Clinical Benefits of Cocoa: An Overview

  • Margarida CastellEmail author
  • Francisco Jose Pérez-Cano
  • Jean-François Bisson
Part of the Nutrition and Health book series (NH, volume 7)

Key Points

  • Cocoa intake enhances antioxidant defenses quickly and over a short period after ingestion.

  • Epidemiological studies indicate that cocoa has a cardioprotective effect by improving endothelial function and decreasing platelet aggregation and blood pressure.

  • Clinical evidence suggests that cocoa can be a new and interesting food for regulating mood and brain disorders.

  • Cocoa flavonoids have in vitro anti-inflammatory effects, and preclinical studies show this potential. The immunomodulatory power of cocoa, demonstrated preclinically, may be beneficial in reducing certain states of autoimmunity and hypersensitivity.

  • Although in vitro studies have shown that cocoa flavonoids exert antitumoral effects, further studies are needed.


Cocoa Flavonoids Antioxidant Cardiovascular diseases Nervous system Immune system Cancer 



This study was supported by the Ministerio de Ciencia y Tecnología (AGL2005-02823 and AGL2008-02790) and the Generalitat de Catalunya (SGR2009118).


  1. 1.
    Keen CL. Chocolate: food as medicine/medicine as food. J Am Coll Nutr. 2001;20:436S–9.PubMedGoogle Scholar
  2. 2.
    Dillinger TL, Barriga P, Escarcega S, Jimenez M, Salazar Lowe D, Grivetti LE. Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr. 2000;130:2057S–72.PubMedGoogle Scholar
  3. 3.
    Parker G, Parker I, Brotchie H. Mood state effects of chocolate. J Affect Disorders. 2006;92:149–59.PubMedCrossRefGoogle Scholar
  4. 4.
    Tabernero M, Serrano J, Saura-Calixto F. The antioxidant capacity of cocoa products: contribution to the Spanish diet. Int J Food Sci Tech. 2009;41:28–32.CrossRefGoogle Scholar
  5. 5.
    Belščak A, Komes D, Horžić D, et al. Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Res Int. 2009;42:707–16.CrossRefGoogle Scholar
  6. 6.
    Gu L, House SE, Wu X, Ou B, Prior RL. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem. 2006;54:4057–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Mullen W, Borges G, Donovan JL, Edwards CA, Serafini M, Lean ME, et al. Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa flavan-3-ol metabolites in humans. Am J Clin Nutr. 2009;89:1784–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Ramiro-Puig E, Castell M. Cocoa: antioxidant and immunomodulator. Br J Nutr. 2009;101:931–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Azam S, Hadi N, Khan UN, Hadi SM. Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Med Sci Monit. 2003;9:325–30.Google Scholar
  10. 10.
    Stoclet JC, Schini-Kerth V. Dietary flavonoids and human health. Ann Pharm Fr. 2011;69:78–90.PubMedGoogle Scholar
  11. 11.
    Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74:418–25.PubMedGoogle Scholar
  12. 12.
    Perez-Cano FJ, Perez-Berezo T, Ramos-Romero S, et al. Is there an anti-inflammatory potential beyond the antioxidant power of cocoa? In: Bishop MR, editor. Chocolate, fast foods and sweeteners: consumption and health. Hauppauge: Nova; 2009. p. 85–104.Google Scholar
  13. 13.
    Lecumberri E, Mateos R, Ramos S, Alía M, Rúperez P, Goya L, et al. Characterization of cocoa fiber and its effect on the antioxidant capacity of serum in rats. Nutr Hosp. 2006;21:622–8.PubMedGoogle Scholar
  14. 14.
    Ramiro-Puig E, Urpi-Sarda M, Perez-Cano FJ, Franch A, Castellote C, Andrés-Lacueva C, et al. Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats. J Agric Food Chem. 2007;55:6431–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Urpi-Sarda M, Ramiro-Puig E, Khan N, Ramos-Romero S, Llorach R, Castell M, et al. Distribution of epicatechin metabolites in lymphoid tissues and testes of young rats with a cocoa-enriched diet. Br J Nutr. 2010;103:1393–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Yeh CT, Yen GC. Induction of hepatic antioxidant enzymes by phenolic acids in rats is accompanied by increased levels of multidrug resistance-associated protein 3 mRNA expression. J Nutr. 2006;136:11–5.PubMedGoogle Scholar
  17. 17.
    Lecumberri E, Goya L, Mateos R, Alía M, Ramos S, Izquierdo-Pulido M, et al. A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition. 2007;23:332–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Jalil AM, Ismail A, Pei CP, Hamid M, Kamaruddin SH. Effect of cocoa extract on glucometabolism, oxidative stress, and antioxidant enzymes in obese-diabetic rats. J Agric Food Chem. 2008;56:7877–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Scheid L, Reusch A, Stehle P, Ellinger S. Antioxidant effects of cocoa and cocoa products ex vivo and in vivo: is there evidence from controlled intervention studies? Curr Opin Clin Nutr Metab Care. 2010;13:737–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG. Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr. 2000;130:2109S–14.PubMedGoogle Scholar
  21. 21.
    Wang JF, Schramm DD, Holt RR, Ensunsa JL, Fraga CG, Schmitz HH, et al. A dose–response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr. 2000;130:2115S–9.PubMedGoogle Scholar
  22. 22.
    Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424:1013.PubMedCrossRefGoogle Scholar
  23. 23.
    Fraga CG, Actis-Goretta L, Ottaviani JI, Carrasquedo F, Lotito SB, Lazarus S, et al. Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer players. Clin Dev Immunol. 2005;12:11–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Jalil AMM, Ismail A. Polyphenols in cocoa and cocoa products: Is there a link between antioxidant properties and health? Molecules. 2008;13:2190–219.PubMedCrossRefGoogle Scholar
  25. 25.
    Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008;88:38–50.PubMedGoogle Scholar
  26. 26.
    Corti R, Flammer AJ, Hollenberg NK, Lüscher TF. Cocoa and cardiovascular health. Circulation. 2009;119:1433–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Lippi G, Franchini M, Montagnana M, Favaloro EJ, Guidi GC, Targher G. Dark chocolate: consumption for pleasure or therapy? J Thromb Thrombolysis. 2009;28:482–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Gómez-Juaristi M, González-Torres L, Bravo L, Vaquero MP, Bastida S, Sánchez-Muniz FJ. Beneficial effects of chocolate on cardiovascular health. Nutr Hosp. 2011;26:289–92.PubMedGoogle Scholar
  29. 29.
    Muniyappa R, Hall G, Kolodziej TL, Karne RJ, Crandon SK, Quon MJ. Cocoa consumption for 2 wk enhances insulin-mediated vasodilatation without improving blood pressure or insulin resistance in essential hypertension. Am J Clin Nutr. 2008;88:1685–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Ried K, Frank OR, Stocks NP. Dark chocolate or tomato extract for prehypertension: a randomised controlled trial. BMC Complement Altern Med. 2009;9:22.PubMedCrossRefGoogle Scholar
  31. 31.
    Ried K, Sullivan T, Fakler P, Frank OR, Stocks NP. Does chocolate reduce blood pressure? A meta-analysis. BMC Med. 2010;8:39.PubMedCrossRefGoogle Scholar
  32. 32.
    Desch S, Kobler D, Schmidt J, Sonnabend M, Adams V, Sareban M, et al. Low vs. Higher-dose dark chocolate and blood pressure in cardiovascular high-risk patients. Am J Hypertens. 2010;23:694–700.PubMedCrossRefGoogle Scholar
  33. 33.
    Egan BM, Lakenx MA, Donovan JL, Woolson RF. Does dark chocolate have a role in the prevention and management of hypertension?: commentary on the evidence. Hypertension. 2010;55:1289–95.PubMedCrossRefGoogle Scholar
  34. 34.
    Rimbach G, Melchin M, Moehring J, Wagner AE. Polyphenols from cocoa and vascular health – A critical review. Int J Mol Sci. 2009;10:4290–309.PubMedCrossRefGoogle Scholar
  35. 35.
    Davison K, Berry NM, Misan G, Coat Coates AM, Buckley JD, Howe PR. Dose-related effects of flavanol-rich cocoa on blood pressure. J Hum Hypertens. 2010;24:568–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Heiss C, Jahn S, Taylor M, Real WM, Angeli FS, Wong ML, et al. Improvement of endothelial function with dietary flavanols is associated with mobilization of circulating angiogenic cells in patients with coronary artery disease. J Am Coll Cardiol. 2010;56:218–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Van Den Bogaard B, Draijer R, Westerhof BE, van den Meiracker AH, van Montfrans GA, van den Born BJ. Effects on peripheral and central blood pressure of cocoa with natural or high-dose theobromine: a randomized, double-blind crossover trial. Hypertension. 2010;56:839–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Borchers AT, Keen CL, Hannum SM, et al. Cocoa and chocolate: composition, bioavailability and health implications. J Med Food. 2000;3:77–105.CrossRefGoogle Scholar
  39. 39.
    Davison K, Coates AM, Buckley JD, Howe PR. Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjects. Int J Obes. 2008;32:1289–96.CrossRefGoogle Scholar
  40. 40.
    Fraga CG, Litterio MC, Prince PD, Calabró V, Piotrkowski B, Galleano M. Cocoa flavanols: effects on vascular nitric oxide and blood pressure. J Clin Biochem Nutr. 2011;48:63–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Berry NM, Davison K, Coates AM, Buckley JD, Howe PR. Impact of cocoa flavanol consumption on blood pressure responsiveness to exercise. Br J Nutr. 2010;103:1480–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Balzer J, Rassaf T, Heiss C, Kleinbongard P, Lauer T, Merx M, et al. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients. A double-masked, randomized, controlled trial. J Am Coll Cardiol. 2008;51:2141–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Faghihzadeh F, Esmaillzadeh A. Impact of cacao consumption on cardiovascular risk factors: review of current evidence. J Isfahan Med Sch. 2010;28:591–605.Google Scholar
  44. 44.
    Pascual V, Valls RM, Sola R. Cacao y chocolate: ¿un placer cardiosaludable? Clin Invest Arterioscler. 2009;21:198–209.CrossRefGoogle Scholar
  45. 45.
    Tokede OA, Gaziano JM, Djoussé L. Effects of cocoa products/dark chocolate on serum lipids: a meta-analysis. Eur J Clin Nutr. 2011;65(8):879–86.PubMedCrossRefGoogle Scholar
  46. 46.
    Baba S, Osakabe N, Kato Y, Natsume M, Yasuda A, Kido T, et al. Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr. 2007;85:709–17.PubMedGoogle Scholar
  47. 47.
    Monagas M, Khan N, Andres-Lacueva C, Casas R, Urpí-Sardà M, Llorach R, et al. Effect of cocoa powder on the modulation of inflammatory biomarkers in patients at high risk of cardiovascular disease. Am J Clin Nutr. 2009;90:1144–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Khan N, Monagas M, Andres-Lacueva C, Casas R, Urpí-Sardà M, Lamuela-Raventós RM, et al. Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease. Nutr Metab Cardiovasc Dis. 2012. (in press).Google Scholar
  49. 49.
    Cooper KA, Donovan JL, Waterhouse AL, Williamson G. Cocoa and health: a decade of research. Br J Nutr. 2008;99:1–11.PubMedCrossRefGoogle Scholar
  50. 50.
    Katz DL, Doughty K, Ali A. Cocoa and chocolate in human health and disease. Antioxid Redox Signal. 2011;15(10):2779–811.PubMedCrossRefGoogle Scholar
  51. 51.
    Macdonald I. Boosting brain power – with chocolate. Am Assoc Adv Sci. 2007.
  52. 52.
    Sorond FA, Lipsitz LA, Hollenberg NK, Fisher ND. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr Dis Treat. 2008;4:433–40.PubMedGoogle Scholar
  53. 53.
    Francis ST, Head K, Morris PG, Macdonald IA. The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J Cardiovasc Pharmacol. 2006;47:S215–20.PubMedCrossRefGoogle Scholar
  54. 54.
    Crews Jr WD, Harrison DW, Wright JW. A double-blind, placebo-controlled, randomized trial of the effects of dark chocolate and cocoa on variables associated with neuropsychological functioning and cardiovascular health: clinical findings from a sample of healthy, cognitively intact older adults. Am J Clin Nutr. 2008;87:872–80.PubMedGoogle Scholar
  55. 55.
    Nurk E, Refsum H, Drevon CA, Tell GS, Nygaard HA, Engedal K, et al. Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance. J Nutr. 2009;139:120–7.PubMedGoogle Scholar
  56. 56.
    Scholey AB, French SJ, Morris PJ, Kennedy DO, Milne AL, Haskell CF, et al. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol. 2010;24:1505–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Field DT, Williams CM, Butler LT. Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol Behav. 2011;103:255–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Sathyapalan T, Beckett S, Rigby AS, Mellor DD, Atkin SL. High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome. Nutr J. 2010;9:55–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Biesalski HK. The role of antioxidants in nutritional support. Nutrition. 2000;16:593–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Huber A, Stuchbury G, Burkle A, Münch G. Neuroprotective therapies for Alzheimer’s disease. Curr Pharm Des. 2006;12:705–17.PubMedCrossRefGoogle Scholar
  61. 61.
    Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, et al. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med. 2002;33:1693–702.PubMedCrossRefGoogle Scholar
  62. 62.
    Macht M, Roth S, Ellgring H. Chocolate eating in healthy men during experimentally induced sadness and joy. Appetite. 2002;39:147–58.PubMedCrossRefGoogle Scholar
  63. 63.
    Radin D, Hayssen G, Walsh J. Effects of intentionally enhanced chocolate on mood. Explore. 2007;3:485–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Macht M, Mueller J. Immediate effects of chocolate on experimentally induced mood states. Appetite. 2007;49:667–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Parker G, Crawford J. Chocolate craving when depressed: a personality marker. Br J Psychiatry. 2007;191:351–2.PubMedCrossRefGoogle Scholar
  66. 66.
    Javelot H, Messaoudi M, Jacquelin C, et al. Antidepressant-like properties of cocoa’s polyphenols – The role of flavonoids and flavanols on depression. Agro Food Ind Hi Tech. 2009;20:10–2.Google Scholar
  67. 67.
    di Tomaso E, Beltramo M, Piomelli D. Brain cannabinoids in chocolate. Nature. 1996;382:677–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Eby GA, Eby KL. Rapid recovery from major depression using magnesium treatment. Med Hypotheses. 2006;67:362–70.PubMedCrossRefGoogle Scholar
  69. 69.
    Rose N, Koperski S, Golomb BA. Mood food: chocolate and depressive symptoms in a cross-sectional analysis. Arch Intern Med. 2010;170:699–703.PubMedCrossRefGoogle Scholar
  70. 70.
    Wolz M, Kaminsky A, Löhle M, Storch A, Reichmann H. Chocolate consumption is increased in Parkinson’s disease. Results from a self-questionnaire study. J Neurol. 2009;256:488–92.PubMedCrossRefGoogle Scholar
  71. 71.
    Martin FP, Rezzi S, Peré-Trepat E. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects. J Proteome Res. 2009;8:5568–79.PubMedCrossRefGoogle Scholar
  72. 72.
    Ramiro-Puig E, Pérez-Cano FJ, Ramírez-Santana C, Castellote C, Izquierdo-Pulido M, Permanyer J, et al. Spleen lymphocyte function modulated by a cocoa-enriched diet. Clin Exp Immunol. 2007;149:535–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Castell M, Franch A, Ramos-Romero S, et al. Effect of a diet rich in cocoa flavonoids on experimental acute inflammation. In: Keller RB, editor. Flavonoids: biosynthesis, biological effects and dietary sources. Hauppauge: Nova; 2009. p. 213–29.Google Scholar
  74. 74.
    Lee KW, Kundu JK, Kim SO, Chun KS, Lee HJ, Surh YJ. Cocoa polyphenols inhibit phorbol ester-induced superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-kappaB and MAPKs in mouse skin in vivo. J Nutr. 2006;136:1150–5.PubMedGoogle Scholar
  75. 75.
    Ramos-Romero S, Ramiro-Puig E, Pérez-Cano FJ, et al. Anti-inflammatory effects of cocoa in rat carrageenin-induced paw oedema. Proc Nutr Soc. 2008;67:E65.CrossRefGoogle Scholar
  76. 76.
    Ramos-Romero S, Perez-Cano FJ, Castellote C, Castell M, Franch A. Effect of cocoa-enriched diets on lymphocytes involved in adjuvant arthritis in rats. Br J Nutr. 2012;107:523–32.Google Scholar
  77. 77.
    Ramos-Romero S, Perez-Cano FJ, Perez-Berezo T, Castellote C, Franch A, Castell M. Effect of a cocoa flavonoid-enriched diet on experimental autoimmune arthritis. Br J Nutr. 2012;107:378–87.Google Scholar
  78. 78.
    Mathur S, Devaraj S, Grundy SM, Jialal I. Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J Nutr. 2002;132:3663–7.PubMedGoogle Scholar
  79. 79.
    di Giuseppe R, di Castelnuovo A, Centritto F, Zito F, De Curtis A, Costanzo S, et al. Regular consumption of dark chocolate is associated with low serum concentrations of C reactive protein in a healthy Italian population. J Nutr. 2008;138:1939–45.PubMedGoogle Scholar
  80. 80.
    Perez-Cano FJ, Franch A, Perez-Berezo T, et al. The effects of flavonoids on the immune system. In: Preedy V, Watson R, editors. Bioactive foods and chronic disease states. New York: Elsevier; 2011.Google Scholar
  81. 81.
    Ramiro-Puig E, Pérez-Cano FJ, Ramos-Romero S, Pérez-Berezo T, Castellote C, Permanyer J, et al. Intestinal immune system of young rats influenced by cocoa-enriched diet. J Nutr Biochem. 2008;19:555–65.PubMedCrossRefGoogle Scholar
  82. 82.
    Perez-Berezo T, Ramiro-Puig E, Perez-Cano FJ, Castellote C, Permanyer J, Franch A, et al. Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats. Mol Nutr Food Res. 2009;53:389–97.PubMedCrossRefGoogle Scholar
  83. 83.
    Perez-Berezo T, Franch A, Ramos-Romero S, Castellote C, Pérez-Cano FJ, Castell M. Cocoa-enriched diets modulate intestinal and systemic humoral immune response in young adult rats. Mol Nutr Food Res. 2011;55:S56–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Perez-Berezo T, Franch A, Castellote C, Castell M, Pérez-Cano FJ. Mechanisms involved in down-regulation of intestinal IgA in rats by high cocoa intake. J Nutr Biochem. 2012. (in press).Google Scholar
  85. 85.
    Hollenberg NK, Fisher NDL, McCullough ML. Flavanols, the Kuna, cocoa consumption, and nitric oxide. J Am Soc Hypertens. 2009;3:105–12.PubMedCrossRefGoogle Scholar
  86. 86.
    Perez-Cano FJ, Franch A, Castellote C, et al. Cocoa and the immune system and proliferative disorders. In: Watson RR, Zibadi S, Preedy VR, editors. Dietary components and immune function. Nutrition and health. Part 5. New York: Humana Press; 2010. p. 469–96.CrossRefGoogle Scholar
  87. 87.
    Maskarinec G. Cancer protective properties of cocoa: a review of the epidemiologic evidence. Nutr Cancer. 2009;61:573–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Theodoratou E, Kyle J, Cetnarskyj R, Farrington SM, Tenesa A, Barnetson R, et al. Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2007;16:684–93.PubMedCrossRefGoogle Scholar
  89. 89.
    Le ML, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN, et al. Intake of flavonoids and lung cancer. J Natl Cancer Inst. 2000;92:154–60.CrossRefGoogle Scholar
  90. 90.
    Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76:560–8.PubMedGoogle Scholar
  91. 91.
    Peterson J, Lagiou P, Samoli E, Lagiou A, Katsouyanni K, La Vecchia C, et al. Flavonoid intake and breast cancer risk: a case-control study in Greece. Br J Cancer. 2003;89:1255–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Margarida Castell
    • 1
    Email author
  • Francisco Jose Pérez-Cano
    • 1
  • Jean-François Bisson
    • 2
  1. 1.Departament de Fisiologia, Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Department of Cancerology, Human Pathologies & ToxicologyCentre de Recherche ETAPVandœuvre-lès-NancyFrance

Personalised recommendations