Skip to main content

The Absorption, Metabolism, and Pharmacokinetics of Chocolate Polyphenols

Part of the Nutrition and Health book series (NH,volume 7)

Key Points

  • Cacao products such as chocolate and cocoa are major food sources of polyphenolic compounds in the form of monomeric catechins and oligomeric procyanidins.

  • These compounds display a myriad of health-related properties that are only realized after they have transited through the digestive tract, interacted with the intestinal microflora, undergone presystemic biotransformations, and become absorbed from the intestinal milieu.

Keywords

  • Chocolate
  • Cocoa
  • Polyphenols
  • Oral absorption
  • Metabolism
  • Excretion
  • Pharmacokinetics
  • Dietary factors
  • Chocolate matrix effects

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-61779-803-0_17
  • Chapter length: 46 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-61779-803-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 17.1
Fig. 17.2
Fig. 17.4
Fig. 17.3
Fig. 17.5
Fig. 17.6
Fig. 17.7
Fig. 17.8
Fig. 17.9

References

  1. Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr. 2006;136(10):2588–93.

    PubMed  CAS  Google Scholar 

  2. Ness AR, Powles JW. Fruit and vegetables, and cardiovascular disease: a review. Int J Epidemiol. 1997; 26(1):1–13.

    PubMed  CAS  CrossRef  Google Scholar 

  3. Joshipura KJ, Hu FB, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med. 2001;134(12):1106–14.

    PubMed  CAS  Google Scholar 

  4. Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282(13):1233–9.

    PubMed  CAS  CrossRef  Google Scholar 

  5. Sauvaget C, Nagano J, Allen N, Kodama K. Vegetable and fruit intake and stroke mortality in the Hiroshima/Nagasaki life span study. Stroke. 2003;34:2355–60.

    PubMed  CAS  CrossRef  Google Scholar 

  6. Utsugi MT, Ohkubo T, Kikuya M, Kurimoto A, Sato RI, Suzuki K, et al. Fruit and vegetable consumption and the risk of hypertension determined by self measurement of blood pressure at home: the Ohasama study. Hypertens Res. 2008;31(7):1435–43.

    PubMed  CrossRef  Google Scholar 

  7. Cho E, Seddon JM, Rosner B, Willett WC, Hankinson SE. Prospective study of intake of fruits, vegetables, vitamins, and carotenoids and risk of age-related maculopathy. Arch Ophthalmol. 2004;122(6):883–92.

    PubMed  CrossRef  Google Scholar 

  8. Watson L, Margetts B, Howarth P, Dorward M, Thompson R, Little P. The association between diet and chronic obstructive pulmonary disease in subjects selected from general practice. Eur Respir J. 2002;20(2):313–8.

    PubMed  CAS  CrossRef  Google Scholar 

  9. Tsai CJ, Leitzmann MF, Willett WC, Giovannucci EL. Fruit and vegetable consumption and risk of cholecystectomy in women. Am J Med. 2006;119(9):760–7.

    PubMed  CAS  CrossRef  Google Scholar 

  10. Nagano J, Kono S, Preston DL, Moriwaki H, Sharp GB, Koyama K, et al. Bladder-cancer incidence in relation to vegetable and fruit consumption: a prospective study of atomic-bomb survivors. Int J Cancer. 2000;86(1): 132–8.

    PubMed  CAS  CrossRef  Google Scholar 

  11. Riboli E, Norat T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am Clin Nutr J. 2003;78(3 Suppl):559S–69.

    CAS  Google Scholar 

  12. Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ. 2010;341:c4229.

    PubMed  CrossRef  Google Scholar 

  13. Harding AH, Wareham NJ, Bingham SA, Khaw KT, Luben R, Welch A, et al. Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus. Arch Int Med. 2008;168(14): 1493–9.

    CrossRef  Google Scholar 

  14. Hamer M, Chida Y. Intake of fruit, vegetables, and antioxidants and risk of type 2 diabetes: systematic review and meta-analysis. J Hypertens. 2007;25(12):2361–9.

    PubMed  CAS  CrossRef  Google Scholar 

  15. Nagano J, Kono S, Preston DL, Mabuchi K. A prospective study of green tea consumption and cancer incidence, Hiroshima and Nagasaki (Japan). Cancer Causes Control. 2001;12(6):501–8.

    PubMed  CAS  CrossRef  Google Scholar 

  16. Ogunleye AA, Xue F, Michels KB. Green tea consumption and breast cancer risk or recurrence: a meta-analysis. Breast Cancer Res Treat. 2010;119(2):477–84.

    PubMed  CrossRef  Google Scholar 

  17. Arts ICW, Hollman PCH. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005; 81(Suppl):317S–25.

    PubMed  CAS  Google Scholar 

  18. Lee KW, Kim YJ, Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem. 2003;51(25):7292–5.

    PubMed  CAS  CrossRef  Google Scholar 

  19. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional signi fi cance. Nutr Rev. 1998;56(11):317–33.

    PubMed  CAS  CrossRef  Google Scholar 

  20. Halvorsen BL, Carlsen MH, Phillips KM, Bøhn SK, Holte K, Jacobs Jr DR, et al. Content of redox-active compounds (i.e., antioxidants) in foods consumed in the United States. Am J Clin Nutr. 2006;84(1):95–135.

    Google Scholar 

  21. Arts IC, van De Putte B, Hollman PC. Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J Agric Food Chem. 2000;48(5):1752–7.

    Google Scholar 

  22. Aikpokpodion PE, Dongo LN. Effects of fermentation intensity on polyphenols and antioxidant capacity of cocoa beans. Int J Sustain Crop Prod. 2010;5(4):66–70.

    Google Scholar 

  23. Kyi TM, Daud WRW, Mohammad AB, Samsudin MW, Kadhum AAH, Talib MZM. The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans. Int J Food Sci Technol. 2005;40(3):323–31.

    CAS  CrossRef  Google Scholar 

  24. Lowe B. Experimental cookery, from the chemical and physical standpoint. New York: Wiley; 1937. p. 512–4.

    Google Scholar 

  25. McShea A, Ramiro-Puig E, Munro SB, Casadesus G, Castell M, Smith MA. Clinical bene fi t and preservation of fl avonols in dark chocolate manufacturing. Nutr Rev. 2008;66(11):630–41.

    PubMed  CrossRef  Google Scholar 

  26. Ortega N, Reguant J, Romero MP, Macià A, Motilva MJ. Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model. J Agr Food Chem. 2009;57(13):5743–9.

    CAS  CrossRef  Google Scholar 

  27. Andrés-Lacueva C, Monagas M, Khan N, Izquierdo-Pulido M, Urpi-Sarda M, Permanyer J, et al. Flavanol and fl avonol contents of cocoa powder products: in fl uence of the manufacturing process. J Agric Food Chem. 2008; 56(9):3111–7.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Hii CL, Law CL, Suzannah S, Misnawi, Cloke M. Poyphenols in cocoa (Theobroma cacao L.). Asian J Food Agro-Ind. 2009;2(4):702–722.

    Google Scholar 

  29. Urpi-Sarda M, Monagas M, Khan N, Llorach R, Lamuela-Raventós RM, Jáuregui O, et al. Targeted metabolic pro fi ling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2009;1216(43):7258–67.

    PubMed  CAS  CrossRef  Google Scholar 

  30. Luna B, Moreno JM, Cruz A, Fernández-González F. Heat-shock and seed germination in a group of Mediterranean plant species growing in a burned area: an approach based on plant functional types. Environ Exp Bot. 2007;60(3):324–33.

    CrossRef  Google Scholar 

  31. Othman A, Ismail A, Abdul Ghani N, Adenan I. Antioxidant capacity and phenolic content of cocoa beans. Food Chem. 2007;100(4):1523–30.

    CAS  Google Scholar 

  32. Porter JF, Parton R, Wardlaw AC. Growth and survival; 57 of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Appl Environ Microbiol. 1991;57(4):1202–6.

    PubMed  CAS  Google Scholar 

  33. Kim H, Keeney PG. (-)-Epicatechin content in fermented and unfermented cocoa beans. J Food Sci. 1984;49(4):1090–2.

    CAS  CrossRef  Google Scholar 

  34. Wollgast J, Anklam E. Review on polyphenols in Theobroma cacao : changes in composition during the manufacture of chocolate and methodology for identi fi cation and quanti fi cation. Food Res Int. 2000;33(6):423–47.

    CAS  CrossRef  Google Scholar 

  35. Verstraeten SV, Hammerstone JF, Keen CL, Fraga CG, Oteiza PI. Antioxidant and membrane effects of procyanidin dimers and trimers isolated from peanut and cocoa. J Agric Food Chem. 2005;53(12):5041–8.

    PubMed  CAS  CrossRef  Google Scholar 

  36. Stark T, Hofmann T. Application of a molecular sensory science approach to alkalized cocoa ( Theobroma cacao ): structure determination and sensory activity of nonenzymatically C-glycosylated flavan-3-ols. J Agric Food Chem. 2006;54(25):9510–21.

    PubMed  CAS  CrossRef  Google Scholar 

  37. Adamson GE, Lazarus SA, Mitchell AE, Prior RL, Cao G, Jacobs PH, et al. HPLC method for the quanti fi cation of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agric Food Chem. 1999;47(10):4184–8.

    PubMed  CAS  CrossRef  Google Scholar 

  38. Natsume M, Osakabe N, Yamagishi M, Takizawa T, Nakamura T, Miyatake H, et al. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem. 2000;64(12):2581–7.

    PubMed  CAS  CrossRef  Google Scholar 

  39. Hammerstone JF, Lazarus SA, Schmitz HH. Procyanidin content and variation in some commonly consumed foods. J Nutr. 2000;130(8S Suppl):2086S–92.

    Google Scholar 

  40. Martín MA, Ramos S, Mateos R, Granado Serrano AB, Izquierdo-Pulido M, Bravo L, et al. Protection of human HepG2 cells against oxidative stress by cocoa phenolic extract. J Agric Food Chem. 2008;56(17):7765–72.

    Google Scholar 

  41. Hatano T, Miyatake H, Natsume M, Osakabe N, Takizawa T, Ito H, et al. Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry. 2002;59(7):749–58.

    PubMed  CAS  CrossRef  Google Scholar 

  42. Muselli I. Cocoa study: industry structures and composition. New York/Genoa: UNCTAD Secretariat; 2008.

    Google Scholar 

  43. Lamuela-Raventós RM, Romero-Pérez AI, Andrés-Lacueva C, Tornero A. Health effects of cocoa fl avonoids. Food Sci Technol Int. 2005;11(3):159–76.

    CrossRef  CAS  Google Scholar 

  44. Stahl L, Miller KB, Apgar J, Sweigart DS, Stuart DA, McHale N, et al. Preservation of cocoa antioxidant activity, total polyphenols, fl avan-3-ols, and procyanidin content in foods prepared with cocoa powder. J Food Sci. 2009;74(6):C456–61.

    PubMed  CAS  CrossRef  Google Scholar 

  45. Payne MJ, Hurst WJ, Miller KB, Rank C, Stuart DA. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. J Agric Food Chem. 2011;58(19):10518–27.

    CrossRef  CAS  Google Scholar 

  46. Caligiani A, Cirlini M, Palla G, Ravaglia R, Arlorio M. Antioxidant and membrane effects of procyanidin dimers and trimers isolated from peanut and cocoa. J Agric Food Chem. 2005;53(12):5041–8.

    CrossRef  CAS  Google Scholar 

  47. Nazaruddin R, Seng LK, Hassan O, Said M. Effect of pulp preconditioning on the content of polyphenols in cocoa beans ( Theobroma cacao ) during fermentation. Ind Crops Prod. 2006;24(1):87–94.

    CAS  CrossRef  Google Scholar 

  48. Counet C, Collin S. Effect of the number of fl avanol units on the antioxidant activity of procyanidin fractions isolated from chocolate. J Agric Food Chem. 2003;51(23):6816–22.

    PubMed  CAS  CrossRef  Google Scholar 

  49. Stark T, Bareuther S, Hofmann T. Sensory-guided decomposition of roasted cocoa nibs ( Theobroma cacao ) and structure determination of taste-active polyphenols. J Agric Food Chem. 2005;53(13):5407–18.

    PubMed  CAS  CrossRef  Google Scholar 

  50. Crozier A, Jaganath IB, Clifford MN. Phenols, polyphenols and tannins: an overview. In: Crozier A, Clifford MN, Asahira H, editors. Plant secondary metabolites: occurrence, structure and role in the human diet. Oxford, England: Blackwell; 2006.

    Google Scholar 

  51. Dreosti IE. Antioxidant polyphenols in tea, cocoa, and wine. Nutrition. 2000;16(708):692–4.

    PubMed  CAS  CrossRef  Google Scholar 

  52. Hollman PC. Absorption, bioavailability, and metabolism of fl avonoids. Pharml Biol. 2004;42(S1):74–83.

    CAS  CrossRef  Google Scholar 

  53. Olthof MR, Hollman PC, Buijsman MN, van Amelsvoort JM, Katan MB. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J Nutr. 2003;133(6):1806–14.

    PubMed  CAS  Google Scholar 

  54. Miller KB, Hurst WJ, Payne MJ, Stuart DA, Apgar J, Sweigart DS, et al. Impact of alkalization on the antioxidant and fl avanol content of commercial cocoa powders. J Agric Food Chem. 2008;56(18):8527–33.

    PubMed  CAS  CrossRef  Google Scholar 

  55. Friedman M, Jürgens HS. Effect of pH on the stability of plant phenolic compounds. J Agric Food Chem. 2000;48(6):2101–10.

    PubMed  CAS  CrossRef  Google Scholar 

  56. Neilson AP, Hopf AS, Cooper BR, Pereira MA, Bomser JA, Ferruzzi MG. Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion. J Agr Food Chem. 2007;55(22): 8941–49.

    CAS  CrossRef  Google Scholar 

  57. Record IR, Lane JM. Simulated intestinal digestion of green and black teas. Food Chem. 2001;73(4):481–86.

    CAS  CrossRef  Google Scholar 

  58. Zhu QY, Holt RR, Lazarus SA, Ensunsa JL, Hammerstone JF, Schmitz HH, et al. Stability of the fl avan-3-ols epicatechin and catechin and related dimeric procyanidins derived from cocoa. J Agric Food Chem. 2002;50(6):1700–5.

    PubMed  CAS  CrossRef  Google Scholar 

  59. Rios LY, Bennett RN, Lazarus SA, Rémésy C, Scalbert A, Williamson G. Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr. 2002;76(5):1106–10.

    PubMed  CAS  Google Scholar 

  60. Donovan JL, Manach C, Rios L, Morand C, Scalbert A, Rémésy C. Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3. Br J Nutr. 2002;87(4):299–306.

    PubMed  CAS  CrossRef  Google Scholar 

  61. Kemperman RA, Bolca S, Roger LC, Vaughan EE. Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology. 2010;156(Pt 11):3224–31.

    PubMed  CAS  CrossRef  Google Scholar 

  62. Gu L, House SE, Wu X, Ou B, Prior RL. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem. 2006;54(11):4057–61.

    PubMed  CAS  CrossRef  Google Scholar 

  63. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.

    PubMed  CAS  Google Scholar 

  64. Yang CS, Sang S, Lambert JD, Lee MJ. Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol Nutr Food Res. 2008;52(Suppl 1):S139–51.

    PubMed  Google Scholar 

  65. Aura AM. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev. 2008;7(3):407–29.

    CAS  CrossRef  Google Scholar 

  66. Aura AM, Mattila I, Seppnen-Lakso T, Miettinen J, Oksman-Caldentey KM, Oreš c M. Microbial metabolism of catechin stereoisomers by human faecal microbiota: comparison of targeted analysis and a non-targeted metabolomics method. Phytochem Lett. 2008;1(1):18–22.

    CAS  Google Scholar 

  67. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130(8S Suppl): 2073S–85.

    Google Scholar 

  68. Rechner AR, Kuhnle G, Hu H, Roedig-Penman A, van den Braak MH, Moore KP, et al. The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Radic Res. 2002;36(11):1229–41.

    PubMed  CAS  CrossRef  Google Scholar 

  69. Booth AN, Deeds F, Jones FT, Murray CW. The metabolic fate of rutin and quercetin in the animal body. J Biol Chem. 1956;223(1):251–7.

    PubMed  CAS  Google Scholar 

  70. Scheline RR. The metabolism of (+)-catechin to hydroxyphenylvaleric acids by the intestinal micro fl ora. Biochim Biophys Acta. 1970;222(1):228–30.

    PubMed  CAS  CrossRef  Google Scholar 

  71. Winter J, Moore LH, Dowell Jr VR, Bokkenheuser VD. C-Ring cleavage of fl avonoids by human intestinal bacteria. Appl Environ Microbiol. 1989;55(5):1203–8.

    PubMed  CAS  Google Scholar 

  72. Das NP, Grif fi ths LA. Studies on fl avonoid metabolism. Metabolism of (+)-catechin in the guinea pig. Biochem J. 1968;110(3):449–56.

    Google Scholar 

  73. Gott DM, Grif fi ths LA. Effects of antibiotic pretreatments on the metabolism and excretion of [U 14 C](+)-catechin [( U 14 C](+)-cyanidanol-3) and its metabolite, 3 ¢ -O-methyl-(+)-catechin. Xenobiotica. 1987;17(4):423–34.

    Google Scholar 

  74. Grif fi ths LA. Studies on fl avonoid metabolism. Identi fi cation of the metabolites of (+)-catechin in rat urine. Biochem J. 1964;92(1):173–9.

    Google Scholar 

  75. Meselhy MR, Nakamura N, Hattori M. Biotransformation of (−)-epicatechin 3-O-gallate by human intestinal bacteria. Chem Pharm Bull(Tokyo). 1997;45(5):888–93.

    Google Scholar 

  76. Das TK. Rate of adaptation of some of the urea cycle enzymes to a low-protein diet. Proc Nutr Soc. 1971;30(3):79A–80.

    PubMed  CAS  CrossRef  Google Scholar 

  77. Rios LY, Gonthier MP, Rémésy C, Mila I, Lapierre C, Lazarus SA, et al. Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am J Clin Nutr. 2003; 77(4):912–28.

    PubMed  CAS  Google Scholar 

  78. Urpi-Sarda M, Garrido I, Monagas M, Gómez-Cordovés C, Medina-Remón A, Andres-Lacueva C, et al. Pro fi le of plasma and urine metabolites after the intake of almond [ Prunus dulcis (Mill.) D.A. Webb] polyphenols in humans. J Agric Food Chem. 2009;57(21):10134–42.

    Google Scholar 

  79. Tzounis X, Vulevic J, Kuhnle GG, George T, Leonczak J, Gibson GR, et al. Flavanol monomer-induced changes to the human faecal micro fl ora. Br J Nutr. 2008;99(4):782–92.

    PubMed  CAS  CrossRef  Google Scholar 

  80. Wang LQ, Meselhy MR, Li Y, Nakamura N, Min BS, Qin GW, et al. The heterocyclic ring fi ssion and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium. Chem Pharm Bull(Tokyo). 2001;49(12):1640–3.

    Google Scholar 

  81. Schantz M, Erk T, Richling E. Metabolism of green tea catechins by the human small intestine. Biotechnol J. 2010;5(10):1050–9.

    PubMed  CAS  CrossRef  Google Scholar 

  82. Meng X, Sang S, Zhu N, Lu H, Sheng S, Lee MJ, et al. Identi fi cation and characterization of methylated and ring- fi ssion metabolites of tea catechins formed in humans, mice, and rats. Chem Res Toxicol. 2002; 15(8):1042–50.

    PubMed  CAS  CrossRef  Google Scholar 

  83. Das NP, Grif fi ths LA. Studies on fl avonoid metabolism. Metabolism of (+)-[ 14 C] catechin in the rat and guinea pig. Biochem J. 1969;115(4):831–6.

    Google Scholar 

  84. Oshima Y, Watanabe H, Isakari S. The mechanisms of catechins metabolism. I. substances in the urine of rabbits administered (+)-catechin. Biochem J. 1958;45(11):861–5.

    Google Scholar 

  85. Booth AN, Williams RT. The hydroxylation of catechol acids by intestinal contents. Biochem J. 1963; 88(3):66–7.

    Google Scholar 

  86. Alberto MR, Gómez-Cordovés C, Manca de Nadra MC. Metabolism of gallic acid and catechin by Lactobacillus hilgardii from wine. J Agric Food Chem. 2004;52(21):6465–6459.

    CAS  Google Scholar 

  87. Arteel GE, Schroeder P, Sies H. Reactions of peroxynitrite with cocoa procyanidin oligomers. J Nutr. 2000;130(8 S Suppl):2100S–4.

    Google Scholar 

  88. Bladé C, Arola L, Salvadó MJ. Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol Nutr Food Res. 2010;54(1):37–59.

    PubMed  CrossRef  CAS  Google Scholar 

  89. Tomaru M, Takano H, Osakabe N, Yasuda A, Inoue K, Yanagisawa R, et al. Dietary supplementation with cacao liquor proanthocyanidins prevents elevation of blood glucose levels in diabetic obese mice. Nutrition. 2007;23(4):351–5.

    PubMed  CAS  CrossRef  Google Scholar 

  90. Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep. 2009;26(8):1001–43.

    PubMed  CAS  CrossRef  Google Scholar 

  91. Appeldoorn MM, Vincken JP, Gruppen H, Hollman PCH. Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. J Nutr. 2009;139(8):169–1473.

    Google Scholar 

  92. Déprez S, Brezillon C, Rabot S, Philippe C, Mila I, Lapierre C, et al. Polymeric proanthocyanidins are catabolized by human colonic micro fl ora into low-molecular-weight phenolic acids. J Nutr. 2000;130(11):2733–8.

    PubMed  Google Scholar 

  93. Stoupi S, Williamson G, Drynan JW, Barron D, Clifford MN. A comparison of the in vitro biotransformation of (−)-epicatechin and procyanidin B2 by human faecal microbiota. Mol Nutr Food Res. 2010;54(6):747–59.

    PubMed  CAS  CrossRef  Google Scholar 

  94. van’t Slot G, Humpf HU. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model. J Agric Food Chem. 2009; 57(17):8041–8.

    Google Scholar 

  95. Lee KM, Kim WS, Lim J, Nam S, Youn M, Nam SW, et al. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157:H7. J Food Prot. 2009;72(2):325–31.

    PubMed  CAS  Google Scholar 

  96. Smith AH, Mackie RI. Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl Environ Microbiol. 2004;70(2):1104–15.

    PubMed  CAS  CrossRef  Google Scholar 

  97. Gu YX, Song YW, Fan LQ, Yuan QS. Antioxidant activity of natural and cultured Cordyceps sp. Zhongguo Zhong Yao Za Zhi. 2007;32(11):1028–31.

    PubMed  Google Scholar 

  98. Spencer JP. Metabolism of tea fl avonoids in the gastrointestinal tract. J Nutr. 2003;133(10):3255S–61.

    PubMed  CAS  Google Scholar 

  99. Kuhnle G, Spencer JP, Schroeter H, Shenoy B, Debnam ES, Srai SK, et al. Epicatechin and catechin are O-methylated and glucuronidated in the small intestine. Biochem Biophys Res Commun. 2000;277(2):507–12.

    PubMed  CAS  CrossRef  Google Scholar 

  100. Spencer JPE, Schroeter H, Rechner A, Rice-Evans C. Bioavailability of fl avan-3-ols and procyanidins: gastrointestinal tract in fl uences and their relevance to bioactive forms in vivo. Antiox Redox Sig. 2001;3(6): 1023–40.

    CAS  CrossRef  Google Scholar 

  101. Donovan JL, Crespy V, Manach C, Morand C, Besson C, Scalbert A, et al. Catechin is metabolized by both the small intestine and liver of rats. J Nutr. 2001;131(6):1753–7.

    PubMed  CAS  Google Scholar 

  102. Aherne SA, O’Brien NM. Dietary fl avonols: chemistry, food content, and metabolism. Nutrition. 2002;18(1): 75–81.

    PubMed  CAS  CrossRef  Google Scholar 

  103. Roura E, Andrés-Lacueva C, Jáuregui O, Badia E, Estruch R, Izquierdo-Pulido M, et al. Rapid liquid chromatography tandem mass spectrometry assay to quantify plasma (−)-epicatechin metabolites after ingestion of a standard portion of cocoa beverage in humans. J Agric Food Chem. 2005;53(16):6190–4.

    PubMed  CAS  CrossRef  Google Scholar 

  104. Hackett AM, Grif fi ths LA. The effects of an experimental hepatitis on the metabolic disposition of 3-O-(+)-[14C]methylcatechin in the rat. Drug Metab Dispos. 1983;11(6):602–6.

    Google Scholar 

  105. Das NP. Studies on fl avonoid metabolism. Absorption and metabolism of (+)-catechin in man. Biochem Pharmacol. 1971;20(12):3435–45.

    Google Scholar 

  106. Das NP, Sothy SP. Studies on fl avonoid metabolism. Biliary and urinary excretion of metabolites of (+)-(U- 14 C) catechin. Biochem J. 1971;125(2):417–23.

    Google Scholar 

  107. Das NP. Studies on fl avonoid metabolism. Degradation of (+)-catechin by rat intestinal contents. Biochim Biophys Acta. 1969;177(3):668–70.

    Google Scholar 

  108. Shali NA, Curtis CG, Powell GM, Roy AB. Sulphation of the fl avonoids quercetin and catechin by rat liver. Xenobiotica. 1991;21(7):881–93.

    PubMed  CAS  CrossRef  Google Scholar 

  109. Huang C, Chen Y, Zhou T, Chen G. Sulfation of dietary fl avonoids by human sulfotransferases. Xenobiotica. 2009;39(4):312–22.

    PubMed  CAS  CrossRef  Google Scholar 

  110. Hackett AM, Grif fi ths LA, Broillet A, Wermeille M. The metabolism and excretion of (+)-[ 14 C]-cyanidanol-3 in man following oral administration. Xenobiotica. 1983;13(5):279–83.

    Google Scholar 

  111. Hackett AM, Grif fi ths LA. The metabolism and excretion of 3-palmitoyl-(+)-catechin in the rat. Xenobiotica. 1982;12(7):447–56.

    Google Scholar 

  112. Shaw IC, Grif fi ths LA. Identi fi cation of the major biliary metabolite of (+)-catechin in the rat. Xenobiotica. 1980;10(12):905–11.

    Google Scholar 

  113. van der Merwe PJ, Hundt HK. Metabolism of (+)-catechin and some of its C-6 and C-8 substituted derivatives in the isolated perfused pig liver. Xenobiotica. 1984;14(10):795–802.

    PubMed  CrossRef  Google Scholar 

  114. Hackett AM, Grif fi ths LA. The metabolism and excretion of 3-O-methyl-(+)-catechin in the rat, mouse, and marmoset. Drug Metab Dispos. 1981;9(1):54–9.

    Google Scholar 

  115. Hackett AM, Shaw IC, Grif fi ths LA. 3 ¢ -O-methyl-(+)-catechin glucuronide and 3 ¢ -O-methyl-(+)-catechin sulphate: new urinary metabolites of (+)-catechin in the rat and the marmoset. Experientia. 1982;38(5):538–40.

    Google Scholar 

  116. Hackett AM, Grif fi ths LA, Wermeille M. The quantitative disposition of 3-O-methyl-(+)-[U- 14 C]catechin in man following oral administration. Xenobiotica. 1985;15(11):907–14.

    Google Scholar 

  117. Wermeille M, Turin E, Grif fi ths LA. Identi fi cation of the major urinary metabolites of (+)-catechin and 3-O-methyl-(+)-catechin in man. Eur J Drug Metab Pharmacokinet. 1983;8(1):77–784.

    Google Scholar 

  118. Manach C, Texier O, Morand C, Crespy V, Régérat F, Demigné C, et al. Comparison of the bioavailability of quercetin and catechin in rats. Free Radic Biol Med. 1999;27(11–12):1259–66.

    PubMed  CAS  CrossRef  Google Scholar 

  119. Shaw IC, Hackett AM, Grif fi ths LA. Metabolism and excretion of the liver-protective agent (+)-catechin in experimental hepatitis. Xenobiotica. 1982;12(7):405–16.

    Google Scholar 

  120. Smillie MV, Grif fi ths LA, Male PJ, Wermeille MM. The disposition and metabolism of (+)-cyanidanol-3 in patients with alcoholic cirrhosis. Eur J Clin Pharmacol. 1987;33(3):255–9.

    Google Scholar 

  121. Harada M, Kan Y, Naoki H, Fukui Y, Kageyama N, Nakai M, et al. Identi fi cation of the major antioxidative metabolites in biological fl uids of the rat with ingested (+)-catechin and (−)-epicatechin. Biosci Biotechnol Biochem. 1999;63(6):973–7.

    PubMed  CAS  CrossRef  Google Scholar 

  122. Da Silva EL, Piskula M, Terao J. Enhancement of antioxidative ability of rat plasma by oral administration of (−)-epicatechin. Free Radic Biol Med. 1998;24(7–8):1209–16. 123. Piskula MK, Terao J. Accumulation of (−)-epicatechin metabolites in rat plasma after oral administration and distribution of conjugation enzymes in rat tissues. J Nutr. 1998;128(7):1172–8.

    Google Scholar 

  123. Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C. The small intestine can both absorb and glucuronidate luminal fl avonoids. FEBS Lett. 1999;458(2):224–30.

    PubMed  CAS  CrossRef  Google Scholar 

  124. Baba S, Osakabe N, Yasuda A, Natsume M, Takizawa T, Nakamura T, et al. Bioavailability of (−)-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radic Res. 2000;33(5):635–41.

    PubMed  CAS  CrossRef  Google Scholar 

  125. Okushio K, Suzuki M, Matsumoto N, Nanjo F, Hara Y. Identi fi cation of (−)-epicatechin metabolites and their metabolic fate in the rat. Drug Metab Dispos. 1999;27(2):309–16.

    PubMed  CAS  Google Scholar 

  126. Baba S, Osakabe N, Natsume M, Muto Y, Takizawa T, Terao J. Absorption and urinary excretion of (−)-epicatechin after administration of different levels of cocoa powder or (−)-epicatechin in rats. J Agric Food Chem. 2001;49(12):6050–6.

    PubMed  CAS  CrossRef  Google Scholar 

  127. Donovan JL, Luthria DL, Stremple P, Waterhouse AL. Analysis of (+)-catechin, (−)-epicatechin and their 3 ¢ - and 4 ¢ -O-methylated analogs. A comparison of sensitive methods. J Chromatogr B Biomed Sci Appl. 1999;726(1–2):277–83.

    CAS  CrossRef  Google Scholar 

  128. Terao J. Dietary fl avonoids as antioxidants in vivo: conjugated metabolites of (−)-epicatechin and quercetin participate in antioxidative defense in blood plasma. J Med Invest. 1999;46(3–4):159–68.

    PubMed  CAS  Google Scholar 

  129. Yamashita S, Sakane T, Harada M, Sugiura N, Koda H, Kiso Y, et al. Absorption and metabolism of antioxidative polyphenolic compounds in red wine. Ann N Y Acad Sci. 2002;957(1):325–8.

    PubMed  CAS  CrossRef  Google Scholar 

  130. Vaidyanathan JB, Walle T. Transport and metabolism of the tea fl avonoid (−)-epicatechin by the human intestinal cell line Caco-2. Pharm Res. 2001;18(10):1420–5.

    PubMed  CAS  CrossRef  Google Scholar 

  131. Vaidyanathan JB, Walle T. Glucuronidation and sulfation of the tea fl avonoid (−)-epicatechin by the human and rat enzymes. Drug Metab Dispos. 2002;30(8):897–903.

    PubMed  CAS  CrossRef  Google Scholar 

  132. Abrahamse L, Kloots WJ, van Amelsvoort JM. Absorption, distribution and secretion of epicatechin and quercetin in the rat. Nutr Res. 2005;25(3):305–17.

    CAS  CrossRef  Google Scholar 

  133. Rimbach G, Melchin M, Moehring J, Wagner AE. Polyphenols from cocoa and vascular health-a critical review. Int J Mol Sci. 2009;10(10):4290–309.

    PubMed  CAS  CrossRef  Google Scholar 

  134. Spencer JP, Schroeter H, Shenoy B, Srai SK, Debnam ES, Rice-Evans C. Epicatechin is the primary bioavailable form of the procyanidin dimers B2 and B5 after transfer across the small intestine. Biochem Biophys Res Commun. 2001;285(3):588–93.

    PubMed  CAS  CrossRef  Google Scholar 

  135. Bell JRC, Donovan JL, Wong R, Waterhouse AL et al. (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. Am J Clin Nutr. 2000;71(1):103–8.

    PubMed  CAS  Google Scholar 

  136. Baba S, Osakabe N, Natsume M, Yasuda A, Takizawa T, Nakamura T, et al. Cocoa powder enhances the level of antioxidative activity in rat plasma. Br J Nutr. 2000;84(5):673–80.

    PubMed  CAS  Google Scholar 

  137. Wang JF, Schramm DD, Holt RR, Ensunsa JL, Fraga CG, Schmitz HH, et al. A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr. 2000;130(8 S Suppl):2115S–9.

    Google Scholar 

  138. Baba S, Osakabe N, Natsume M, Muto Y, Takizawa T, Terao J. In vivo comparison of the bioavailability of (+)-catechin, (−)-epicatechin and their mixture in orally administered rats. J Nutr. 2001;131(11):2885–91.

    PubMed  CAS  Google Scholar 

  139. Li C, Meng X, Winnik B, Lee MJ, Lu H, Sheng S, et al. Analysis of urinary metabolites of tea catechins by liquid chromatography/electrospray ionization mass spectrometry. Chem Res Toxicol. 2001;14(6):702–7.

    PubMed  CAS  CrossRef  Google Scholar 

  140. Ritter C, Zimmermann BF, Galensa R. Chiral separation of (+)/(−)-catechin from sulfated and glucuronidated metabolites in human plasma after cocoa consumption. Anal Bioanal Chem. 2010;397(2):723–30.

    PubMed  CAS  CrossRef  Google Scholar 

  141. Bombardelli E, Morazzoni P, Carini M, Aldini G, Maffei FR. Biological activity of procyanidins from Vitis vinifera L. Biofactors. 1997;6(4):429–31.

    CAS  CrossRef  Google Scholar 

  142. Cheynier V. Polyphenols in foods are more complex than often thought. Am J Clin Nutr. 2005; 81(1Suppl):223S–9.

    Google Scholar 

  143. Hümmer W, Schreier P. Analysis of proanthocyanidins. Mol Nutr Food Res. 2008;52(12):1381–98.

    PubMed  CrossRef  CAS  Google Scholar 

  144. Gabetta B, Fuzzati N, Grif fi ni A, Lolla E, Pace R, Ruf fi lli T, Peterlongo F. Characterization of proanthocyanidins from grape seeds. Fitoterapia 2000;71(2):162–75.

    CAS  Google Scholar 

  145. Ferreira D, Marais JP, Slade D. Heterogeneity of the inter fl avanyl bond in proanthocyanidins from natural sources lacking C-4 (C-ring) deoxy fl avonoid nucleophiles. Phytochemistry. 2005;66(18):2216–37.

    PubMed  CAS  CrossRef  Google Scholar 

  146. Counet C, Ouwerx C, Rosoux D, Collin S. Relationship between procyanidin and fl avor contents of cocoa liquors from different origins. J Agric Food Chem. 2004;52(20):6243–49.

    PubMed  CAS  CrossRef  Google Scholar 

  147. Nakamura Y, Tonogai Y. Metabolism of grape seed polyphenol in the rat. J Agric Food Chem. 2003; 51(24):7215–25.

    PubMed  CAS  CrossRef  Google Scholar 

  148. Sano A, Yamakoshi J, Tokutake S, Tobe K, Kubota Y, Kikuchi M. Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Biosci Biotechnol Biochem. 2003;67(5):1140–3.

    PubMed  CAS  CrossRef  Google Scholar 

  149. Déprez S, Mila I, Scalbert A. Carbon-14 biolabeling of (+)-catechin and proanthocyanidin oligomers in willow tree cuttings. J Agric Food Chem. 1999;47(10):4219–30.

    PubMed  CrossRef  CAS  Google Scholar 

  150. Baba S, Osakabe N, Natsume M, Terao J. Absorption and urinary excretion of procyanidin by [epicatechin-(4b-8)-epicatechin] in rats. Free Radic Biol Med. 2002;33(1):142–8.

    PubMed  CAS  CrossRef  Google Scholar 

  151. Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD, Hammerstone JF, et al. Procyanidin dimer B2 [epicatechin-(4 b -8)-epicatechin] in human plasma after the consumption of a fl avanol-rich cocoa. Am J Clin Nutr. 2002;76(4):798–804.

    PubMed  CAS  Google Scholar 

  152. Catterall F, King LJ, Clifford MN, Ioannides C. Bioavailability of dietary doses of 3 H-labelled tea antioxidants (+)-catechin and (−)-epicatechin in rat. Xenobiotica. 2003;33(7):743–53.

    PubMed  CAS  CrossRef  Google Scholar 

  153. Zhu M, Chen Y, Li RC. Oral absorption and bioavailability of tea catechins. Planta Med. 2000;66(5):444–7.

    PubMed  CAS  CrossRef  Google Scholar 

  154. Tsang C, Auger C, Mullen W, Bornet A, Rouanet JM, Crozier A, et al. The absorption, metabolism and excretion of fl avan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br J Nutr. 2005;94(2):170–81.

    PubMed  CAS  CrossRef  Google Scholar 

  155. Cai Y, Anavy ND, Chow HHS. Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats. Drug Metab Dispos. 2002;30(11):1246–9.

    PubMed  CAS  CrossRef  Google Scholar 

  156. Richelle M, Tavazzi I, Enslen M, Offord EA. Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr. 1999;53(1):22–6.

    PubMed  CAS  CrossRef  Google Scholar 

  157. Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG. Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr. 2000;130(8 S Suppl):2109S–14.

    Google Scholar 

  158. Tomás-Barberán FA, Cienfuegos-Jovellanos E, Marín A, Muguerza B, Gil-Izquierdo A, Cerda B, et al. A new process to develop a cocoa powder with higher fl avonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem. 2007;55(10):3926–35.

    PubMed  CrossRef  CAS  Google Scholar 

  159. Gotti R, Furlanetto S, Pinzauti S, Cavrini V. Analysis of catechins in Theobroma cacao beans by cyclodextrinmodi fi ed micellar electrokinetic chromatography. J Chromatogr A. 2006;1112(1–2):345–52.

    PubMed  CAS  Google Scholar 

  160. Donovan JL, Crespy V, Oliveira M, Cooper KA, Gibson BB, Williamson G. (+)-Catechin is more bioavailable than (−)-catechin: relevance to the bioavailability of catechin from cocoa. Free Radic Res. 2006; 40(10):1029–34.

    PubMed  CAS  CrossRef  Google Scholar 

  161. Ottaviani JI, Momma TY, Heiss C, Kwik-Uribe C, Schroeter H, Keen CL. The stereochemical con fi guration of fl avanols in fl uences the level and metabolism of fl avanols in humans and their biological activity in vivo. Free Radic Biol Med. 2011;50(2):237–44.

    PubMed  CAS  CrossRef  Google Scholar 

  162. Schramm DD, Karim M, Schrader HR, Holt RR, Kirkpatrick NJ, Polagruto JA, et al. Food effects on the absorption and pharmacokinetics of cocoa fl avanols. Life Sci. 2003;73(7):857–69.

    PubMed  CAS  CrossRef  Google Scholar 

  163. Charman WN, Porter CJH, Mithani S, Dressman JB. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–82.

    PubMed  CAS  CrossRef  Google Scholar 

  164. Hertog MG, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D. Antioxidant fl avonols and ischemic heart disease in a Welsh population of men: the Caerphilly study. Am J Clin Nutr. 1997;65(5):1489–94.

    PubMed  CAS  Google Scholar 

  165. van het Hof KH, Kivits GAA, Westrate JA, Tijburg LBM. Bioavailability of catechins from tea: the effect of milk. Eur J Clin Nutr. 1998;52(5):356–9.

    CrossRef  CAS  Google Scholar 

  166. Leenen R, Roodenburg AJC, Tijburg LBM, Wiseman SA. A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur J Clin Nutr. 2000;54(1):87–92.

    PubMed  CAS  CrossRef  Google Scholar 

  167. Hollman PCH, van het Hof KH, Tijburg LBM, Katan MB. Addition of milk does not affect the absorption of fl avonols from tea in man. Free Radic Biol Med. 2001;34(3):297–300.

    CAS  Google Scholar 

  168. Richelle M, Tavazzi I, Offord E. Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup serving. J Agric Food Chem. 2001;49(7):3438–42.

    PubMed  CAS  CrossRef  Google Scholar 

  169. Reddy VC, Sagar GVV, Sreeramulu D, Venu L, Raghunath M. Addition of milk does not alter the antioxidant activity of black tea. Ann Nutr Metab. 2005;49(3):189–95.

    PubMed  CAS  CrossRef  Google Scholar 

  170. Sera fi ni M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013.

    Google Scholar 

  171. Schroeter H, Holt RR, Orozco TJ, Schmitz HH, Keen CL. Milk and absorption of dietary fl avanols. Nature. 2003;426(6968):787–8.

    PubMed  CAS  CrossRef  Google Scholar 

  172. Sera fi ni M, Crozier A. Milk and absorption of dietary fl avanols. Nature. 2003;426(6968):788.

    Google Scholar 

  173. Lorenz M, Jochmann N, von Krosigk A, Martus P, Bauman G, Stangl K, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23.

    PubMed  CrossRef  Google Scholar 

  174. Keogh JB, McInerney J, Clifton PM. The effect of milk protein on the bioavailability of cocoa polyphenols. J Food Sci. 2007;72(3):S230–3.

    PubMed  CAS  CrossRef  Google Scholar 

  175. Roura E, Andrés-Lacueva C, Estruch R, Mata Bilbao ML, Izquierdo-Pulido M, Waterhouse AL, et al. Milk does not affect the bioavailability of cocoa powder fl avonoid in healthy human. Ann Nutr Metab. 2007;51(6):493–8.

    PubMed  CAS  Google Scholar 

  176. Roura E, Andrés-Lacueva C, Estruch R, Mata Bilbao ML, Izquierdo-Pulido M, Lamuela-Raventós RM. The effect of milk as a food matrix for polyphenols on the excretion pro fi le of cocoa (−)-epicatechin metabolites in healthy human subjects. Br J Nutr. 2008;100(4):846–51.

    Google Scholar 

  177. Mullen W, Borges G, Donovan JL, Edwards CA, Sera fi ni M, Lean MEJ, et al. Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa fl avan-3-ol metabolites in humans. Am J Clin Nutr. 2009; 89(6):1784–91.

    Google Scholar 

  178. Gossai D, Lau-Cam CA. Assessment of the effect of type of dairy product and of chocolate matrix on the oral absorption of monomeric chocolate fl avanols in a small animal model. Pharmazie. 2009;64(3):202–9.

    PubMed  CAS  Google Scholar 

  179. Carbonaro M, Grant G, Pusztai A. Evaluation of polyphenol bioavailability in rat small intestine. Eur J Nutr. 2001;40(2):84–90.

    PubMed  CAS  CrossRef  Google Scholar 

  180. Reinboth M, Wolffram S, Abraham G, Ungemach FFR, Cermak R. Oral bioavailability of quercetin from different quercetin glycosides in dogs. Br J Nutr. 2010;104(2):198–203.

    PubMed  CAS  CrossRef  Google Scholar 

  181. Gil-Izquierdo A, Zafrilla P, Tomás-Barberán FA. An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. Eur Food Res Technol. 2002;214(2):155–9.

    CAS  CrossRef  Google Scholar 

  182. Neilson AP, George JC, Mattes RD, Janle EM, Matusheski NV, Ferruzzi MG. In fl uence of chocolate formulation factors on in vitro bioaccessibility and bioavailability of catechins in humans. J Agric Food Chem. 2009; 57(20):9418–26.

    PubMed  CAS  CrossRef  Google Scholar 

  183. Neilson AP, Sapper TN, Janle EM, Rudolph R, Matusheski NV, Ferruzzi MG. Chocolate matrix factors modulate the pharmacokinetic behavior of cocoa fl avan-3-ol phase II metabolites following oral consumption by Sprague-Dawley rats. J Agric Food Chem. 2010;58(11):6685–91.

    PubMed  CAS  CrossRef  Google Scholar 

  184. Beckett ST. Industrial chocolate manufacture and use. 3rd ed. Oxford, UK: Blackwell; 1999.

    Google Scholar 

  185. Fryer P, Pinschower K. The materials science of chocolate. Mater Res Soc Bull. 2000;25(12):25–9.

    CAS  CrossRef  Google Scholar 

  186. Toro-Vazquez JF, Pérez Martínez D, Dibildox-Alvarado E, Charó-Alonso M, Reyes Hernández J. Rheometry and polymorphism of cocoa butter during crystallization under static and stirring conditions. J Am Oil Chem Soc. 2004;81(2):195–202.

    CAS  Google Scholar 

  187. Serra A, Macià A, Romero MP, Bladé C, Arola L, Motilva MJ. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. Br J Nutr. 2010;103(7):944–52.

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. Lau-Cam B.S., M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lau-Cam, C.A. (2013). The Absorption, Metabolism, and Pharmacokinetics of Chocolate Polyphenols. In: Watson, R., Preedy, V., Zibadi, S. (eds) Chocolate in Health and Nutrition. Nutrition and Health, vol 7. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-803-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-803-0_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-802-3

  • Online ISBN: 978-1-61779-803-0

  • eBook Packages: MedicineMedicine (R0)