Skip to main content

Relationship Between Myocardial Ischemia/Reperfusion and Time of Day

  • Chapter
  • First Online:
  • 1052 Accesses

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Both cardiovascular function and dysfunction exhibit profound time-of-day-dependent oscillations. Coincident with increased sympathetic tone, vascular resistance, and pro-thrombolytic potential, the onset of myocardial infarctions occurs with greatest frequency between 6 a.m. and 12 noon. In addition, the heart exhibits poorest tolerance to ischemia/reperfusion at this time, as evidenced by the extent of cardiac injury. Temporal rhythms in both the onset and tolerance of the heart to ischemic episodes are likely the product of complex interactions between extrinsic (e.g., environmental-/behavioral-modulated) and intrinsic (e.g., circadian clock-regulated) factors. Future pharmacological strategies for myocardial infarction prevention and/or minimizing reperfusion injury should consider time-of-day-dependent rhythms in both extrinsic and intrinsic factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Young ME. Anticipating anticipation: pursuing identification of cardiomyocyte circadian clock function. J Appl Physiol. 2009;4:1339–47.

    Google Scholar 

  2. Young M. The circadian clock within the heart: potential influence on myocardial gene expression; metabolism; and function. Am J Physiol Heart Circ Physiol. 2006;290:H1–16.

    PubMed  CAS  Google Scholar 

  3. Weber MA, Fodera SM. Circadian variations in cardiovascular disease: chronotherapeutic approaches to the management of hypertension. Rev Cardiovasc Med. 2004;5(3):148–55.

    PubMed  Google Scholar 

  4. Degaute JP, Van Cauter E, van de Borne P, Linkowski P. Twenty-four-hour blood pressure and heart rate profiles in humans. A twin study. Hypertension. 1994;23(2):244–53.

    PubMed  CAS  Google Scholar 

  5. Degaute JP, van de Borne P, Linkowski P, Van Cauter E. Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men. Hypertension. 1991;18(2):199–210.

    PubMed  CAS  Google Scholar 

  6. van den Buuse M. Circadian rhythms of blood pressure and heart rate in conscious rats: effects of light cycle shift and timed feeding. Physiol Behav. 1999;68:9–15.

    PubMed  Google Scholar 

  7. Valentini M, Parati G. Variables influencing heart rate. Prog Cardiovasc Dis. 2009;52(1):11–9.

    PubMed  Google Scholar 

  8. James GD, Pickering TG. The influence of behavioral factors on the daily variation of blood pressure. Am J Hypertens. 1993;6(6 Pt 2):170S–3.

    PubMed  CAS  Google Scholar 

  9. Grassi G, Bombelli M, Seravalle G, Dell’Oro R, Quarti-Trevano F. Diurnal blood pressure variation and sympathetic activity. Hypertens Res. 2010;33(5):381–5.

    PubMed  Google Scholar 

  10. Walters J, Skene D, Hampton SM, Ferns GA. Biological rhythms, endothelial health and cardiovascular disease. Med Sci Monit. 2003;9(1):RA 1–8.

    Google Scholar 

  11. Smolensky MH, Hermida RC, Castriotta RJ, Portaluppi F. Role of sleep-wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med. 2007;8(6):668–80.

    PubMed  Google Scholar 

  12. Muller J, Tofler G, Stone P. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733–43.

    PubMed  CAS  Google Scholar 

  13. Manfredini R, Boari B, Gallerani M, Salmi R, Bossone E, Distante A, Eagle KA, Mehta RH. Chronobiology of rupture and dissection of aortic aneurysms. J Vasc Surg. 2004;40(2):382–8.

    PubMed  CAS  Google Scholar 

  14. Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T, et al. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med. 1985;313(21):1315–22.

    PubMed  CAS  Google Scholar 

  15. Willich SN. Circadian variation of acute coronary heart diseases: research perspectives and clinical importance. Z Kardiol. 1991;80(8):479–86.

    PubMed  CAS  Google Scholar 

  16. Goldberg RJ, Brady P, Muller JE, Chen ZY, de Groot M, Zonneveld P, Dalen JE. Time of onset of symptoms of acute myocardial infarction. Am J Cardiol. 1990;66(2):140–4.

    PubMed  CAS  Google Scholar 

  17. Manfredini R, Casetta I, Paolino E, la Cecilia O, Boari B, Fallica E, Granieri E. Monday preference in onset of ischemic stroke. Am J Med. 2001;111(5):401–3.

    PubMed  CAS  Google Scholar 

  18. Janszky I, Ljung R. Shifts to and from daylight saving time and incidence of myocardial infarction. N Engl J Med. 2008;359(18):1966–8.

    PubMed  CAS  Google Scholar 

  19. Meier-Ewert HK, Ridker PM, Rifai N, Regan MM, Price NJ, Dinges DF, Mullington JM. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol. 2004;43(4):678–83.

    PubMed  CAS  Google Scholar 

  20. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9.

    PubMed  CAS  Google Scholar 

  21. Ekstrand K, Bostrom PA, Arborelius M, Nilsson JA, Lindell SE. Cardiovascular risk factors in commercial flight aircrew officers compared with those in the general population. Angiology. 1996;47(11):1089–94.

    PubMed  CAS  Google Scholar 

  22. Alexander JK. Coronary problems associated with altitude and air travel. Cardiol Clin. 1995;13(2):271–8.

    PubMed  CAS  Google Scholar 

  23. Bernheim A. High altitude and cardiac disease. Praxis (Bern 1994). 2005;94(45):1760–4.

    CAS  Google Scholar 

  24. Couch RD. Travel, time zones, and sudden cardiac death. Emporiatric pathology. Am J Forensic Med Pathol. 1990;11(2):106–11.

    PubMed  CAS  Google Scholar 

  25. Williams ES, Zipes DP. The winter’s tale–and toll. Am Heart J. 2003;146(6):941–3.

    PubMed  Google Scholar 

  26. Gerber Y, Jacobsen SJ, Killian JM, Weston SA, Roger VL. Seasonality and daily weather conditions in relation to myocardial infarction and sudden cardiac death in Olmsted County, Minnesota, 1979 to 2002. J Am Coll Cardiol. 2006;48(2):287–92.

    PubMed  Google Scholar 

  27. Arntz HR, Willich SN, Schreiber C, Bruggemann T, Stern R, Schultheiss HP. Diurnal, weekly and seasonal variation of sudden death. Population-based analysis of 24,061 consecutive cases. Eur Heart J. 2000;21(4):315–20.

    PubMed  CAS  Google Scholar 

  28. Ku CS, Yang CY, Lee WJ, Chiang HT, Liu CP, Lin SL. Absence of a seasonal variation in myocardial infarction onset in a region without temperature extremes. Cardiology. 1998;89(4):277–82.

    PubMed  CAS  Google Scholar 

  29. Morabito M, Modesti PA, Cecchi L, Crisci A, Orlandini S, Maracchi G, Gensini GF. Relationships between weather and myocardial infarction: a biometeorological approach. Int J Cardiol. 2005;105(3):288–93.

    PubMed  Google Scholar 

  30. Marchant B, Ranjadayalan K, Stevenson R, Wilkinson P, Timmis AD. Circadian and seasonal factors in the pathogenesis of acute myocardial infarction: the influence of environmental temperature. Br Heart J. 1993;69(5):385–7.

    PubMed  CAS  Google Scholar 

  31. Panagiotakos DB, Chrysohoou C, Pitsavos C, Nastos P, Anadiotis A, Tentolouris C, Stefanadis C, Toutouzas P, Paliatsos A. Climatological variations in daily hospital admissions for acute coronary syndromes. Int J Cardiol. 2004;94(2–3):229–33.

    PubMed  Google Scholar 

  32. Cheng TO. Seasonal variation in serum cholesterol levels may be another explanation for seasonal variation in acute myocardial infarction. Int J Cardiol. 2005;104(1):101.

    PubMed  Google Scholar 

  33. Woodhouse PR, Khaw KT, Plummer M, Foley A, Meade TW. Seasonal variations of plasma fibrinogen and factor VII activity in the elderly: winter infections and death from cardiovascular disease. Lancet. 1994;343(8895):435–9.

    PubMed  CAS  Google Scholar 

  34. Sher L. Seasonal distribution of myocardial infarction and seasonal mood changes. J Am Coll Cardiol. 1999;33(7):2088–9.

    PubMed  CAS  Google Scholar 

  35. Nemeroff CB, Musselman DL, Evans DL. Depression and cardiac disease. Depress Anxiety. 1998;8 Suppl 1:71–9.

    Google Scholar 

  36. Hammoudeh AJ, Alhaddad IA. Triggers and the onset of acute myocardial infarction. Cardiol Rev. 2009;17(6):270–4.

    PubMed  Google Scholar 

  37. Frost P, Kolstad HA, Bonde JP. Shift work and the risk of ischemic heart disease – a systematic review of the epidemiologic evidence. Scand J Work Environ Health. 2009;35(3):163–79.

    PubMed  Google Scholar 

  38. Knutsson A. Health disorders of shift workers. Occup Med (Lond). 2003;53(2):103–8.

    Google Scholar 

  39. Knutsson A, Boggild H. Shiftwork and cardiovascular disease: review of disease mechanisms. Rev Environ Health. 2000;15(4):359–72.

    PubMed  CAS  Google Scholar 

  40. Haus E, Smolensky M. Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes Control. 2006;17(4):489–500.

    PubMed  Google Scholar 

  41. Akerstedt T. Shift work and disturbed sleep/wakefulness. Occup Med (Lond). 2003;53(2):89–94.

    Google Scholar 

  42. Persson HE, Svanborg E. Sleep deprivation worsens obstructive sleep apnea. Comparison between diurnal and nocturnal polysomnography. Chest. 1996;109(3):645–50.

    PubMed  CAS  Google Scholar 

  43. Ghiasvand M, Heshmat R, Golpira R, Haghpanah V, Soleimani A, Shoushtarizadeh P, Tavangar SM, Larijani B. Shift working and risk of lipid disorders: a cross-sectional study. Lipids Health Dis. 2006;5:9.

    PubMed  Google Scholar 

  44. Al-Naimi S, Hampton SM, Richard P, Tzung C, Morgan LM. Postprandial metabolic profiles following meals and snacks eaten during simulated night and day shift work. Chronobiol Int. 2004;21(6):937–47.

    PubMed  CAS  Google Scholar 

  45. Knutson A, Andersson H, Berglund U. Serum lipoproteins in day and shift workers: a prospective study. Br J Ind Med. 1990;47(2):132–4.

    PubMed  CAS  Google Scholar 

  46. Romon M, Nuttens MC, Fievet C, Pot P, Bard JM, Furon D, Fruchart JC. Increased triglyceride levels in shift workers. Am J Med. 1992;93(3):259–62.

    PubMed  CAS  Google Scholar 

  47. Hennig J, Kieferdorf P, Moritz C, Huwe S, Netter P. Changes in cortisol secretion during shiftwork: implications for tolerance to shiftwork? Ergonomics. 1998;41(5):610–21.

    PubMed  CAS  Google Scholar 

  48. Van Cauter E, Plat L, Leproult R, Copinschi G. Alterations of circadian rhythmicity and sleep in aging: endocrine consequences. Horm Res. 1998;49(3–4):147–52.

    PubMed  Google Scholar 

  49. Mikuni E, Ohoshi T, Hayashi K, Miyamura K. Glucose intolerance in an employed population. Tohoku J Exp Med. 1983;141(Suppl):251–6.

    PubMed  Google Scholar 

  50. Morikawa Y, Nakagawa H, Miura K, Soyama Y, Ishizaki M, Kido T, Naruse Y, Suwazono Y, Nogawa K. Shift work and the risk of diabetes mellitus among Japanese male factory workers. Scand J Work Environ Health. 2005;31(3):179–83.

    PubMed  Google Scholar 

  51. Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup Environ Med. 2001;58(11):747–52.

    PubMed  CAS  Google Scholar 

  52. Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Speizer FE, Hennekens CH. Prospective study of shift work and risk of coronary heart disease in women. Circulation. 1995;92(11):3178–82.

    PubMed  CAS  Google Scholar 

  53. Harma M. Shift work and cardiovascular disease–from etiologic studies to prevention through scheduling. Scand J Work Environ Health. 2001;27(2):85–6.

    PubMed  CAS  Google Scholar 

  54. Knutsson A, Hammar N, Karlsson B. Shift workers’ mortality scrutinized. Chronobiol Int. 2004;21(6):1049–53.

    PubMed  Google Scholar 

  55. Knutsson A, Akerstedt T, Jonsson B, Orth-Gomer K. Increased risk of ischaemic heart disease in shift workers. Lancet. 1986;12:89–92.

    Google Scholar 

  56. Mullington JM, Haack M, Toth M, Serrador JM, Meier-Ewert HK. Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis. 2009;51(4):294–302.

    PubMed  CAS  Google Scholar 

  57. Jean-Louis G, Brown CD, Zizi F, Ogedegbe G, Boutin-Foster C, Gorga J, McFarlane SI. Cardiovascular disease risk reduction with sleep apnea treatment. Expert Rev Cardiovasc Ther. 2010;8(7):995–1005.

    PubMed  Google Scholar 

  58. Selim B, Won C, Yaggi HK. Cardiovascular consequences of sleep apnea. Clin Chest Med. 2010;31(2):203–20.

    PubMed  Google Scholar 

  59. Adams SL, Roxe DM, Weiss J, Zhang F, Rosenthal JE. Ambulatory blood pressure and Holter monitoring of emergency physicians before, during, and after a night shift. Acad Emerg Med. 1998;5(9):871–7.

    PubMed  CAS  Google Scholar 

  60. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T. Sleep apnea and cardiovascular disease: an American Heart Association/American College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation. 2008;118(10):1080–111.

    PubMed  Google Scholar 

  61. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med. 2002;165(9):1217–39.

    PubMed  Google Scholar 

  62. Budhiraja R, Budhiraja P, Quan SF. Sleep-disordered breathing and cardiovascular disorders. Respir Care. 2010;55(10):1322–32.

    PubMed  Google Scholar 

  63. Franklin KA, Nilsson JB, Sahlin C, Naslund U. Sleep apnoea and nocturnal angina. Lancet. 1995;345(8957):1085–7.

    PubMed  CAS  Google Scholar 

  64. Hung J, Whitford EG, Parsons RW, Hillman DR. Association of sleep apnoea with myocardial infarction in men. Lancet. 1990;336(8710):261–4.

    PubMed  CAS  Google Scholar 

  65. Malone S, Liu PP, Holloway R, Rutherford R, Xie A, Bradley TD. Obstructive sleep apnoea in patients with dilated cardiomyopathy: effects of continuous positive airway pressure. Lancet. 1991;338(8781):1480–4.

    PubMed  CAS  Google Scholar 

  66. Quercioli A, Mach F, Montecucco F. Inflammation accelerates atherosclerotic processes in obstructive sleep apnea syndrome (OSAS). Sleep Breath. 2010;14(3):261–9.

    PubMed  Google Scholar 

  67. Worsnop CJ, Naughton MT, Barter CE, Morgan TO, Anderson AI, Pierce RJ. The prevalence of obstructive sleep apnea in hypertensives. Am J Respir Crit Care Med. 1998;157(1):111–5.

    PubMed  CAS  Google Scholar 

  68. Fletcher EC, DeBehnke RD, Lovoi MS, Gorin AB. Undiagnosed sleep apnea in patients with essential hypertension. Ann Intern Med. 1985;103(2):190–5.

    PubMed  CAS  Google Scholar 

  69. Lavie P, Ben-Yosef R, Rubin AE. Prevalence of sleep apnea syndrome among patients with essential hypertension. Am Heart J. 1984;108(2):373–6.

    PubMed  CAS  Google Scholar 

  70. Kuniyoshi FH, Garcia-Touchard A, Gami AS, Romero-Corral A, van der Walt C, Pusalavidyasagar S, Kara T, Caples SM, Pressman GS, Vasquez EC, Lopez-Jimenez F, Somers VK. Day-night variation of acute myocardial infarction in obstructive sleep apnea. J Am Coll Cardiol. 2008;52(5):343–6.

    PubMed  Google Scholar 

  71. Dimsdale JE. Psychological stress and cardiovascular disease. J Am Coll Cardiol. 2008;51(13):1237–46.

    PubMed  Google Scholar 

  72. Trevisan M, Celentano E, Meucci C, Farinaro E, Jossa F, Krogh V, Giumetti D, Panico S, Scottoni A, Mancini M. Short-term effect of natural disasters on coronary heart disease risk factors. Arteriosclerosis. 1986;6(5):491–4.

    PubMed  CAS  Google Scholar 

  73. Brown DL. Disparate effects of the 1989 Loma Prieta and 1994 Northridge earthquakes on hospital admissions for acute myocardial infarction: importance of superimposition of triggers. Am Heart J. 1999;137(5):830–6.

    PubMed  CAS  Google Scholar 

  74. Tofler GH, Muller JE. Triggering of acute cardiovascular disease and potential preventive strategies. Circulation. 2006;114(17):1863–72.

    PubMed  Google Scholar 

  75. Collins HE, Rodrigo GC. Inotropic response of cardiac ventricular myocytes to beta-adrenergic stimulation with isoproterenol exhibits diurnal variation: involvement of nitric oxide. Circ Res. 2010;106(7):1244–52.

    PubMed  CAS  Google Scholar 

  76. Panza JA, Epstein SE, Quyyumi AA. Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med. 1991;325(14):986–90.

    PubMed  CAS  Google Scholar 

  77. Hossmann V, Fitzgerald GA, Dollery CT. Circadian rhythm of baroreflex reactivity and adrenergic vascular response. Cardiovasc Res. 1980;14(3):125–9.

    PubMed  CAS  Google Scholar 

  78. Jones H, Green DJ, George KP, Black MA, Atkinson G. Evidence for a greater elevation in vascular shear stress after morning exercise. Med Sci Sports Exerc. 2009;41(6):1188–93.

    PubMed  Google Scholar 

  79. Schwartz BG, Economides C, Mayeda GS, Burstein S, Kloner RA. The endothelial cell in health and disease: its function, dysfunction, measurement and therapy. Int J Impot Res. 2010;22(2):77–90.

    PubMed  CAS  Google Scholar 

  80. Yun AJ, Lee PY, Bazar KA. Temporal variation of autonomic balance and diseases during circadian, seasonal, reproductive, and lifespan cycles. Med Hypotheses. 2004;63(1):155–62.

    PubMed  Google Scholar 

  81. Das AM, Khayat R. Hypertension in obstructive sleep apnea: risk and therapy. Expert Rev Cardiovasc Ther. 2009;7(6):619–26.

    PubMed  Google Scholar 

  82. Keskil Z, Gorgun CZ, Hodoglugil U, Zengil H. Twenty-four-hour variations in the sensitivity of rat aorta to vasoactive agents. Chronobiol Int. 1996;13(6):465–75.

    PubMed  CAS  Google Scholar 

  83. Jones H, Lewis NC, Green DJ, Ainslie PN, Lucas SJ, Tzeng YC, Grant EJ, Atkinson G. Alpha-1 adrenoreceptor activity does not explain lower morning endothelial-dependent flow mediated dilation in humans. Am J Physiol Regul Integr Comp Physiol. 2011;300(6): R1437–42.

    PubMed  CAS  Google Scholar 

  84. Tunctan B, Weigl Y, Dotan A, Peleg L, Zengil H, Ashkenazi I, Abacioglu N. Circadian variation of nitric oxide synthase activity in mouse tissue. Chronobiol Int. 2002;19(2):393–404.

    PubMed  CAS  Google Scholar 

  85. Kunieda T, Minamino T, Miura K, Katsuno T, Tateno K, Miyauchi H, Kaneko S, Bradfield CA, FitzGerald GA, Komuro I. Reduced nitric oxide causes age-associated impairment of circadian rhythmicity. Circ Res. 2008;102(5):607–14.

    PubMed  CAS  Google Scholar 

  86. Etsuda H, Takase B, Uehata A, Kusano H, Hamabe A, Kuhara R, Akima T, Matsushima Y, Arakawa K, Satomura K, Kurita A, Ohsuzu F. Morning attenuation of endothelium-dependent, flow-mediated dilation in healthy young men: possible connection to morning peak of cardiac events? Clin Cardiol. 1999;22(6):417–21.

    PubMed  CAS  Google Scholar 

  87. Steptoe A, Brydon L. Emotional triggering of cardiac events. Neurosci Biobehav Rev. 2009;33(2):63–70.

    PubMed  Google Scholar 

  88. Marsh SA, Coombes JS. Exercise and the endothelial cell. Int J Cardiol. 2005;99(2):165–9.

    PubMed  Google Scholar 

  89. Levine SP, Towell BL, Suarez AM, Knieriem LK, Harris MM, George JN. Platelet activation and secretion associated with emotional stress. Circulation. 1985;71(6):1129–34.

    PubMed  CAS  Google Scholar 

  90. Rosing DR, Brakman P, Redwood DR, Goldstein RE, Beiser GD, Astrup T, Epstein SE. Blood fibrinolytic activity in man. Diurnal variation and the response to varying intensities of exercise. Circ Res. 1970;27(2):171–84.

    PubMed  CAS  Google Scholar 

  91. Kestin AS, Ellis PA, Barnard MR, Errichetti A, Rosner BA, Michelson AD. Effect of strenuous exercise on platelet activation state and reactivity. Circulation. 1993;88(4 Pt 1):1502–11.

    PubMed  CAS  Google Scholar 

  92. Dalby MC, Davidson SJ, Burman JF, Davies SW. Diurnal variation in platelet aggregation with the PFA-100 platelet function analyser. Platelets. 2000;11(6):320–4.

    PubMed  CAS  Google Scholar 

  93. Maemura K, de la Monte SM, Chin MT, Layne MD, Hsieh CM, Yet SF, Perrella MA, Lee ME. CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem. 2000;275(47):36847–51.

    PubMed  CAS  Google Scholar 

  94. Ohkura N, Oishi K, Fukushima N, Kasamatsu M, Atsumi GI, Ishida N, Horie S, Matsuda J. Circadian clock molecules CLOCK and CRYs modulate fibrinolytic activity by regulating the PAI-1 gene expression. J Thromb Haemost. 2006;4(11):2478–85.

    PubMed  CAS  Google Scholar 

  95. Takeda N, Maemura K, Horie S, Oishi K, Imai Y, Harada T, Saito T, Shiga T, Amiya E, Manabe I, Ishida N, Nagai R. Thrombomodulin is a clock-controlled gene in vascular endothelial cells. J Biol Chem. 2007;282(45):32561–7.

    PubMed  CAS  Google Scholar 

  96. Somanath PR, Podrez EA, Chen J, Ma Y, Marchant K, Antoch M, Byzova TV. Deficiency in core circadian protein Bmal1 is associated with a prothrombotic and vascular phenotype. J Cell Physiol. 2010;226(1):132–40.

    Google Scholar 

  97. Angleton P, Chandler WL, Schmer G. Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation. 1989;79(1):101–6.

    PubMed  CAS  Google Scholar 

  98. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol. 1997;79(11):1512–6.

    PubMed  CAS  Google Scholar 

  99. Soulban G, Labrecque G. Circadian rhythms of blood clotting time and coagulation factors II, VII, IX and X in rats. Life Sci. 1989;45(25):2485–9.

    PubMed  CAS  Google Scholar 

  100. Kanabrocki EL, Sothern RB, Messmore HL, Roitman-Johnson B, McCormick JB, Dawson S, Bremner FW, Third JL, Nemchausky BA, Shirazi P, Scheving LE. Circadian interrelationships among levels of plasma fibrinogen, blood platelets, and serum interleukin-6. Clin Appl Thromb Hemost. 1999;5(1):37–42.

    PubMed  CAS  Google Scholar 

  101. Krantz DS, Kop WJ, Gabbay FH, Rozanski A, Barnard M, Klein J, Pardo Y, Gottdiener JS. Circadian variation of ambulatory myocardial ischemia. Triggering by daily activities and evidence for an endogenous circadian component. Circulation. 1996;93(7):1364–71.

    PubMed  CAS  Google Scholar 

  102. Edery I. Circadian rhythms in a nutshell. Physiol Genomics. 2000;3:59–74.

    PubMed  CAS  Google Scholar 

  103. Young ME, Bray MS. Potential role for peripheral circadian clock dyssynchrony in the pathogenesis of cardiovascular dysfunction. Sleep Med. 2007;8(6):656–67.

    PubMed  Google Scholar 

  104. Dunlap J. Molecular basis of circadian clocks. Cell. 1999;96:271–90.

    PubMed  CAS  Google Scholar 

  105. Wilsbacher LD, Takahashi JS. Circadian rhythms: molecular basis of the clock. Curr Opin Genet Dev. 1998;8(5):595–602.

    PubMed  CAS  Google Scholar 

  106. Durgan D, Hotze M, Tomlin T, Egbejimi O, Graveleau C, Abel E, Shaw C, Bray M, Hardin P, Young M. The intrinsic circadian clock within the cardiomyocyte. Am J Physiol Heart Circ Physiol. 2005;289:H1530–41.

    PubMed  CAS  Google Scholar 

  107. Nonaka H, Emoto N, Ikeda K, Fukuya H, Rohman MS, Raharjo SB, Yagita K, Okamura H, Yokoyama M. Angiotensin II induces circadian gene expression of clock genes in cultured vascular smooth muscle cells. Circulation. 2001;104(15):1746–8.

    PubMed  CAS  Google Scholar 

  108. McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell. 2001;105(7):877–89.

    PubMed  CAS  Google Scholar 

  109. Hirota T, Fukada Y. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog Sci. 2004;21:359–68.

    PubMed  Google Scholar 

  110. Takahashi J. Circadian-clock regulation of gene expression. Curr Opin Genet Dev. 1993;3:301–9.

    PubMed  CAS  Google Scholar 

  111. Gekakis N, Staknis D, Nguyen H, Davis F, Wilsbacher L, King D, Takahashi J, Weitz C. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280:1564–9.

    PubMed  CAS  Google Scholar 

  112. Hogenesch J, Gu Y, Jain S, Bradfield C. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA. 1998;95:5474–9.

    PubMed  CAS  Google Scholar 

  113. Shearman L, Sriram S, Weaver D, Maywood E, Chaves I, Zheng B, Kume K, Lee C, van der Horst GT, Hastings M, Reppert S. Interacting molecular loops in the mammalian circadian clock. Science. 2000;288:1013–9.

    PubMed  CAS  Google Scholar 

  114. Kume K, Zylka M, Sriram S, Shearman L, Weaver D, Jin X, Maywood E, Hastings M, Reppert S. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98:193–205.

    PubMed  CAS  Google Scholar 

  115. Zylka M, Shearman L, Weaver D, Reppert S. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 1998;20:1103–10.

    PubMed  CAS  Google Scholar 

  116. Kloss B, Price J, Saez L, Blau J, Rothenfluh A, Wesley C, Young M. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell. 1998;94:97–107.

    PubMed  CAS  Google Scholar 

  117. Dardente H, Cermakian N. Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int. 2007;24(2):195–213.

    PubMed  CAS  Google Scholar 

  118. Bray M, Shaw C, Moore M, Garcia R, Zanquetta M, Durgan D, Jeong W, Tsai J, Bugger H, Zhang D, Rohrwasser A, Rennison J, Dyck J, Litwin S, Hardin P, Chow C, Chandler M, Abel E, Young M. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function; metabolism; and gene expression. Am J Physiol Heart Circ Physiol. 2008;294:H1036–47.

    PubMed  CAS  Google Scholar 

  119. Durgan DJ, Young ME. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res. 2010;106(4):647–58.

    PubMed  CAS  Google Scholar 

  120. Tamaru T, Hirayama J, Isojima Y, Nagai K, Norioka S, Takamatsu K, Sassone-Corsi P. CK2alpha phosphorylates BMAL1 to regulate the mammalian clock. Nat Struct Mol Biol. 2009;16(4):446–8.

    PubMed  CAS  Google Scholar 

  121. Chatham J, Laczy B, Durgan D, Young M. Direct interrelationship between protein O-GlcNAcation and the cardiomyocyte circadian clock. Circ Res. 2009;105:e50.

    Google Scholar 

  122. Hardin PE, Yu W. Circadian transcription: passing the HAT to CLOCK. Cell. 2006;125(3):424–6.

    PubMed  CAS  Google Scholar 

  123. Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. Circadian clock control by SUMOylation of BMAL1. Science. 2005;309(5739):1390–4.

    PubMed  CAS  Google Scholar 

  124. Katada S, Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol. 2010;17(12):1414–21.

    PubMed  CAS  Google Scholar 

  125. Berson D. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 2003;26:314–20.

    PubMed  CAS  Google Scholar 

  126. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070–3.

    PubMed  CAS  Google Scholar 

  127. Damiola F, Le MN, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14:2950–61.

    PubMed  CAS  Google Scholar 

  128. Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 2001;20(24):7128–36.

    PubMed  Google Scholar 

  129. Durgan DJ, Tsai JY, Grenett MH, Pat BM, Ratcliffe WM, Villegas-Montoya C, Garvey ME, Nagendran J, Dyck JRB, Bray MS, Gamble KL, Gimble JM, Young ME. Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice. Chronobiol Int. 2011;28(3):187–203.

    PubMed  CAS  Google Scholar 

  130. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627–31.

    PubMed  CAS  Google Scholar 

  131. Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia. 2011;54(1):120–4.

    PubMed  CAS  Google Scholar 

  132. Rudic RD, Fulton DJ. Pressed for time: the circadian clock and hypertension. J Appl Physiol. 2009;107(4):1328–38.

    PubMed  CAS  Google Scholar 

  133. Viswambharan H, Carvas JM, Antic V, Marecic A, Jud C, Zaugg CE, Ming XF, Montani JP, Albrecht U, Yang Z. Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation. 2007;115(16):2188–95.

    PubMed  CAS  Google Scholar 

  134. Anea CB, Zhang M, Stepp DW, Simkins GB, Reed G, Fulton DJ, Rudic RD. Vascular disease in mice with a dysfunctional circadian clock. Circulation. 2009;119(11):1510–7.

    PubMed  Google Scholar 

  135. Oishi K, Miyazaki K, Uchida D, Ohkura N, Wakabayashi M, Doi R, Matsuda J, Ishida N. PERIOD2 is a circadian negative regulator of PAI-1 gene expression in mice. J Mol Cell Cardiol. 2009;46(4):545–52.

    PubMed  CAS  Google Scholar 

  136. Schoenhard JA, Smith LH, Painter CA, Eren M, Johnson CH, Vaughan DE. Regulation of the PAI-1 promoter by circadian clock components: differential activation by BMAL1 and BMAL2. J Mol Cell Cardiol. 2003;35(5):473–81.

    PubMed  CAS  Google Scholar 

  137. Westgate EJ, Cheng Y, Reilly DF, Price TS, Walisser JA, Bradfield CA, FitzGerald GA. Genetic components of the circadian clock regulate thrombogenesis in vivo. Circulation. 2008;117(16):2087–95.

    PubMed  Google Scholar 

  138. Summers SA, Yin VP, Whiteman EL, Garza LA, Cho H, Tuttle RL, Birnbaum MJ. Signaling pathways mediating insulin-stimulated glucose transport. Ann N Y Acad Sci. 1999;892:169–86.

    PubMed  CAS  Google Scholar 

  139. O’Brien RM, Streeper RS, Ayala JE, Stadelmaier BT, Hornbuckle LA. Insulin-regulated gene expression. Biochem Soc Trans. 2001;29(Pt 4):552–8.

    PubMed  Google Scholar 

  140. Kohlman Jr O, Neves Fde A, Ginoza M, Tavares A, Cezaretti ML, Zanella MT, Ribeiro AB, Gavras I, Gavras H. Role of bradykinin in insulin sensitivity and blood pressure regulation during hyperinsulinemia. Hypertension. 1995;25(5):1003–7.

    PubMed  CAS  Google Scholar 

  141. Uehara M, Kishikawa H, Isami S, Kisanuki K, Ohkubo Y, Miyamura N, Miyata T, Yano T, Shichiri M. Effect on insulin sensitivity of angiotensin converting enzyme inhibitors with or without a sulphydryl group: bradykinin may improve insulin resistance in dogs and humans. Diabetologia. 1994;37(3):300–7.

    PubMed  CAS  Google Scholar 

  142. Dimitriadis G, Leighton B, Parry-Billings M, Sasson S, Young M, Krause U, Bevan S, Piva T, Wegener G, Newsholme EA. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem J. 1997;321(Pt 3):707–12.

    PubMed  CAS  Google Scholar 

  143. Storlien LH, James DE, Burleigh KM, Chisholm DJ, Kraegen EW. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Physiol. 1986;251(5 Pt 1):E576–83.

    PubMed  CAS  Google Scholar 

  144. Desbois-Mouthon C, Danan C, Amselem S, Blivet-Van Eggelpoel MJ, Sert-Langeron C, Goossens M, Besmond C, Capeau J, Caron M. Severe resistance to insulin and insulin-like growth factor-I in cells from a patient with leprechaunism as a result of two mutations in the tyrosine kinase domain of the insulin receptor. Metabolism. 1996;45(12):1493–500.

    PubMed  CAS  Google Scholar 

  145. la Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes. 2001;50(6):1237–43.

    PubMed  Google Scholar 

  146. Vinall PE, Kramer MS, Heinel LA, Rosenwasser RH. Temporal changes in sensitivity of rats to cerebral ischemic insult. J Neurosurg. 2000;93(1):82–9.

    PubMed  CAS  Google Scholar 

  147. Tischkau SA, Cohen JA, Stark JT, Gross DR, Bottum KM. Time-of-day affects expression of hippocampal markers for ischemic damage induced by global ischemia. Exp Neurol. 2007;208(2):314–22.

    PubMed  CAS  Google Scholar 

  148. Nossuli TO, Lakshminarayanan V, Baumgarten G, Taffet GE, Ballantyne CM, Michael LH, Entman ML. A chronic mouse model of myocardial ischemia-reperfusion: essential in cytokine studies. Am J Physiol Heart Circ Physiol. 2000;278(4):H1049–55.

    PubMed  CAS  Google Scholar 

  149. Marpegan L, Leone MJ, Katz ME, Sobrero PM, Bekinstein TA, Golombek DA. Diurnal variation in endotoxin-induced mortality in mice: correlation with proinflammatory factors. Chronobiol Int. 2009;26(7):1430–42.

    PubMed  CAS  Google Scholar 

  150. Durgan DJ, Pulinilkunnil T, Villegas-Montoya C, Garvey ME, Frangogiannis NG, Michael LH, Chow CW, Dyck JR, Young ME. Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res. 2010;106(3):546–50.

    PubMed  CAS  Google Scholar 

  151. Suarez-Barrientos A, Lopez-Romero P, Vivas D, Castro-Ferreira F, Nunez-Gil I, Franco E, Ruiz-Mateos B, Garcia-Rubira JC, Fernandez-Ortiz A, Macaya C, Ibanez B. Circadian variations of infarct size in acute myocardial infarction. Heart. 2011;97(12):970–6. doi:10.1136/hrt.2010.212621.

    PubMed  Google Scholar 

  152. Sung MM, Soltys CL, Masson G, Boisvenue JJ, Dyck JR. Improved cardiac metabolism and activation of the RISK pathway contributes to improved post-ischemic recovery in calorie restricted mice. J Mol Med. 2010;89(3):291–302.

    PubMed  Google Scholar 

  153. Bes S, Roussel P, Laubriet A, Vandroux D, Tissier C, Rochette L, Athias P. Influence of deep hypothermia on the tolerance of the isolated cardiomyocyte to ischemia-reperfusion. J Mol Cell Cardiol. 2001;33(11):1973–88.

    PubMed  CAS  Google Scholar 

  154. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001;33(11):1897–918.

    PubMed  CAS  Google Scholar 

  155. Durgan D, Trexler N, Egbejimi O, McElfresh T, Suk H, Petterson L, Shaw C, Hardin P, Bray M, Chandler M, Chow C, Young M. The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J Biol Chem. 2006;281:24254–69.

    PubMed  CAS  Google Scholar 

  156. Virag JA, Dries JL, Easton PR, Friesland AM, DeAntonio JH, Chintalgattu V, Cozzi E, Lehmann BD, Ding JM, Lust RM. Attenuation of myocardial injury in mice with functional deletion of the circadian rhythm gene mPer2. Am J Physiol Heart Circ Physiol. 2010;298(3):H1088–95.

    PubMed  CAS  Google Scholar 

  157. Daugherty A, Lu H, Howatt DA, Rateri DL. Modes of defining atherosclerosis in mouse models: relative merits and evolving standards. Methods Mol Biol. 2009;573:1–15.

    PubMed  Google Scholar 

  158. Trzos E, Uznanska B, Rechcinski T, Krzeminska-Pakula M, Bugala M, Kurpesa M. Myocardial infarction in young people. Cardiol J. 2009;16(4):307–11.

    PubMed  Google Scholar 

  159. Bray MS, Young ME. The role of cell-specific circadian clocks in metabolism and disease. Obes Rev. 2009;10 Suppl 2:6–13.

    PubMed  CAS  Google Scholar 

  160. Ptitsyn AA, Gimble JM. True or false: all genes are rhythmic. Ann Med. 2010;43(1):1–12.

    PubMed  Google Scholar 

  161. Rudic RD, McNamara P, Reilly D, Grosser T, Curtis AM, Price TS, Panda S, Hogenesch JB, FitzGerald GA. Bioinformatic analysis of circadian gene oscillation in mouse aorta. Circulation. 2005;112(17):2716–24.

    PubMed  CAS  Google Scholar 

  162. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA. 2008;105(39):15172–7.

    PubMed  CAS  Google Scholar 

  163. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. Extensive and divergent circadian gene expression in liver and heart. Nature. 2002;417(6884):78–83.

    PubMed  CAS  Google Scholar 

  164. O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, Reddy AB, Millar AJ. Circadian rhythms persist without transcription in a eukaryote. Nature. 2011;469(7331):554–8.

    PubMed  Google Scholar 

  165. O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature. 2011;469(7331): 498–503.

    PubMed  Google Scholar 

  166. Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell. 2010;142(6):943–53.

    PubMed  CAS  Google Scholar 

  167. Curtis A, Seo S, Westgate E, Rudic R, Smyth E, Chakravarti D, FitzGerald G, McNamara P. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem. 2004;279:7091–7.

    PubMed  CAS  Google Scholar 

  168. Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 2006;125(3):497–508.

    PubMed  CAS  Google Scholar 

  169. Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, Wong GK, Chesham J, Odell M, Lilley KS, Kyriacou CP, Hastings MH. Circadian orchestration of the hepatic proteome. Curr Biol. 2006;16(11):1107–15.

    PubMed  CAS  Google Scholar 

  170. Taegtmeyer H. Metabolism–the lost child of cardiology. J Am Coll Cardiol. 2000;36:1386–8.

    PubMed  CAS  Google Scholar 

  171. Goodwin GW, Taegtmeyer H. Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol. 2000;279(4):H1490–501.

    PubMed  CAS  Google Scholar 

  172. Bray MS, Young ME. Diurnal variations in myocardial metabolism. Cardiovasc Res. 2008;79(2):228–37.

    PubMed  CAS  Google Scholar 

  173. La Fleur SE, Kalsbeek A, Wortel J, Buijs RM. A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. J Neuroendocrinol. 1999;11(8):643–52.

    PubMed  Google Scholar 

  174. Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal Jr F, Krueger JM. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1071–9.

    PubMed  CAS  Google Scholar 

  175. Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology. 2005;146(12):5631–6.

    PubMed  CAS  Google Scholar 

  176. Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest. 1998;101(5):1020–7.

    PubMed  CAS  Google Scholar 

  177. Tsai JY, Kienesberger PC, Pulinilkunnil T, Sailors MH, Durgan DJ, Villegas-Montoya C, Jahoor A, Gonzalez R, Garvey ME, Boland B, Blasier Z, McElfresh TA, Nannegari V, Chow CW, Heird WC, Chandler MP, Dyck JR, Bray MS, Young ME. Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock. J Biol Chem. 2010;285(5):2918–29.

    PubMed  CAS  Google Scholar 

  178. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res. 1997;33(2):243–57.

    PubMed  CAS  Google Scholar 

  179. Stanley WC. Myocardial energy metabolism during ischemia and the mechanisms of metabolic therapies. J Cardiovasc Pharmacol Ther. 2004;9 Suppl 1:S31–45.

    PubMed  CAS  Google Scholar 

  180. Lopaschuk G, Belke D, Gamble J, Itoi T, Schönekess B. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994;1213:263–76.

    PubMed  CAS  Google Scholar 

  181. Young M, McNulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: Part II: potential Mechanisms. Circulation. 2002;105:1861–70.

    PubMed  CAS  Google Scholar 

  182. Wende AR, Abel ED. Lipotoxicity in the heart. Biochim Biophys Acta. 2009;1801(3):311–9.

    PubMed  Google Scholar 

  183. Schlierf G, Dorow E. Diurnal patterns of triglycerides, free fatty acids, blood sugar, and insulin during carbohydrate-induction in man and their modification by nocturnal suppression of lipolysis. J Clin Invest. 1973;52(3):732–40.

    PubMed  CAS  Google Scholar 

  184. Stavinoha M, RaySpellicy J, Hart-Sailors M, Mersmann H, Bray M, Young M. Diurnal variations in the responsiveness of cardiac and skeletal muscle to fatty acids. Am J Physiol. 2004;287:E878–87.

    CAS  Google Scholar 

  185. Butler AA, Kozak LP. A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes. 2010;59(2):323–9.

    PubMed  CAS  Google Scholar 

  186. Lewin TM, Coleman RA. Regulation of myocardial triacylglycerol synthesis and metabolism. Biochim Biophys Acta. 2003;1634(3):63–75.

    PubMed  CAS  Google Scholar 

  187. Benavides A, Siches M, Llobera M. Circadian rhythms of lipoprotein lipase and hepatic lipase activities in intermediate metabolism of adult rat. Am J Physiol. 1998;275(3 Pt 2):R811–7.

    PubMed  CAS  Google Scholar 

  188. Glatz JF, Baerwaldt CC, Veerkamp JH, Kempen HJ. Diurnal variation of cytosolic fatty acid-binding protein content and of palmitate oxidation in rat liver and heart. J Biol Chem. 1984;259(7):4295–300.

    PubMed  CAS  Google Scholar 

  189. Durgan D, Moore M, Ha N, Egbejimi O, Fields A, Mbawuike U, Egbejimi A, Shaw C, Bray M, Nannegari V, Hickson-Bick D, Heird W, Dyck J, Chandler M, Young M. Circadian rhythms in myocardial metabolism and contractile function: influence of workload and oleate. Am J Physiol Heart Circ Physiol. 2007;293:H2385–93.

    PubMed  CAS  Google Scholar 

  190. Young M, Razeghi P, Cedars A, Guthrie P, Taegtmeyer H. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ Res. 2001;89:1199–208.

    PubMed  CAS  Google Scholar 

  191. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res. 1990;66(2):546–53.

    PubMed  CAS  Google Scholar 

  192. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58.

    PubMed  CAS  Google Scholar 

  193. Durgan DJ, Pat BM, Laczy B, Bradley JA, Tsai JY, Grenett MH, Ratcliffe WF, Brewer RA, Villegas-Montoya C, Zou C, Zou L, Bray MS, Gamble KL, Chatham JC, Young ME O-GlcNAcylation: A Novel Post-Translational Modification Linking Myocardial Metabolism and the Cardiomyocyte Circadian Clock. JBC: 2011;286:44606–19.

    Google Scholar 

  194. Berggren H, Ekroth R, Herlitz J, Hjalmarson A, Waldenstrom A, Waldenstrom J, William-Olsson G. Improved myocardial protection during cold cardioplegia by means of increased myocardial glycogen stores. Thorac Cardiovasc Surg. 1982;30(6):389–92.

    PubMed  CAS  Google Scholar 

  195. Chatham JC, Marchase RB. The role of protein O-linked beta-N-acetylglucosamine in mediating cardiac stress responses. Biochim Biophys Acta. 2010;1800(2):57–66.

    PubMed  CAS  Google Scholar 

  196. Vieira E, Nilsson EC, Nerstedt A, Ormestad M, Long YC, Garcia-Roves PM, Zierath JR, Mahlapuu M. Relationship between AMPK and the transcriptional balance of clock-related genes in skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295(5):E1032–7.

    PubMed  CAS  Google Scholar 

  197. Asher G, Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 2011;13(2):125–37.

    PubMed  CAS  Google Scholar 

  198. Um JH, Pendergast JS, Springer DA, Foretz M, Viollet B, Brown A, Kim MK, Yamazaki S, Chung JH. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One. 2011;6(3):e18450.

    PubMed  CAS  Google Scholar 

  199. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009;326(5951):437–40.

    PubMed  CAS  Google Scholar 

  200. Lopaschuk GD. AMP-activated protein kinase control of energy metabolism in the ischemic heart. Int J Obes (Lond). 2008;32 Suppl 4:S29–35.

    CAS  Google Scholar 

  201. Iitaka C, Miyazaki K, Akaike T, Ishida N. A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem. 2005;280(33):29397–402.

    PubMed  CAS  Google Scholar 

  202. Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erb alpha is a critical lithium-sensitive component of the circadian clock. Science. 2006;311(5763):1002–5.

    PubMed  CAS  Google Scholar 

  203. Kaladchibachi SA, Doble B, Anthopoulos N, Woodgett JR, Manoukian AS. Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. J Circadian Rhythms. 2007;5:3.

    PubMed  Google Scholar 

  204. Wang J, Yin L, Lazar MA. The orphan nuclear receptor Rev-erb alpha regulates circadian expression of plasminogen activator inhibitor type 1. J Biol Chem. 2006;281(45):33842–8.

    PubMed  CAS  Google Scholar 

  205. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113(11):1535–49.

    PubMed  CAS  Google Scholar 

  206. Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res. 2009;104(11):1240–52.

    PubMed  CAS  Google Scholar 

  207. Miura T, Miki T. GSK-3beta, a therapeutic target for cardiomyocyte protection. Circ J. 2009;73(7):1184–92.

    PubMed  CAS  Google Scholar 

  208. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88(2):581–609.

    PubMed  CAS  Google Scholar 

  209. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol. 2007;9(5):550–5.

    PubMed  CAS  Google Scholar 

  210. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033): 658–62.

    PubMed  CAS  Google Scholar 

  211. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434(7033):652–8.

    PubMed  CAS  Google Scholar 

  212. Wu M, Falasca M, Blough ER. Akt/protein kinase B in skeletal muscle physiology and pathology. J Cell Physiol. 2011;226(1):29–36.

    PubMed  CAS  Google Scholar 

  213. Bertrand L, Horman S, Beauloye C, Vanoverschelde JL. Insulin signalling in the heart. Cardiovasc Res. 2008;79(2):238–48.

    PubMed  CAS  Google Scholar 

  214. Latronico MV, Costinean S, Lavitrano ML, Peschle C, Condorelli G. Regulation of cell size and contractile function by AKT in cardiomyocytes. Ann N Y Acad Sci. 2004;1015:250–60.

    PubMed  CAS  Google Scholar 

  215. Mullonkal CJ, Toledo-Pereyra LH. Akt in ischemia and reperfusion. J Invest Surg. 2007; 20(3):195–203.

    PubMed  Google Scholar 

  216. Ma H, Zhang HF, Yu L, Zhang QJ, Li J, Huo JH, Li X, Guo WY, Wang HC, Gao F. Vasculoprotective effect of insulin in the ischemic/reperfused canine heart: role of Akt-stimulated NO production. Cardiovasc Res. 2006;69(1):57–65.

    PubMed  CAS  Google Scholar 

  217. Dorn II GW, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest. 2005;115(3):527–37.

    PubMed  CAS  Google Scholar 

  218. Levitsky S. Protecting the myocardial cell during coronary revascularization. The William W.L. Glenn Lecture. Circulation. 2006;114(1 Suppl):I339–43.

    PubMed  Google Scholar 

  219. Murphy E, Perlman M, London RE, Steenbergen C. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res. 1991;68(5):1250–8.

    PubMed  CAS  Google Scholar 

  220. Murphy E, Cross H, Steenbergen C. Sodium regulation during ischemia versus reperfusion and its role in injury. Circ Res. 1999;84(12):1469–70.

    PubMed  CAS  Google Scholar 

  221. Mentzer Jr RM, Lasley RD, Jessel A, Karmazyn M. Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection. Ann Thorac Surg. 2003;75(2):S700–8.

    PubMed  Google Scholar 

  222. Villa-Abrille MC, Cingolani E, Cingolani HE, Alvarez BV. Silencing of cardiac mitochondrial NHE1 prevents mitochondrial permeability transition pore opening. Am J Physiol Heart Circ Physiol. 2011;300(4):H1237–51.

    PubMed  CAS  Google Scholar 

  223. Nishinaga H, Komatsu R, Doi M, Fustin JM, Yamada H, Okura R, Yamaguchi Y, Matsuo M, Emoto N, Okamura H. Circadian expression of the Na+/H+ exchanger NHE3 in the mouse renal medulla. Biomed Res. 2009;30(2):87–93.

    PubMed  CAS  Google Scholar 

  224. Balaban RS. The role of Ca(2+) signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim Biophys Acta. 2009;1787(11):1334–41.

    PubMed  CAS  Google Scholar 

  225. Sachan N, Dey A, Rotter D, Grinsfelder DB, Battiprolu PK, Sikder D, Copeland V, Oh M, Bush E, Shelton JM, Bibb JA, Hill JA, Rothermel BA. Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurin-dependent signaling and protein phosphorylation in the heart. Circ Res. 2011;108(4):437–45.

    PubMed  CAS  Google Scholar 

  226. Pfeffer M, Muller CM, Mordel J, Meissl H, Ansari N, Deller T, Korf HW, von Gall C. The mammalian molecular clockwork controls rhythmic expression of its own input pathway components. J Neurosci. 2009;29(19):6114–23.

    PubMed  CAS  Google Scholar 

  227. Nordskog BK, Hammarback JA, Godwin DW. Diurnal gene expression patterns of T-type calcium channels and their modulation by ethanol. Neuroscience. 2006;141(3):1365–73.

    PubMed  CAS  Google Scholar 

  228. Ko GY, Shi L, Ko ML. Circadian regulation of ion channels and their functions. J Neurochem. 2009;110(4):1150–69.

    PubMed  CAS  Google Scholar 

  229. Lapenna D, De Gioia S, Mezzetti A, Porreca E, Ciofani G, Marzio L, Capani F, Di Ilio C, Cuccurullo F. Circadian variations in antioxidant defences and lipid peroxidation in the rat heart. Free Radic Res Commun. 1992;17(3):187–94.

    PubMed  CAS  Google Scholar 

  230. Kondratov RV, Vykhovanets O, Kondratova AA, Antoch MP. Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging (Albany NY). 2009;1(12):979–87.

    CAS  Google Scholar 

  231. Ten Tusscher KH, Panfilov AV. Influence of diffuse fibrosis on wave propagation in human ventricular tissue. Europace. 2007;9 Suppl 6:vi38–45.

    PubMed  Google Scholar 

  232. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79(1):215–62.

    PubMed  CAS  Google Scholar 

  233. Lin CS, Pan CH. Regulatory mechanisms of atrial fibrotic remodeling in atrial fibrillation. Cell Mol Life Sci. 2008;65(10):1489–508.

    PubMed  CAS  Google Scholar 

  234. Everett IV TH, Olgin JE. Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm. 2007;4(3 Suppl):S24–7.

    PubMed  Google Scholar 

  235. Strain JE, Grose RM, Factor SM, Fisher JD. Results of endomyocardial biopsy in patients with spontaneous ventricular tachycardia but without apparent structural heart disease. Circulation. 1983;68(6):1171–81.

    PubMed  CAS  Google Scholar 

  236. de Bakker JM, van Rijen HM. Continuous and discontinuous propagation in heart muscle. J Cardiovasc Electrophysiol. 2006;17(5):567–73.

    PubMed  Google Scholar 

  237. Kawara T, Derksen R, de Groot JR, Coronel R, Tasseron S, Linnenbank AC, Hauer RN, Kirkels H, Janse MJ, de Bakker JM. Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation. 2001;104(25):3069–75.

    PubMed  CAS  Google Scholar 

  238. Spinale FG, Coker ML, Bond BR, Zellner JL. Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res. 2000;46(2):225–38.

    PubMed  CAS  Google Scholar 

  239. Weber KT, Sun Y, Guarda E, Katwa LC, Ratajska A, Cleutjens JP, Zhou G. Myocardial fibrosis in hypertensive heart disease: an overview of potential regulatory mechanisms. Eur Heart J. 1995;16(Suppl C):24–8.

    PubMed  Google Scholar 

  240. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101(25):2981–8.

    PubMed  CAS  Google Scholar 

  241. Pauschinger M, Chandrasekharan K, Li J, Schwimmbeck PL, Noutsias M, Schultheiss HP. Mechanisms of extracellular matrix remodeling in dilated cardiomyopathy. Herz. 2002;27(7):677–82.

    PubMed  Google Scholar 

  242. Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 2001;276(20):17058–62.

    PubMed  CAS  Google Scholar 

  243. Sole MJ, Martino TA. Diurnal physiology: core principles with application to the pathogenesis, diagnosis, prevention and treatment of myocardial hypertrophy and failure. J Appl Physiol. 2009;107(4):1318–27.

    PubMed  CAS  Google Scholar 

  244. Palatini P. Non-dipping in hypertension: still a challenging problem. J Hypertens. 2004;22(12):2269–72.

    PubMed  CAS  Google Scholar 

  245. Palatini P, Penzo M, Racioppa A, Zugno E, Guzzardi G, Anaclerio M, Pessina AC. Clinical relevance of nighttime blood pressure and of daytime blood pressure variability. Arch Intern Med. 1992;152(9):1855–60.

    PubMed  CAS  Google Scholar 

  246. Kung T, Egbejimi O, Cui J, Ha N, Durgan D, Essop M, Bray M, Shaw C, Hardin P, Stanley W, Young M. Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion. J Mol Cell Cardiol. 2007;43:744–53.

    PubMed  CAS  Google Scholar 

  247. Rutter J, Reick M, Wu L, McKnight S. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 2001;293:510–4.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Heart, Lung, and Blood Institute (HL-074259 [MEY]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin E. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Durgan, D.J., Young, M.E. (2012). Relationship Between Myocardial Ischemia/Reperfusion and Time of Day. In: Patterson, C., Willis, M. (eds) Translational Cardiology. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-891-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-891-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-890-0

  • Online ISBN: 978-1-61779-891-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics