Skip to main content

Chocolate: Psychopharmacological Aspects, Mood, and Addiction

  • Chapter
  • First Online:
Chocolate in Health and Nutrition

Part of the book series: Nutrition and Health ((NH,volume 7))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilson P. Centuries of seeking chocolate’s medicinal benefits. Lancet. 2010;376(9736):158–9.

    Article  PubMed  Google Scholar 

  2. Dillinger T, Barriga P, Escárcega S, et al. Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr. 2010;130(8S):2057S–72.

    Google Scholar 

  3. Drewnowski A, Bellisle F. Is sweetness addictive? Nutr Bull. 2007;32:52–60.

    Article  Google Scholar 

  4. Grigson P. Like drugs for chocolate: separate rewards modulated by common mechanism. Physiol Behav. 2002;76:389–95.

    Article  PubMed  CAS  Google Scholar 

  5. Levine A. The animal model in food intake regulation: examples from the opioid literature. Physiol Behav. 2006;89:92–6.

    Article  PubMed  CAS  Google Scholar 

  6. Epstein L, Leddy J. Food reinforcement. Appetite. 2006;46:22–5.

    Article  PubMed  Google Scholar 

  7. Parker G, Parker I, Brotchie H. Mood state effects of chocolate. J Affect Disord. 2006;92:149–56.

    Article  PubMed  Google Scholar 

  8. Dettmer D, Macht M. Everyday mood and emotions after eating a chocolate bar or an apple. Appetite. 2006;46:332–6.

    Article  PubMed  Google Scholar 

  9. Michener W. Rozin P; pharmacological versus sensory factors in the satiation of chocolate craving. Physiol Behav. 1994;56:419–22.

    Article  PubMed  CAS  Google Scholar 

  10. Lymn B. The nutritional values and food group characteristics of foods preferred during various emotions. J Psychol. 1982;112:121–7.

    Article  Google Scholar 

  11. Silva N. Chocolate consumption and effects on serotonin synthesis. Arch Intern Med. 2010;170(17):1608.

    Article  PubMed  Google Scholar 

  12. Parker G, Crawford J. Chocolate craving when depressed: a personality marker. Br J Psychiatry. 2007;191:351–2.

    Article  PubMed  Google Scholar 

  13. Smit H, Blackburn R. Reinforcing effects of caffeine and theobromine as found in chocolate. Psychopharmacology. 2005;181:101–6.

    Article  PubMed  CAS  Google Scholar 

  14. Rogers P, Smit H. Food craving and food “addiction”: a critical review of the evidence from a biopsychosocial perspective. Pharmacol Biochem Behav. 2000;66:3–14.

    Article  PubMed  CAS  Google Scholar 

  15. Hetherington M, Macdairmid J. “Chocolate addiction”: a preliminary study of its description and its relationship to problem eating. Appetite. 1993;21:233–46.

    Article  PubMed  CAS  Google Scholar 

  16. Reynolds G, Riederer P, Sandler M, et al. Amphetamine and 2-phenylethylamine in post-mortem Parkinsonian brain after (−)deprenyl administration. J Neural Transm. 1978;43:271–7.

    Article  PubMed  CAS  Google Scholar 

  17. Hurst W, Toomey P. High-performance liquid chromatographic determination of four biogenic amines in chocolate. Analyst. 1981;106:394–402.

    Article  PubMed  CAS  Google Scholar 

  18. Sandler M, Youdim M, Hanington E. A phenylethylamine oxidising defect in migraine. Nature. 1974;250(464):335–7.

    Article  PubMed  CAS  Google Scholar 

  19. Sengupta T, Mohanakumar K. 2-Phenylethylamine, a constituent of chocolate and wine, causes mitochondrial complex-I inhibition, generation of hydroxyl radicals and depletion of striatal biogenic amines leading to psychomotor dysfunctions in Balb/c mice. Neurochem Int. 2010;57:637–46.

    Article  PubMed  CAS  Google Scholar 

  20. Paterson I, Juorio A, Boulton A. 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J Neurochem. 1990;55(6):1827–37.

    Article  PubMed  CAS  Google Scholar 

  21. Antelman S, Edwards D, Lin M. Phenylethylamine: evidence for a direct, postsynaptic dopamine-receptor stimulatory action. Brain Res. 1977;127:317–22.

    Article  PubMed  CAS  Google Scholar 

  22. Davis B, Boulton A. The trace amines and their acidic metabolites in depression an overview. Prog Neuropsychopharmacol Biol Psych. 1994;18:17–45.

    Article  CAS  Google Scholar 

  23. Liebowitz M, Klein D. Hysteroid dysphoria. Psychiatr Clin North Am. 1979;2:555–75.

    Google Scholar 

  24. Moller S. Serotonin, carbohydrates, and atypical depression. Pharmacol Toxicol. 1992;71(Suppl 1):61–71.

    Article  PubMed  Google Scholar 

  25. Kohl J, Francoeur R. The scent of eros. New York: Continuum; 1995.

    Google Scholar 

  26. Askar A, Morad M. Lebensmittelvergiftung. I. Toxine in Naturlichen Lebensmitteln. Alimento. 1980;19:59–66.

    CAS  Google Scholar 

  27. Smit H. Theobromine and the pharmacology of cocoa. In: Fredholm B, editor. Methylxanthines. Handbook of experimental pharmacology. Heidelberg: Springer; 2011. p. 201–34.

    Google Scholar 

  28. ten Brink B, Damink C, Joosten H, et al. Occurrence and formation of biologically active amines in foods. Int J Food Microbiol. 1990;11(73):84.

    Google Scholar 

  29. Devane W. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–9.

    Article  PubMed  CAS  Google Scholar 

  30. Di Tomaso E, Beltramo M, Piomelli D. Brain cannabinoids in chocolate. Nature. 1996;382:677–8.

    Article  PubMed  Google Scholar 

  31. Desarnaud F, Cadas H, Piomelli D. Anandamide amidohydrolase activity in rat brain microsomes. J Biol Chem. 1995;270(11):6030–5.

    Article  PubMed  CAS  Google Scholar 

  32. Tytgat J, Boven M, Daenens P. Cannabinoid mimics in chocolate utilized as an argument in court. Int J Legal Med. 2000;113:137–9.

    Article  PubMed  CAS  Google Scholar 

  33. Quertemont E, Tambour S, Tirelli E. The role of acetaldehyde in the neurobehavioral effects of ethanol: a comprehensive review of animal studies. Prog Neurobiol. 2005;75:247–74.

    Article  PubMed  CAS  Google Scholar 

  34. Lee J, Vijay A, Hamakazi K, et al. A critical evaluation of influence of ethanol and diet on salsolinol enantiomers in humans and rats. Alcohol Clin Exp Res. 2010;34(2):242–50.

    Article  PubMed  CAS  Google Scholar 

  35. Herraiz T, Chaparro C. Tetrahydro-ß-carbolines, potential neuroactive alkaloids, in chocolate and cocoa. J Agric Food Chem. 2000;48(10):4900–4.

    Article  PubMed  CAS  Google Scholar 

  36. Melzig M, Putscher I, Heklein P. In vitro pharmacological activity of the tetrahydroisoquinoline salsolinol present in products from Theobroma cacao L. like cocoa and chocolate. J Ethnopharmacol. 2000;73:153–9.

    Article  PubMed  CAS  Google Scholar 

  37. Rodd Z, Oster S, Ding Z, et al. The reinforcing properties of salsolinol in the ventral tegmental area: evidence for regional heterogeneity and the involvement of serotonin and dopamine. Alcohol Clin Exp Res. 2008;32(2):230–9.

    Article  PubMed  CAS  Google Scholar 

  38. Rojkovicova T, Mechref Y, Starkey J, et al. Quantitative chiral analysis of salsolinol in different brain regions of rats genetically predisposed to alcoholism. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;863:206–14.

    Article  PubMed  CAS  Google Scholar 

  39. Gilbert R. Caffeine consumption. In: Spiller G, editor. The methylxanthine beverages and foods: chemistry, consumption, and health effects. New York: Liss; 1984. p. 185–213.

    Google Scholar 

  40. Origitano T, Hannigan J, Collins MA. Brain Res. 1981;224(2):446–51.

    Article  PubMed  CAS  Google Scholar 

  41. Bonvehi J, Coll F. Evaluation of purine alkaloids and diketopiperazines contents in processed cocoa powder. Eur Food Res Technol. 2000;210:189–95.

    Article  CAS  Google Scholar 

  42. MAFF. Survey of caffeine and other methylxanthines in energy drinks and other caffeine-containing products (updated).In: Food Surveillance Information Sheet 144; 1998.

    Google Scholar 

  43. Smit H, Rogers P. Effects of caffeine on mood. In: Hetherington M, editor. Food cravings and addiction. Leatherhead: Leatherhead Food RA Publishing; 2001.

    Google Scholar 

  44. Shively C, Tarka S, Arnaud M, et al. High levels of methylxanthines in chocolate do not alter theobromine disposition. Clin Pharmacol Ther. 1985;37:415–24.

    Article  PubMed  CAS  Google Scholar 

  45. Mumford G, Benowitz N, Evans S, et al. Absorption rate of methylxanthines following capsules, cola and chocolate. Eur J Clin Pharmacol. 1996;51(3–4):319–25.

    Article  PubMed  CAS  Google Scholar 

  46. Mumford G, Evans S, Kaminski B, et al. Discriminative stimulus and subjective effects of theobromine and caffeine in humans. Psychopharmacology. 1994;115:1–8.

    Article  PubMed  CAS  Google Scholar 

  47. Basheer R, Strecker R, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol. 2004;73(6):379–96.

    Article  PubMed  CAS  Google Scholar 

  48. Fredholm B, Battig K, Holmén J, et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):84–133.

    Google Scholar 

  49. Daly J, Butts Lamb P, Padgett W. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol. 1983;3:69–80.

    Article  PubMed  CAS  Google Scholar 

  50. Fredholm B, Dunwiddie T. How does adenosine inhibit transmitter release? Trends Pharmacol. 1988;9:130–4.

    Article  CAS  Google Scholar 

  51. James J. Caffeine and health. London: Academic; 1991.

    Google Scholar 

  52. Lorist M, Snel J, Kok A. Influence of caffeine on information processing stages in well rested and fatigued subjects. Psychopharmacology. 1994;113:411–21.

    Article  PubMed  CAS  Google Scholar 

  53. Smit H, Gaffan E, Rogers P. Methylxanthines are the psycho-pharmacologically active constituents of chocolate. Psychopharmacology. 2004;176:412–9.

    Article  PubMed  CAS  Google Scholar 

  54. Porkka-Heiskanen T. Methylxanthines and sleep. In: Fredholm B, editor. Methylxanthines: handbook of experimental pharmacology, vol. 200. Heidelberg: Springer Verlag; 2011. p. 331–48.

    Google Scholar 

  55. Huang Z. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nature Neurosci. 2005;8:858–9.

    Article  PubMed  CAS  Google Scholar 

  56. Stahl S. Essential psychopharmacology: neuroscientific basis and practical applications. 3rd ed. New York: Cambridge University Press; 2008.

    Google Scholar 

  57. Rozin P, Levine E, Stoess C. Chocolate craving and liking. Appetite. 1991;17:199–212.

    Article  PubMed  CAS  Google Scholar 

  58. Cutrufelli R, Perhrsson P. Composition of foods: snacks and foods. In: U.S. Division, Agricultural Handbook. Washington, DC: US Government Printing Office;1991; Number 8–19.

    Google Scholar 

  59. Bruinsma K, Douglas L. Chocolate: food or drug? J Am Diet Assoc. 1999;99(10):1249–56.

    Article  PubMed  CAS  Google Scholar 

  60. Ohl F, Laarakker M, Schetters D, et al. Association between plasma magnesium-ion concentration and anxiety in inbred mice. Behav Pharmacol. 2004;16:S37.

    Article  Google Scholar 

  61. Mousain-Bosc M, Roche M, Rapin J, et al. Magnesium vitB6 intake reduces central nervous system hyperexcitability in children. J Am Coll Nutr. 2004;23(5):5455–85.

    Google Scholar 

  62. Fromm L, Pharm B, Heath D, et al. Magnesium attenuates post-traumatic depression/anxiety following diffuse traumatic brain injury in rats. J Am Coll Nutr. 2004;23(5):5295–335.

    Google Scholar 

  63. Rodin J, Mancuso J, Granjer J, et al. Food cravings in relation to body mass index, restraint and estradiol levels: a repeated measures study in healthy women. Appetite. 1991;17:177–85.

    Article  PubMed  CAS  Google Scholar 

  64. Wood G, Lass R. Cocoa. New York: Longman; 1985. p. 596.

    Google Scholar 

  65. Abraham G, Lubran M. Serum and red cell magnesium levels in patients with premenstrual tension. Am J Clin Nutr. 1981;34:2364–6.

    PubMed  CAS  Google Scholar 

  66. Hill A, Heaton-Brown L. The experience of food craving: a prospective investigation in healthy women. J Psychosom Res. 1994;38:801–14.

    Article  PubMed  CAS  Google Scholar 

  67. Abraham G. The normal menstrual cycle. In: Givens J, editor. Endocrine causes of menstrual disorders. Chicago: Yearbook Medical Publishers; 1978. p. 15–44.

    Google Scholar 

  68. Rude R, Behune J. Renal tubular maximum for magnesium in normal and hypoparathyroid man. J Clin Endocrinol Metab. 1980;5:1425–31.

    Article  Google Scholar 

  69. Spring B. Effects of foods and nutrients on the behavior of normal individuals. In: Wurtman R, Wurtman J, editors. Nutrition and the brain. New York: Raven; 1986. p. 1–47.

    Google Scholar 

  70. Liebermen H, Spring B, Garfield G. The behavioral effects of food constituents: strategies used in studies of amino acids, protein, carbohydrate and caffeine. Nutr Rev. 1986;44(Suppl):61–70.

    Google Scholar 

  71. Glaeser B, Maher T, Wurtman R. Changes in brain levels of acidic, basic, and neutral amino acids after consumption of single meals containing various proportions of protein. J Neurochem. 1983;41(4):1016–21.

    Article  PubMed  CAS  Google Scholar 

  72. Wurtman R. Ways that foods can affect the brain. Nutr Rev. 1986;44(Suppl):2–6.

    PubMed  Google Scholar 

  73. Rose N, Koperski S, Golomb B. Mood food: chocolate and depressive symptoms in a cross-sectional analysis. Arch Intern Med. 2010;170(8):699–703.

    Article  PubMed  Google Scholar 

  74. Eysenck H, Eysenck M. Perspectives on individual differences. In: Eysenck H, Eysenck M, editors. Personality and individual differences: a natural science approach. New York: Plenum; 1985.

    Chapter  Google Scholar 

  75. Macht M, Mueller J. Immediate effects of chocolate on experimentally induced mood states. Appetite. 2007;4:667–74.

    Article  Google Scholar 

  76. Christensen L, Burrows R. Dietary treatment of depression. Behav Ther. 1990;21:183–93.

    Article  Google Scholar 

  77. Mahler S, Smith K, Berridge K. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances “liking” of a sweet reward. Neuropsychopharmacology. 2007;32(11):2267–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Rodrigues-Silva M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodrigues-Silva, N. (2013). Chocolate: Psychopharmacological Aspects, Mood, and Addiction. In: Watson, R., Preedy, V., Zibadi, S. (eds) Chocolate in Health and Nutrition. Nutrition and Health, vol 7. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-803-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-803-0_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-802-3

  • Online ISBN: 978-1-61779-803-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics