprotective action of trimetazidine and potential effect on the inflammatory process in patients with ischaemic dilated cardiomyopathy. Heart. 2005;91:161–5.

    PubMed  Google Scholar 

  86. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, Ashrafian H, Horowitz J, Fraser AG, Clarke K, Frenneaux M. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112:3280–8.

    PubMed  CAS  Google Scholar 

  87. Vitale C, Wajngaten M, Sposato B, Gebara O, Rossini P, Fini M, Volterrani M, Rosano GM. Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease. Eur Heart J. 2004;25:1814–21.

    PubMed  CAS  Google Scholar 

  88. Tabernero A, Schoonjans K, Jesel L, Carpusca I, Auwerx J, Andriantsitohaina R. Activation of the peroxisome proliferator-activated receptor alpha protects against myocardial ischaemic injury and improves endothelial vasodilatation. BMC Pharmacol. 2002;2:10.

    PubMed  Google Scholar 

  89. Tian Q, Grzemski FA, Panagiotopoulos S, Ahokas JT. Peroxisome proliferator-activated receptor alpha agonist, clofibrate, has profound influence on myocardial fatty acid composition. Chem Biol Interact. 2006;160:241–51.

    PubMed  CAS  Google Scholar 

  90. Wayman NS, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, Chatterjee PK, Thiemermann C. Ligands of the peroxisome proliferator-activated receptors (ppar-gamma and ppar-alpha) reduce myocardial infarct size. FASEB J. 2002;16:1027–40.

    PubMed  CAS  Google Scholar 

  91. Yue TL, Nerurkar SS, Bao W, Jucker BM, Sarov-Blat L, Steplewski K, Ohlstein EH, Willette RN. In vivo activation of peroxisome proliferator-activated receptor-delta protects the heart from ischemia/reperfusion injury in zucker fatty rats. J Pharmacol Exp Ther. 2008;325: 466–74.

    PubMed  CAS  Google Scholar 

  92. Lygate CA, Hulbert K, Monfared M, Cole MA, Clarke K, Neubauer S. The ppar g-activator rosiglitazone does not alter remodeling but increases mortality in rats post-myocardial infarction. Cardiovasc Res. 2003;58:632–7.

    PubMed  CAS  Google Scholar 

  93. Liu HR, Tao L, Gao E, Lopez BL, Christopher TA, Willette RN, Ohlstein EH, Yue TL, Ma XL. Anti-apoptotic effects of rosiglitazone in hypercholesterolemic rabbits subjected to myocardial ischemia and reperfusion. Cardiovasc Res. 2004;62:135–44.

    PubMed  CAS  Google Scholar 

  94. Charbonnel B, Dormandy J, Erdmann E, Massi-Benedetti M, Skene A. The prospective pioglitazone clinical trial in macrovascular events (proactive): Can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care. 2004;27:1647–53.

    PubMed  Google Scholar 

  95. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefebvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Koranyi L, Laakso M, Mokan M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Taton J. Secondary prevention of macrovascular events in patients with type 2 diabetes in the proactive study (prospective pioglitazone clinical trial in macrovascular events): a randomised controlled trial. Lancet. 2005;366:1279–89.

    PubMed  CAS  Google Scholar 

  96. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996;94:2837–42.

    PubMed  CAS  Google Scholar 

  97. Barger PM, Brandt JM, Leone TC, Weinheimer CJ, Kelly DP. Deactivation of peroxisome proliferator-activated receptor-α during cardiac hypertrophic growth. J Clin Invest. 2000;105:1723–30.

    PubMed  CAS  Google Scholar 

  98. Takeyama D, Kagaya Y, Yamane Y, Shiba N, Chida M, Takahashi T, Ido T, Ishide N, Takishima T. Effects of chronic right ventricular pressure overload on myocardial glucose and free fatty acid metabolism in the conscious rat. Cardiovasc Res. 1995;29:763–7.

    PubMed  CAS  Google Scholar 

  99. Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, Gropler RJ. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002;40:271–7.

    PubMed  CAS  Google Scholar 

  100. Sack MN, Disch DL, Rockman HA, Kelly DP. A role for sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci USA. 1997;94:6438–43.

    PubMed  CAS  Google Scholar 

  101. Planavila A, Rodriguez-Calvo R, Jove M, Michalik L, Wahli W, Laguna JC, Vazquez-Carrera M. Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc Res. 2005;65:832–41.

    PubMed  CAS  Google Scholar 

  102. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation. 2001;104:2923–31.

    PubMed  CAS  Google Scholar 

  103. Sihag S, Cresci S, Li AY, Sucharov CC, Lehman JJ. Pgc-1alpha and erralpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol. 2009;46:201–12.

    PubMed  CAS  Google Scholar 

  104. Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y, Chin S, Spiegelman BM. The transcriptional coactivator pgc-1·drives the formation of oxidative type iix fibers in skeletal muscle. Cell Metab. 2007;5:35–46.

    PubMed  CAS  Google Scholar 

  105. Frey N, Olson EN. Modulating cardiac hypertrophy by manipulating myocardial lipid metabolism? Circulation. 2002;105:1152–4.

    PubMed  Google Scholar 

  106. Young ME, Laws FA, Goodwin GW, Taegtmeyer H. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem. 2001;276:44390–5.

    PubMed  CAS  Google Scholar 

  107. Brigadeau F, Gele P, Wibaux M, Marquie C, Martin-Nizard F, Torpier G, Fruchart JC, Staels B, Duriez P, Lacroix D. The pparalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol. 2007;49:408–15.

    PubMed  CAS  Google Scholar 

  108. Ichihara S, Obata K, Yamada Y, Nagata K, Noda A, Ichihara G, Yamada A, Kato T, Izawa H, Murohara T, Yokota M. Attenuation of cardiac dysfunction by a ppar-alpha agonist is associated with down-regulation of redox-regulated transcription factors. J Mol Cell Cardiol. 2006;41:318–29.

    PubMed  CAS  Google Scholar 

  109. Liang F, Wang F, Zhang S, Gardner DG. Peroxisome proliferators activated receptor (ppar)α agonists inhibit hypertrophy of neonatal rat cardiac myocytes. Endocrinology. 2003;144:4187–94.

    PubMed  CAS  Google Scholar 

  110. Bottomley PA, Wu KC, Gerstenblith G, Schulman SP, Steinberg A, Weiss RG. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study. Circulation. 2009;119:1918–24.

    PubMed  CAS  Google Scholar 

  111. Gupta A, Chacko VP, Weiss RG. Abnormal energetics and atp depletion in pressure-overload mouse hearts: in vivo high-energy phosphate concentration measures by noninvasive magnetic resonance. Am J Physiol Heart Circ Physiol. 2009;297:H59–64.

    PubMed  CAS  Google Scholar 

  112. Ingwall JS, Kramer MF, Fifer MA, Lorell BH, Shemin R, Grossman W, Allen PD. The creatine kinase system in normal and diseased human myocardium. N Engl J Med. 1985;313:1050–4.

    PubMed  CAS  Google Scholar 

  113. Schilling J, Kelly DP. The pgc-1 cascade as a therapeutic target for heart failure. J Mol Cell Cardiol. 2011;51(4):578–83.

    PubMed  CAS  Google Scholar 

  114. Cohen-Solal A, Beauvais F, Logeart D. Heart failure and diabetes mellitus: epidemiology and management of an alarming association. J Card Fail. 2008;14:615–25.

    PubMed  Google Scholar 

  115. Ho KK, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: the framingham study. J Am Coll Cardiol. 1993;22:6A–13.

    PubMed  CAS  Google Scholar 

  116. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the framingham study. Am J Cardiol. 1974;34:29–34.

    PubMed  CAS  Google Scholar 

  117. Bell DS. Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care. 2003;26:2433–41.

    PubMed  Google Scholar 

  118. Fein FS, Sonnenblick EH. Diabetic cardiomyopathy. Prog Cardiovasc Dis. 1985;4:255–70.

    Google Scholar 

  119. Rodrigues B, Cam MC, McNeill JH. Myocardial substrate metabolism: implications for diabetic cardiomyopathy. J Mol Cell Cardiol. 1995;27:169–79.

    PubMed  CAS  Google Scholar 

  120. Rodrigues B, McNeill JH. The diabetic heart: metabolic causes for the development of cardiomyopathy. Cardiovasc Res. 1992;26:913–22.

    PubMed  CAS  Google Scholar 

  121. Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res. 1997;34:25–33.

    PubMed  CAS  Google Scholar 

  122. Murthy VK, Shipp JC. Regulation of heart triglyceride synthesis in diabetes. Adv Myocardiol. 1980;2:71–9.

    PubMed  CAS  Google Scholar 

  123. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier OH, Taegtmeyer H. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18:1692–700.

    PubMed  CAS  Google Scholar 

  124. Szczepaniak LS, Victor RG, Orci L, Unger RH. Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in america. Circ Res. 2007;101:759–67.

    PubMed  CAS  Google Scholar 

  125. Mitra R, Nogee DP, Zechner JF, Yea K, Gierasch CM, Kovacs A, Medeiros DM, Kelly DP, Duncan JG. HYPERLINK “http://www.ncbi.nlm.nih.gov/pubmed/22080103” The transcriptional coactivators, PGC-1α and β, cooperate to maintain cardiac mitochondrial function during the early stages of insulin resistance. J Mol Cell Cardiol. 2012;52(3):701–10.

    PubMed  CAS  Google Scholar 

  126. Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Jeong Yun U, Cooksey RC, Litwin SE, Abel ED. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146:5341–9.

    PubMed  CAS  Google Scholar 

  127. McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, Levine BD, Raskin P, Victor RG, Szczepaniak LS. Cardiac steatosis in diabetes mellitus: a 1 h-magnetic resonance spectroscopy study. Circulation. 2007;116:1170–5.

    PubMed  Google Scholar 

  128. Paulson DJ, Crass MF. Endogenous triacylglycerol metabolism in diabetic heart. Am J Physiol. 1982;242:H1084–94.

    PubMed  CAS  Google Scholar 

  129. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH. Lipotoxic heart disease in obese rats: implications for human disease. Proc Natl Acad Sci USA. 2000;97:1784–9.

    PubMed  CAS  Google Scholar 

  130. Kuo TH, Moore KH, Giacomelli F, Wiener J. Defective oxidative metabolism of heart mitochondria from genetically diabetic mice. Diabetes. 1983;32:781–7.

    PubMed  CAS  Google Scholar 

  131. Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce Jr WM, Klein JB, Epstein PN. Cardiac mitochondrial damage and biogenesis in a chronic model of type i diabetes. Am J Physiol Endocrinol Metab. 2004;287:E896–905.

    PubMed  CAS  Google Scholar 

  132. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005;112:2686–95.

    PubMed  Google Scholar 

  133. Andrulionyte L, Zacharova J, Chiasson JL, Laakso M. Common polymorphisms of the ppar- g 2 (pro12a1a) and pgc-1α (gly482ser) genes are associated with the conversion from impaired glucose tolerance to type 2 diabetes in the stop-niddm trial. Diabetologia. 2004;47:2176–84.

    PubMed  CAS  Google Scholar 

  134. Ek J, Andersen G, Urhammer SA, Gaede PH, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O. Mutation analysis of peroxisome proliferator-activated receptor-γ coactivator-1 (pgc-1) and relationships of identified amino acid polymorphisms to type ii diabetes mellitus. Diabetologia. 2001;44:2220–6.

    PubMed  CAS  Google Scholar 

  135. Flavell DM, Torra IP, Jamshidi Y, Evans D, Diamond JR, Elkeles RS, Bujac SR, Miller G, Talmud PJ, Staels B, Humphries SE. Variation in the pparα gene is associated with altered function in vitro and plasma lipid concentrations in type ii diabetic subjects. Diabetologia. 2000;43:673–80.

    PubMed  CAS  Google Scholar 

  136. Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, Tucker KL, Ordovas JM. Polyunsaturated fatty acids interact with the ppara-l162v polymorphism to affect plasma triglyceride and apolipoprotein c-iii concentrations in the framingham heart study. J Nutr. 2005;135:397–403.

    PubMed  CAS  Google Scholar 

  137. Shin HD, Park BL, Kim LH, Jung HS, Cho YM, Moon MK, Park YJ, Lee HK, Park KS. Genetic polymorphisms in peroxisome proliferator-activated receptor delta associated with obesity. Diabetes. 2004;53:847–51.

    PubMed  CAS  Google Scholar 

  138. Skogsberg J, Kannisto K, Cassel TN, Hamsten A, Eriksson P, Ehrenborg E. Evidence that peroxisome proliferator-activated receptor delta influences cholesterol metabolism in men. Arterioscler Thromb Vasc Biol. 2003;23:637–43.

    PubMed  CAS  Google Scholar 

  139. Jamshidi Y, Montgomery HE, Hense HW, Myerson SG, Torra IP, Staels B, World MJ, Doering A, Erdmann J, Hengstenberg C, Humphries SE, Schunkert H, Flavell DM. The pparα gene regulates left ventricular growth in response to exercise and hypertension. Circulation. 2002;105:950–5.

    PubMed  CAS  Google Scholar 

  140. Cresci S, Huss JM, Beitelshees AL, Jones PG, Minton MR, Dorn GW, Kelly DP, Spertus JA, McLeod HL. A pparalpha promoter variant impairs err-dependent transactivation and decreases mortality after acute coronary ischemia in patients with diabetes. PLoS One. 2010;5:e12584.

    PubMed  Google Scholar 

  141. Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A pro12ala substitution in ppargamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20:284–7.

    PubMed  CAS  Google Scholar 

  142. Chuang LM, Hsiung CA, Chen YD, Ho LT, Sheu WH, Pei D, Nakatsuka CH, Cox D, Pratt RE, Lei HH, Tai TY. Sibling-based association study of the ppargamma2 pro12ala polymorphism and metabolic variables in chinese and japanese hypertension families: a sapphire study. Stanford asian-pacific program in hypertension and insulin resistance. J Mol Med. 2001;79:656–64.

    PubMed  CAS  Google Scholar 

  143. Doney AS, Fischer B, Leese G, Morris AD, Palmer CN. Cardiovascular risk in type 2 diabetes is associated with variation at the pparg locus: a go-darts study. Arterioscler Thromb Vasc Biol. 2004;24:2403–7.

    PubMed  CAS  Google Scholar 

  144. Ridker PM, Cook NR, Cheng S, Erlich HA, Lindpaintner K, Plutzky J, Zee RY. Alanine for proline substitution in the peroxisome proliferator-activated receptor gamma-2 (pparg2) gene and the risk of incident myocardial infarction. Arterioscler Thromb Vasc Biol. 2003;23:859–63.

    PubMed  CAS  Google Scholar 

  145. Wang S, Fu C, Wang H, Shi Y, Xu X, Chen J, Song X, Sun K, Wang J, Fan X, Yang X, Huan T, Hi R. Polymorphisms of the peroxisome proliferator-activated receptor- g coactivator-1α gene are associated with hypertrophic cardiomyopathy and not with hypertension hypertrophy. Clin Chem Lab Med. 2007;45:962–7.

    PubMed  CAS  Google Scholar 

  146. Tai ES, Collins D, Robins SJ, O’Connor Jr JJ, Bloomfield HE, Ordovas JM, Schaefer EJ, Brousseau ME. The l162v polymorphism at the peroxisome proliferator activated receptor alpha locus modulates the risk of cardiovascular events associated with insulin resistance and diabetes mellitus: the veterans affairs hdl intervention trial (va-hit). Atherosclerosis. 2006;187: 153–60.

    PubMed  CAS  Google Scholar 

  147. Cresci S. Pharmacogenetics of the ppar genes and cardiovascular disease. Pharmacogenomics. 2007;8:1581–95.

    PubMed  CAS  Google Scholar 

  148. Andrulionyte L, Kuulasmaa T, Chiasson JL, Laakso M. Single nucleotide polymorphisms of the peroxisome proliferator-activated receptor-alpha gene (ppara) influence the conversion from impaired glucose tolerance to type 2 diabetes: the stop-niddm trial. Diabetes. 2007;56:1181–6.

    PubMed  CAS  Google Scholar 

  149. Cresci S, Jones PG, Sucharov CC, Marsh S, Lanfear DE, Garsa A, Courtois M, Weinheimer CJ, Wu J, Province MA, Kelly DP, McLeod HL, Spertus JA. Interaction between ppara ­genotype and beta-blocker treatment influences clinical outcomes following acute coronary syndromes. Pharmacogenomics. 2008;9:1403–17.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer G. Duncan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Duncan, J.G., Finck, B.N. (2012). PPAR/PGC-1 Regulation of Metabolism in Cardiac Disease. In: Patterson, C., Willis, M. (eds) Translational Cardiology. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-891-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-891-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-890-0

  • Online ISBN: 978-1-61779-891-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics