Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr. 2006;136(10):2588–93.
PubMed
CAS
Google Scholar
Ness AR, Powles JW. Fruit and vegetables, and cardiovascular disease: a review. Int J Epidemiol. 1997; 26(1):1–13.
PubMed
CAS
CrossRef
Google Scholar
Joshipura KJ, Hu FB, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med. 2001;134(12):1106–14.
PubMed
CAS
Google Scholar
Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282(13):1233–9.
PubMed
CAS
CrossRef
Google Scholar
Sauvaget C, Nagano J, Allen N, Kodama K. Vegetable and fruit intake and stroke mortality in the Hiroshima/Nagasaki life span study. Stroke. 2003;34:2355–60.
PubMed
CAS
CrossRef
Google Scholar
Utsugi MT, Ohkubo T, Kikuya M, Kurimoto A, Sato RI, Suzuki K, et al. Fruit and vegetable consumption and the risk of hypertension determined by self measurement of blood pressure at home: the Ohasama study. Hypertens Res. 2008;31(7):1435–43.
PubMed
CrossRef
Google Scholar
Cho E, Seddon JM, Rosner B, Willett WC, Hankinson SE. Prospective study of intake of fruits, vegetables, vitamins, and carotenoids and risk of age-related maculopathy. Arch Ophthalmol. 2004;122(6):883–92.
PubMed
CrossRef
Google Scholar
Watson L, Margetts B, Howarth P, Dorward M, Thompson R, Little P. The association between diet and chronic obstructive pulmonary disease in subjects selected from general practice. Eur Respir J. 2002;20(2):313–8.
PubMed
CAS
CrossRef
Google Scholar
Tsai CJ, Leitzmann MF, Willett WC, Giovannucci EL. Fruit and vegetable consumption and risk of cholecystectomy in women. Am J Med. 2006;119(9):760–7.
PubMed
CAS
CrossRef
Google Scholar
Nagano J, Kono S, Preston DL, Moriwaki H, Sharp GB, Koyama K, et al. Bladder-cancer incidence in relation to vegetable and fruit consumption: a prospective study of atomic-bomb survivors. Int J Cancer. 2000;86(1): 132–8.
PubMed
CAS
CrossRef
Google Scholar
Riboli E, Norat T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am Clin Nutr J. 2003;78(3 Suppl):559S–69.
CAS
Google Scholar
Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ. 2010;341:c4229.
PubMed
CrossRef
Google Scholar
Harding AH, Wareham NJ, Bingham SA, Khaw KT, Luben R, Welch A, et al. Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus. Arch Int Med. 2008;168(14): 1493–9.
CrossRef
Google Scholar
Hamer M, Chida Y. Intake of fruit, vegetables, and antioxidants and risk of type 2 diabetes: systematic review and meta-analysis. J Hypertens. 2007;25(12):2361–9.
PubMed
CAS
CrossRef
Google Scholar
Nagano J, Kono S, Preston DL, Mabuchi K. A prospective study of green tea consumption and cancer incidence, Hiroshima and Nagasaki (Japan). Cancer Causes Control. 2001;12(6):501–8.
PubMed
CAS
CrossRef
Google Scholar
Ogunleye AA, Xue F, Michels KB. Green tea consumption and breast cancer risk or recurrence: a meta-analysis. Breast Cancer Res Treat. 2010;119(2):477–84.
PubMed
CrossRef
Google Scholar
Arts ICW, Hollman PCH. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005; 81(Suppl):317S–25.
PubMed
CAS
Google Scholar
Lee KW, Kim YJ, Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem. 2003;51(25):7292–5.
PubMed
CAS
CrossRef
Google Scholar
Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional signi fi cance. Nutr Rev. 1998;56(11):317–33.
PubMed
CAS
CrossRef
Google Scholar
Halvorsen BL, Carlsen MH, Phillips KM, Bøhn SK, Holte K, Jacobs Jr DR, et al. Content of redox-active compounds (i.e., antioxidants) in foods consumed in the United States. Am J Clin Nutr. 2006;84(1):95–135.
Google Scholar
Arts IC, van De Putte B, Hollman PC. Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J Agric Food Chem. 2000;48(5):1752–7.
Google Scholar
Aikpokpodion PE, Dongo LN. Effects of fermentation intensity on polyphenols and antioxidant capacity of cocoa beans. Int J Sustain Crop Prod. 2010;5(4):66–70.
Google Scholar
Kyi TM, Daud WRW, Mohammad AB, Samsudin MW, Kadhum AAH, Talib MZM. The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans. Int J Food Sci Technol. 2005;40(3):323–31.
CAS
CrossRef
Google Scholar
Lowe B. Experimental cookery, from the chemical and physical standpoint. New York: Wiley; 1937. p. 512–4.
Google Scholar
McShea A, Ramiro-Puig E, Munro SB, Casadesus G, Castell M, Smith MA. Clinical bene fi t and preservation of fl avonols in dark chocolate manufacturing. Nutr Rev. 2008;66(11):630–41.
PubMed
CrossRef
Google Scholar
Ortega N, Reguant J, Romero MP, Macià A, Motilva MJ. Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model. J Agr Food Chem. 2009;57(13):5743–9.
CAS
CrossRef
Google Scholar
Andrés-Lacueva C, Monagas M, Khan N, Izquierdo-Pulido M, Urpi-Sarda M, Permanyer J, et al. Flavanol and fl avonol contents of cocoa powder products: in fl uence of the manufacturing process. J Agric Food Chem. 2008; 56(9):3111–7.
PubMed
CrossRef
CAS
Google Scholar
Hii CL, Law CL, Suzannah S, Misnawi, Cloke M. Poyphenols in cocoa (Theobroma cacao L.). Asian J Food Agro-Ind. 2009;2(4):702–722.
Google Scholar
Urpi-Sarda M, Monagas M, Khan N, Llorach R, Lamuela-Raventós RM, Jáuregui O, et al. Targeted metabolic pro fi ling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2009;1216(43):7258–67.
PubMed
CAS
CrossRef
Google Scholar
Luna B, Moreno JM, Cruz A, Fernández-González F. Heat-shock and seed germination in a group of Mediterranean plant species growing in a burned area: an approach based on plant functional types. Environ Exp Bot. 2007;60(3):324–33.
CrossRef
Google Scholar
Othman A, Ismail A, Abdul Ghani N, Adenan I. Antioxidant capacity and phenolic content of cocoa beans. Food Chem. 2007;100(4):1523–30.
CAS
Google Scholar
Porter JF, Parton R, Wardlaw AC. Growth and survival; 57 of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Appl Environ Microbiol. 1991;57(4):1202–6.
PubMed
CAS
Google Scholar
Kim H, Keeney PG. (-)-Epicatechin content in fermented and unfermented cocoa beans. J Food Sci. 1984;49(4):1090–2.
CAS
CrossRef
Google Scholar
Wollgast J, Anklam E. Review on polyphenols in Theobroma cacao : changes in composition during the manufacture of chocolate and methodology for identi fi cation and quanti fi cation. Food Res Int. 2000;33(6):423–47.
CAS
CrossRef
Google Scholar
Verstraeten SV, Hammerstone JF, Keen CL, Fraga CG, Oteiza PI. Antioxidant and membrane effects of procyanidin dimers and trimers isolated from peanut and cocoa. J Agric Food Chem. 2005;53(12):5041–8.
PubMed
CAS
CrossRef
Google Scholar
Stark T, Hofmann T. Application of a molecular sensory science approach to alkalized cocoa ( Theobroma cacao ): structure determination and sensory activity of nonenzymatically C-glycosylated flavan-3-ols. J Agric Food Chem. 2006;54(25):9510–21.
PubMed
CAS
CrossRef
Google Scholar
Adamson GE, Lazarus SA, Mitchell AE, Prior RL, Cao G, Jacobs PH, et al. HPLC method for the quanti fi cation of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agric Food Chem. 1999;47(10):4184–8.
PubMed
CAS
CrossRef
Google Scholar
Natsume M, Osakabe N, Yamagishi M, Takizawa T, Nakamura T, Miyatake H, et al. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem. 2000;64(12):2581–7.
PubMed
CAS
CrossRef
Google Scholar
Hammerstone JF, Lazarus SA, Schmitz HH. Procyanidin content and variation in some commonly consumed foods. J Nutr. 2000;130(8S Suppl):2086S–92.
Google Scholar
Martín MA, Ramos S, Mateos R, Granado Serrano AB, Izquierdo-Pulido M, Bravo L, et al. Protection of human HepG2 cells against oxidative stress by cocoa phenolic extract. J Agric Food Chem. 2008;56(17):7765–72.
Google Scholar
Hatano T, Miyatake H, Natsume M, Osakabe N, Takizawa T, Ito H, et al. Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry. 2002;59(7):749–58.
PubMed
CAS
CrossRef
Google Scholar
Muselli I. Cocoa study: industry structures and composition. New York/Genoa: UNCTAD Secretariat; 2008.
Google Scholar
Lamuela-Raventós RM, Romero-Pérez AI, Andrés-Lacueva C, Tornero A. Health effects of cocoa fl avonoids. Food Sci Technol Int. 2005;11(3):159–76.
CrossRef
CAS
Google Scholar
Stahl L, Miller KB, Apgar J, Sweigart DS, Stuart DA, McHale N, et al. Preservation of cocoa antioxidant activity, total polyphenols, fl avan-3-ols, and procyanidin content in foods prepared with cocoa powder. J Food Sci. 2009;74(6):C456–61.
PubMed
CAS
CrossRef
Google Scholar
Payne MJ, Hurst WJ, Miller KB, Rank C, Stuart DA. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. J Agric Food Chem. 2011;58(19):10518–27.
CrossRef
CAS
Google Scholar
Caligiani A, Cirlini M, Palla G, Ravaglia R, Arlorio M. Antioxidant and membrane effects of procyanidin dimers and trimers isolated from peanut and cocoa. J Agric Food Chem. 2005;53(12):5041–8.
CrossRef
CAS
Google Scholar
Nazaruddin R, Seng LK, Hassan O, Said M. Effect of pulp preconditioning on the content of polyphenols in cocoa beans ( Theobroma cacao ) during fermentation. Ind Crops Prod. 2006;24(1):87–94.
CAS
CrossRef
Google Scholar
Counet C, Collin S. Effect of the number of fl avanol units on the antioxidant activity of procyanidin fractions isolated from chocolate. J Agric Food Chem. 2003;51(23):6816–22.
PubMed
CAS
CrossRef
Google Scholar
Stark T, Bareuther S, Hofmann T. Sensory-guided decomposition of roasted cocoa nibs ( Theobroma cacao ) and structure determination of taste-active polyphenols. J Agric Food Chem. 2005;53(13):5407–18.
PubMed
CAS
CrossRef
Google Scholar
Crozier A, Jaganath IB, Clifford MN. Phenols, polyphenols and tannins: an overview. In: Crozier A, Clifford MN, Asahira H, editors. Plant secondary metabolites: occurrence, structure and role in the human diet. Oxford, England: Blackwell; 2006.
Google Scholar
Dreosti IE. Antioxidant polyphenols in tea, cocoa, and wine. Nutrition. 2000;16(708):692–4.
PubMed
CAS
CrossRef
Google Scholar
Hollman PC. Absorption, bioavailability, and metabolism of fl avonoids. Pharml Biol. 2004;42(S1):74–83.
CAS
CrossRef
Google Scholar
Olthof MR, Hollman PC, Buijsman MN, van Amelsvoort JM, Katan MB. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J Nutr. 2003;133(6):1806–14.
PubMed
CAS
Google Scholar
Miller KB, Hurst WJ, Payne MJ, Stuart DA, Apgar J, Sweigart DS, et al. Impact of alkalization on the antioxidant and fl avanol content of commercial cocoa powders. J Agric Food Chem. 2008;56(18):8527–33.
PubMed
CAS
CrossRef
Google Scholar
Friedman M, Jürgens HS. Effect of pH on the stability of plant phenolic compounds. J Agric Food Chem. 2000;48(6):2101–10.
PubMed
CAS
CrossRef
Google Scholar
Neilson AP, Hopf AS, Cooper BR, Pereira MA, Bomser JA, Ferruzzi MG. Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion. J Agr Food Chem. 2007;55(22): 8941–49.
CAS
CrossRef
Google Scholar
Record IR, Lane JM. Simulated intestinal digestion of green and black teas. Food Chem. 2001;73(4):481–86.
CAS
CrossRef
Google Scholar
Zhu QY, Holt RR, Lazarus SA, Ensunsa JL, Hammerstone JF, Schmitz HH, et al. Stability of the fl avan-3-ols epicatechin and catechin and related dimeric procyanidins derived from cocoa. J Agric Food Chem. 2002;50(6):1700–5.
PubMed
CAS
CrossRef
Google Scholar
Rios LY, Bennett RN, Lazarus SA, Rémésy C, Scalbert A, Williamson G. Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr. 2002;76(5):1106–10.
PubMed
CAS
Google Scholar
Donovan JL, Manach C, Rios L, Morand C, Scalbert A, Rémésy C. Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3. Br J Nutr. 2002;87(4):299–306.
PubMed
CAS
CrossRef
Google Scholar
Kemperman RA, Bolca S, Roger LC, Vaughan EE. Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology. 2010;156(Pt 11):3224–31.
PubMed
CAS
CrossRef
Google Scholar
Gu L, House SE, Wu X, Ou B, Prior RL. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem. 2006;54(11):4057–61.
PubMed
CAS
CrossRef
Google Scholar
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.
PubMed
CAS
Google Scholar
Yang CS, Sang S, Lambert JD, Lee MJ. Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol Nutr Food Res. 2008;52(Suppl 1):S139–51.
PubMed
Google Scholar
Aura AM. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev. 2008;7(3):407–29.
CAS
CrossRef
Google Scholar
Aura AM, Mattila I, Seppnen-Lakso T, Miettinen J, Oksman-Caldentey KM, Oreš c M. Microbial metabolism of catechin stereoisomers by human faecal microbiota: comparison of targeted analysis and a non-targeted metabolomics method. Phytochem Lett. 2008;1(1):18–22.
CAS
Google Scholar
Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130(8S Suppl): 2073S–85.
Google Scholar
Rechner AR, Kuhnle G, Hu H, Roedig-Penman A, van den Braak MH, Moore KP, et al. The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Radic Res. 2002;36(11):1229–41.
PubMed
CAS
CrossRef
Google Scholar
Booth AN, Deeds F, Jones FT, Murray CW. The metabolic fate of rutin and quercetin in the animal body. J Biol Chem. 1956;223(1):251–7.
PubMed
CAS
Google Scholar
Scheline RR. The metabolism of (+)-catechin to hydroxyphenylvaleric acids by the intestinal micro fl ora. Biochim Biophys Acta. 1970;222(1):228–30.
PubMed
CAS
CrossRef
Google Scholar
Winter J, Moore LH, Dowell Jr VR, Bokkenheuser VD. C-Ring cleavage of fl avonoids by human intestinal bacteria. Appl Environ Microbiol. 1989;55(5):1203–8.
PubMed
CAS
Google Scholar
Das NP, Grif fi ths LA. Studies on fl avonoid metabolism. Metabolism of (+)-catechin in the guinea pig. Biochem J. 1968;110(3):449–56.
Google Scholar
Gott DM, Grif fi ths LA. Effects of antibiotic pretreatments on the metabolism and excretion of [U 14 C](+)-catechin [( U 14 C](+)-cyanidanol-3) and its metabolite, 3 ¢ -O-methyl-(+)-catechin. Xenobiotica. 1987;17(4):423–34.
Google Scholar
Grif fi ths LA. Studies on fl avonoid metabolism. Identi fi cation of the metabolites of (+)-catechin in rat urine. Biochem J. 1964;92(1):173–9.
Google Scholar
Meselhy MR, Nakamura N, Hattori M. Biotransformation of (−)-epicatechin 3-O-gallate by human intestinal bacteria. Chem Pharm Bull(Tokyo). 1997;45(5):888–93.
Google Scholar
Das TK. Rate of adaptation of some of the urea cycle enzymes to a low-protein diet. Proc Nutr Soc. 1971;30(3):79A–80.
PubMed
CAS
CrossRef
Google Scholar
Rios LY, Gonthier MP, Rémésy C, Mila I, Lapierre C, Lazarus SA, et al. Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am J Clin Nutr. 2003; 77(4):912–28.
PubMed
CAS
Google Scholar
Urpi-Sarda M, Garrido I, Monagas M, Gómez-Cordovés C, Medina-Remón A, Andres-Lacueva C, et al. Pro fi le of plasma and urine metabolites after the intake of almond [ Prunus dulcis (Mill.) D.A. Webb] polyphenols in humans. J Agric Food Chem. 2009;57(21):10134–42.
Google Scholar
Tzounis X, Vulevic J, Kuhnle GG, George T, Leonczak J, Gibson GR, et al. Flavanol monomer-induced changes to the human faecal micro fl ora. Br J Nutr. 2008;99(4):782–92.
PubMed
CAS
CrossRef
Google Scholar
Wang LQ, Meselhy MR, Li Y, Nakamura N, Min BS, Qin GW, et al. The heterocyclic ring fi ssion and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium. Chem Pharm Bull(Tokyo). 2001;49(12):1640–3.
Google Scholar
Schantz M, Erk T, Richling E. Metabolism of green tea catechins by the human small intestine. Biotechnol J. 2010;5(10):1050–9.
PubMed
CAS
CrossRef
Google Scholar
Meng X, Sang S, Zhu N, Lu H, Sheng S, Lee MJ, et al. Identi fi cation and characterization of methylated and ring- fi ssion metabolites of tea catechins formed in humans, mice, and rats. Chem Res Toxicol. 2002; 15(8):1042–50.
PubMed
CAS
CrossRef
Google Scholar
Das NP, Grif fi ths LA. Studies on fl avonoid metabolism. Metabolism of (+)-[ 14 C] catechin in the rat and guinea pig. Biochem J. 1969;115(4):831–6.
Google Scholar
Oshima Y, Watanabe H, Isakari S. The mechanisms of catechins metabolism. I. substances in the urine of rabbits administered (+)-catechin. Biochem J. 1958;45(11):861–5.
Google Scholar
Booth AN, Williams RT. The hydroxylation of catechol acids by intestinal contents. Biochem J. 1963; 88(3):66–7.
Google Scholar
Alberto MR, Gómez-Cordovés C, Manca de Nadra MC. Metabolism of gallic acid and catechin by Lactobacillus hilgardii from wine. J Agric Food Chem. 2004;52(21):6465–6459.
CAS
Google Scholar
Arteel GE, Schroeder P, Sies H. Reactions of peroxynitrite with cocoa procyanidin oligomers. J Nutr. 2000;130(8 S Suppl):2100S–4.
Google Scholar
Bladé C, Arola L, Salvadó MJ. Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol Nutr Food Res. 2010;54(1):37–59.
PubMed
CrossRef
CAS
Google Scholar
Tomaru M, Takano H, Osakabe N, Yasuda A, Inoue K, Yanagisawa R, et al. Dietary supplementation with cacao liquor proanthocyanidins prevents elevation of blood glucose levels in diabetic obese mice. Nutrition. 2007;23(4):351–5.
PubMed
CAS
CrossRef
Google Scholar
Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep. 2009;26(8):1001–43.
PubMed
CAS
CrossRef
Google Scholar
Appeldoorn MM, Vincken JP, Gruppen H, Hollman PCH. Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. J Nutr. 2009;139(8):169–1473.
Google Scholar
Déprez S, Brezillon C, Rabot S, Philippe C, Mila I, Lapierre C, et al. Polymeric proanthocyanidins are catabolized by human colonic micro fl ora into low-molecular-weight phenolic acids. J Nutr. 2000;130(11):2733–8.
PubMed
Google Scholar
Stoupi S, Williamson G, Drynan JW, Barron D, Clifford MN. A comparison of the in vitro biotransformation of (−)-epicatechin and procyanidin B2 by human faecal microbiota. Mol Nutr Food Res. 2010;54(6):747–59.
PubMed
CAS
CrossRef
Google Scholar
van’t Slot G, Humpf HU. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model. J Agric Food Chem. 2009; 57(17):8041–8.
Google Scholar
Lee KM, Kim WS, Lim J, Nam S, Youn M, Nam SW, et al. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157:H7. J Food Prot. 2009;72(2):325–31.
PubMed
CAS
Google Scholar
Smith AH, Mackie RI. Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl Environ Microbiol. 2004;70(2):1104–15.
PubMed
CAS
CrossRef
Google Scholar
Gu YX, Song YW, Fan LQ, Yuan QS. Antioxidant activity of natural and cultured Cordyceps sp. Zhongguo Zhong Yao Za Zhi. 2007;32(11):1028–31.
PubMed
Google Scholar
Spencer JP. Metabolism of tea fl avonoids in the gastrointestinal tract. J Nutr. 2003;133(10):3255S–61.
PubMed
CAS
Google Scholar
Kuhnle G, Spencer JP, Schroeter H, Shenoy B, Debnam ES, Srai SK, et al. Epicatechin and catechin are O-methylated and glucuronidated in the small intestine. Biochem Biophys Res Commun. 2000;277(2):507–12.
PubMed
CAS
CrossRef
Google Scholar
Spencer JPE, Schroeter H, Rechner A, Rice-Evans C. Bioavailability of fl avan-3-ols and procyanidins: gastrointestinal tract in fl uences and their relevance to bioactive forms in vivo. Antiox Redox Sig. 2001;3(6): 1023–40.
CAS
CrossRef
Google Scholar
Donovan JL, Crespy V, Manach C, Morand C, Besson C, Scalbert A, et al. Catechin is metabolized by both the small intestine and liver of rats. J Nutr. 2001;131(6):1753–7.
PubMed
CAS
Google Scholar
Aherne SA, O’Brien NM. Dietary fl avonols: chemistry, food content, and metabolism. Nutrition. 2002;18(1): 75–81.
PubMed
CAS
CrossRef
Google Scholar
Roura E, Andrés-Lacueva C, Jáuregui O, Badia E, Estruch R, Izquierdo-Pulido M, et al. Rapid liquid chromatography tandem mass spectrometry assay to quantify plasma (−)-epicatechin metabolites after ingestion of a standard portion of cocoa beverage in humans. J Agric Food Chem. 2005;53(16):6190–4.
PubMed
CAS
CrossRef
Google Scholar
Hackett AM, Grif fi ths LA. The effects of an experimental hepatitis on the metabolic disposition of 3-O-(+)-[14C]methylcatechin in the rat. Drug Metab Dispos. 1983;11(6):602–6.
Google Scholar
Das NP. Studies on fl avonoid metabolism. Absorption and metabolism of (+)-catechin in man. Biochem Pharmacol. 1971;20(12):3435–45.
Google Scholar
Das NP, Sothy SP. Studies on fl avonoid metabolism. Biliary and urinary excretion of metabolites of (+)-(U- 14 C) catechin. Biochem J. 1971;125(2):417–23.
Google Scholar
Das NP. Studies on fl avonoid metabolism. Degradation of (+)-catechin by rat intestinal contents. Biochim Biophys Acta. 1969;177(3):668–70.
Google Scholar
Shali NA, Curtis CG, Powell GM, Roy AB. Sulphation of the fl avonoids quercetin and catechin by rat liver. Xenobiotica. 1991;21(7):881–93.
PubMed
CAS
CrossRef
Google Scholar
Huang C, Chen Y, Zhou T, Chen G. Sulfation of dietary fl avonoids by human sulfotransferases. Xenobiotica. 2009;39(4):312–22.
PubMed
CAS
CrossRef
Google Scholar
Hackett AM, Grif fi ths LA, Broillet A, Wermeille M. The metabolism and excretion of (+)-[ 14 C]-cyanidanol-3 in man following oral administration. Xenobiotica. 1983;13(5):279–83.
Google Scholar
Hackett AM, Grif fi ths LA. The metabolism and excretion of 3-palmitoyl-(+)-catechin in the rat. Xenobiotica. 1982;12(7):447–56.
Google Scholar
Shaw IC, Grif fi ths LA. Identi fi cation of the major biliary metabolite of (+)-catechin in the rat. Xenobiotica. 1980;10(12):905–11.
Google Scholar
van der Merwe PJ, Hundt HK. Metabolism of (+)-catechin and some of its C-6 and C-8 substituted derivatives in the isolated perfused pig liver. Xenobiotica. 1984;14(10):795–802.
PubMed
CrossRef
Google Scholar
Hackett AM, Grif fi ths LA. The metabolism and excretion of 3-O-methyl-(+)-catechin in the rat, mouse, and marmoset. Drug Metab Dispos. 1981;9(1):54–9.
Google Scholar
Hackett AM, Shaw IC, Grif fi ths LA. 3 ¢ -O-methyl-(+)-catechin glucuronide and 3 ¢ -O-methyl-(+)-catechin sulphate: new urinary metabolites of (+)-catechin in the rat and the marmoset. Experientia. 1982;38(5):538–40.
Google Scholar
Hackett AM, Grif fi ths LA, Wermeille M. The quantitative disposition of 3-O-methyl-(+)-[U- 14 C]catechin in man following oral administration. Xenobiotica. 1985;15(11):907–14.
Google Scholar
Wermeille M, Turin E, Grif fi ths LA. Identi fi cation of the major urinary metabolites of (+)-catechin and 3-O-methyl-(+)-catechin in man. Eur J Drug Metab Pharmacokinet. 1983;8(1):77–784.
Google Scholar
Manach C, Texier O, Morand C, Crespy V, Régérat F, Demigné C, et al. Comparison of the bioavailability of quercetin and catechin in rats. Free Radic Biol Med. 1999;27(11–12):1259–66.
PubMed
CAS
CrossRef
Google Scholar
Shaw IC, Hackett AM, Grif fi ths LA. Metabolism and excretion of the liver-protective agent (+)-catechin in experimental hepatitis. Xenobiotica. 1982;12(7):405–16.
Google Scholar
Smillie MV, Grif fi ths LA, Male PJ, Wermeille MM. The disposition and metabolism of (+)-cyanidanol-3 in patients with alcoholic cirrhosis. Eur J Clin Pharmacol. 1987;33(3):255–9.
Google Scholar
Harada M, Kan Y, Naoki H, Fukui Y, Kageyama N, Nakai M, et al. Identi fi cation of the major antioxidative metabolites in biological fl uids of the rat with ingested (+)-catechin and (−)-epicatechin. Biosci Biotechnol Biochem. 1999;63(6):973–7.
PubMed
CAS
CrossRef
Google Scholar
Da Silva EL, Piskula M, Terao J. Enhancement of antioxidative ability of rat plasma by oral administration of (−)-epicatechin. Free Radic Biol Med. 1998;24(7–8):1209–16. 123. Piskula MK, Terao J. Accumulation of (−)-epicatechin metabolites in rat plasma after oral administration and distribution of conjugation enzymes in rat tissues. J Nutr. 1998;128(7):1172–8.
Google Scholar
Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C. The small intestine can both absorb and glucuronidate luminal fl avonoids. FEBS Lett. 1999;458(2):224–30.
PubMed
CAS
CrossRef
Google Scholar
Baba S, Osakabe N, Yasuda A, Natsume M, Takizawa T, Nakamura T, et al. Bioavailability of (−)-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radic Res. 2000;33(5):635–41.
PubMed
CAS
CrossRef
Google Scholar
Okushio K, Suzuki M, Matsumoto N, Nanjo F, Hara Y. Identi fi cation of (−)-epicatechin metabolites and their metabolic fate in the rat. Drug Metab Dispos. 1999;27(2):309–16.
PubMed
CAS
Google Scholar
Baba S, Osakabe N, Natsume M, Muto Y, Takizawa T, Terao J. Absorption and urinary excretion of (−)-epicatechin after administration of different levels of cocoa powder or (−)-epicatechin in rats. J Agric Food Chem. 2001;49(12):6050–6.
PubMed
CAS
CrossRef
Google Scholar
Donovan JL, Luthria DL, Stremple P, Waterhouse AL. Analysis of (+)-catechin, (−)-epicatechin and their 3 ¢ - and 4 ¢ -O-methylated analogs. A comparison of sensitive methods. J Chromatogr B Biomed Sci Appl. 1999;726(1–2):277–83.
CAS
CrossRef
Google Scholar
Terao J. Dietary fl avonoids as antioxidants in vivo: conjugated metabolites of (−)-epicatechin and quercetin participate in antioxidative defense in blood plasma. J Med Invest. 1999;46(3–4):159–68.
PubMed
CAS
Google Scholar
Yamashita S, Sakane T, Harada M, Sugiura N, Koda H, Kiso Y, et al. Absorption and metabolism of antioxidative polyphenolic compounds in red wine. Ann N Y Acad Sci. 2002;957(1):325–8.
PubMed
CAS
CrossRef
Google Scholar
Vaidyanathan JB, Walle T. Transport and metabolism of the tea fl avonoid (−)-epicatechin by the human intestinal cell line Caco-2. Pharm Res. 2001;18(10):1420–5.
PubMed
CAS
CrossRef
Google Scholar
Vaidyanathan JB, Walle T. Glucuronidation and sulfation of the tea fl avonoid (−)-epicatechin by the human and rat enzymes. Drug Metab Dispos. 2002;30(8):897–903.
PubMed
CAS
CrossRef
Google Scholar
Abrahamse L, Kloots WJ, van Amelsvoort JM. Absorption, distribution and secretion of epicatechin and quercetin in the rat. Nutr Res. 2005;25(3):305–17.
CAS
CrossRef
Google Scholar
Rimbach G, Melchin M, Moehring J, Wagner AE. Polyphenols from cocoa and vascular health-a critical review. Int J Mol Sci. 2009;10(10):4290–309.
PubMed
CAS
CrossRef
Google Scholar
Spencer JP, Schroeter H, Shenoy B, Srai SK, Debnam ES, Rice-Evans C. Epicatechin is the primary bioavailable form of the procyanidin dimers B2 and B5 after transfer across the small intestine. Biochem Biophys Res Commun. 2001;285(3):588–93.
PubMed
CAS
CrossRef
Google Scholar
Bell JRC, Donovan JL, Wong R, Waterhouse AL et al. (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. Am J Clin Nutr. 2000;71(1):103–8.
PubMed
CAS
Google Scholar
Baba S, Osakabe N, Natsume M, Yasuda A, Takizawa T, Nakamura T, et al. Cocoa powder enhances the level of antioxidative activity in rat plasma. Br J Nutr. 2000;84(5):673–80.
PubMed
CAS
Google Scholar
Wang JF, Schramm DD, Holt RR, Ensunsa JL, Fraga CG, Schmitz HH, et al. A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr. 2000;130(8 S Suppl):2115S–9.
Google Scholar
Baba S, Osakabe N, Natsume M, Muto Y, Takizawa T, Terao J. In vivo comparison of the bioavailability of (+)-catechin, (−)-epicatechin and their mixture in orally administered rats. J Nutr. 2001;131(11):2885–91.
PubMed
CAS
Google Scholar
Li C, Meng X, Winnik B, Lee MJ, Lu H, Sheng S, et al. Analysis of urinary metabolites of tea catechins by liquid chromatography/electrospray ionization mass spectrometry. Chem Res Toxicol. 2001;14(6):702–7.
PubMed
CAS
CrossRef
Google Scholar
Ritter C, Zimmermann BF, Galensa R. Chiral separation of (+)/(−)-catechin from sulfated and glucuronidated metabolites in human plasma after cocoa consumption. Anal Bioanal Chem. 2010;397(2):723–30.
PubMed
CAS
CrossRef
Google Scholar
Bombardelli E, Morazzoni P, Carini M, Aldini G, Maffei FR. Biological activity of procyanidins from Vitis vinifera L. Biofactors. 1997;6(4):429–31.
CAS
CrossRef
Google Scholar
Cheynier V. Polyphenols in foods are more complex than often thought. Am J Clin Nutr. 2005; 81(1Suppl):223S–9.
Google Scholar
Hümmer W, Schreier P. Analysis of proanthocyanidins. Mol Nutr Food Res. 2008;52(12):1381–98.
PubMed
CrossRef
CAS
Google Scholar
Gabetta B, Fuzzati N, Grif fi ni A, Lolla E, Pace R, Ruf fi lli T, Peterlongo F. Characterization of proanthocyanidins from grape seeds. Fitoterapia 2000;71(2):162–75.
CAS
Google Scholar
Ferreira D, Marais JP, Slade D. Heterogeneity of the inter fl avanyl bond in proanthocyanidins from natural sources lacking C-4 (C-ring) deoxy fl avonoid nucleophiles. Phytochemistry. 2005;66(18):2216–37.
PubMed
CAS
CrossRef
Google Scholar
Counet C, Ouwerx C, Rosoux D, Collin S. Relationship between procyanidin and fl avor contents of cocoa liquors from different origins. J Agric Food Chem. 2004;52(20):6243–49.
PubMed
CAS
CrossRef
Google Scholar
Nakamura Y, Tonogai Y. Metabolism of grape seed polyphenol in the rat. J Agric Food Chem. 2003; 51(24):7215–25.
PubMed
CAS
CrossRef
Google Scholar
Sano A, Yamakoshi J, Tokutake S, Tobe K, Kubota Y, Kikuchi M. Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Biosci Biotechnol Biochem. 2003;67(5):1140–3.
PubMed
CAS
CrossRef
Google Scholar
Déprez S, Mila I, Scalbert A. Carbon-14 biolabeling of (+)-catechin and proanthocyanidin oligomers in willow tree cuttings. J Agric Food Chem. 1999;47(10):4219–30.
PubMed
CrossRef
CAS
Google Scholar
Baba S, Osakabe N, Natsume M, Terao J. Absorption and urinary excretion of procyanidin by [epicatechin-(4b-8)-epicatechin] in rats. Free Radic Biol Med. 2002;33(1):142–8.
PubMed
CAS
CrossRef
Google Scholar
Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD, Hammerstone JF, et al. Procyanidin dimer B2 [epicatechin-(4 b -8)-epicatechin] in human plasma after the consumption of a fl avanol-rich cocoa. Am J Clin Nutr. 2002;76(4):798–804.
PubMed
CAS
Google Scholar
Catterall F, King LJ, Clifford MN, Ioannides C. Bioavailability of dietary doses of 3 H-labelled tea antioxidants (+)-catechin and (−)-epicatechin in rat. Xenobiotica. 2003;33(7):743–53.
PubMed
CAS
CrossRef
Google Scholar
Zhu M, Chen Y, Li RC. Oral absorption and bioavailability of tea catechins. Planta Med. 2000;66(5):444–7.
PubMed
CAS
CrossRef
Google Scholar
Tsang C, Auger C, Mullen W, Bornet A, Rouanet JM, Crozier A, et al. The absorption, metabolism and excretion of fl avan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br J Nutr. 2005;94(2):170–81.
PubMed
CAS
CrossRef
Google Scholar
Cai Y, Anavy ND, Chow HHS. Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats. Drug Metab Dispos. 2002;30(11):1246–9.
PubMed
CAS
CrossRef
Google Scholar
Richelle M, Tavazzi I, Enslen M, Offord EA. Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr. 1999;53(1):22–6.
PubMed
CAS
CrossRef
Google Scholar
Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG. Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr. 2000;130(8 S Suppl):2109S–14.
Google Scholar
Tomás-Barberán FA, Cienfuegos-Jovellanos E, Marín A, Muguerza B, Gil-Izquierdo A, Cerda B, et al. A new process to develop a cocoa powder with higher fl avonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem. 2007;55(10):3926–35.
PubMed
CrossRef
CAS
Google Scholar
Gotti R, Furlanetto S, Pinzauti S, Cavrini V. Analysis of catechins in Theobroma cacao beans by cyclodextrinmodi fi ed micellar electrokinetic chromatography. J Chromatogr A. 2006;1112(1–2):345–52.
PubMed
CAS
Google Scholar
Donovan JL, Crespy V, Oliveira M, Cooper KA, Gibson BB, Williamson G. (+)-Catechin is more bioavailable than (−)-catechin: relevance to the bioavailability of catechin from cocoa. Free Radic Res. 2006; 40(10):1029–34.
PubMed
CAS
CrossRef
Google Scholar
Ottaviani JI, Momma TY, Heiss C, Kwik-Uribe C, Schroeter H, Keen CL. The stereochemical con fi guration of fl avanols in fl uences the level and metabolism of fl avanols in humans and their biological activity in vivo. Free Radic Biol Med. 2011;50(2):237–44.
PubMed
CAS
CrossRef
Google Scholar
Schramm DD, Karim M, Schrader HR, Holt RR, Kirkpatrick NJ, Polagruto JA, et al. Food effects on the absorption and pharmacokinetics of cocoa fl avanols. Life Sci. 2003;73(7):857–69.
PubMed
CAS
CrossRef
Google Scholar
Charman WN, Porter CJH, Mithani S, Dressman JB. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–82.
PubMed
CAS
CrossRef
Google Scholar
Hertog MG, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D. Antioxidant fl avonols and ischemic heart disease in a Welsh population of men: the Caerphilly study. Am J Clin Nutr. 1997;65(5):1489–94.
PubMed
CAS
Google Scholar
van het Hof KH, Kivits GAA, Westrate JA, Tijburg LBM. Bioavailability of catechins from tea: the effect of milk. Eur J Clin Nutr. 1998;52(5):356–9.
CrossRef
CAS
Google Scholar
Leenen R, Roodenburg AJC, Tijburg LBM, Wiseman SA. A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur J Clin Nutr. 2000;54(1):87–92.
PubMed
CAS
CrossRef
Google Scholar
Hollman PCH, van het Hof KH, Tijburg LBM, Katan MB. Addition of milk does not affect the absorption of fl avonols from tea in man. Free Radic Biol Med. 2001;34(3):297–300.
CAS
Google Scholar
Richelle M, Tavazzi I, Offord E. Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup serving. J Agric Food Chem. 2001;49(7):3438–42.
PubMed
CAS
CrossRef
Google Scholar
Reddy VC, Sagar GVV, Sreeramulu D, Venu L, Raghunath M. Addition of milk does not alter the antioxidant activity of black tea. Ann Nutr Metab. 2005;49(3):189–95.
PubMed
CAS
CrossRef
Google Scholar
Sera fi ni M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013.
Google Scholar
Schroeter H, Holt RR, Orozco TJ, Schmitz HH, Keen CL. Milk and absorption of dietary fl avanols. Nature. 2003;426(6968):787–8.
PubMed
CAS
CrossRef
Google Scholar
Sera fi ni M, Crozier A. Milk and absorption of dietary fl avanols. Nature. 2003;426(6968):788.
Google Scholar
Lorenz M, Jochmann N, von Krosigk A, Martus P, Bauman G, Stangl K, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23.
PubMed
CrossRef
Google Scholar
Keogh JB, McInerney J, Clifton PM. The effect of milk protein on the bioavailability of cocoa polyphenols. J Food Sci. 2007;72(3):S230–3.
PubMed
CAS
CrossRef
Google Scholar
Roura E, Andrés-Lacueva C, Estruch R, Mata Bilbao ML, Izquierdo-Pulido M, Waterhouse AL, et al. Milk does not affect the bioavailability of cocoa powder fl avonoid in healthy human. Ann Nutr Metab. 2007;51(6):493–8.
PubMed
CAS
Google Scholar
Roura E, Andrés-Lacueva C, Estruch R, Mata Bilbao ML, Izquierdo-Pulido M, Lamuela-Raventós RM. The effect of milk as a food matrix for polyphenols on the excretion pro fi le of cocoa (−)-epicatechin metabolites in healthy human subjects. Br J Nutr. 2008;100(4):846–51.
Google Scholar
Mullen W, Borges G, Donovan JL, Edwards CA, Sera fi ni M, Lean MEJ, et al. Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa fl avan-3-ol metabolites in humans. Am J Clin Nutr. 2009; 89(6):1784–91.
Google Scholar
Gossai D, Lau-Cam CA. Assessment of the effect of type of dairy product and of chocolate matrix on the oral absorption of monomeric chocolate fl avanols in a small animal model. Pharmazie. 2009;64(3):202–9.
PubMed
CAS
Google Scholar
Carbonaro M, Grant G, Pusztai A. Evaluation of polyphenol bioavailability in rat small intestine. Eur J Nutr. 2001;40(2):84–90.
PubMed
CAS
CrossRef
Google Scholar
Reinboth M, Wolffram S, Abraham G, Ungemach FFR, Cermak R. Oral bioavailability of quercetin from different quercetin glycosides in dogs. Br J Nutr. 2010;104(2):198–203.
PubMed
CAS
CrossRef
Google Scholar
Gil-Izquierdo A, Zafrilla P, Tomás-Barberán FA. An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. Eur Food Res Technol. 2002;214(2):155–9.
CAS
CrossRef
Google Scholar
Neilson AP, George JC, Mattes RD, Janle EM, Matusheski NV, Ferruzzi MG. In fl uence of chocolate formulation factors on in vitro bioaccessibility and bioavailability of catechins in humans. J Agric Food Chem. 2009; 57(20):9418–26.
PubMed
CAS
CrossRef
Google Scholar
Neilson AP, Sapper TN, Janle EM, Rudolph R, Matusheski NV, Ferruzzi MG. Chocolate matrix factors modulate the pharmacokinetic behavior of cocoa fl avan-3-ol phase II metabolites following oral consumption by Sprague-Dawley rats. J Agric Food Chem. 2010;58(11):6685–91.
PubMed
CAS
CrossRef
Google Scholar
Beckett ST. Industrial chocolate manufacture and use. 3rd ed. Oxford, UK: Blackwell; 1999.
Google Scholar
Fryer P, Pinschower K. The materials science of chocolate. Mater Res Soc Bull. 2000;25(12):25–9.
CAS
CrossRef
Google Scholar
Toro-Vazquez JF, Pérez Martínez D, Dibildox-Alvarado E, Charó-Alonso M, Reyes Hernández J. Rheometry and polymorphism of cocoa butter during crystallization under static and stirring conditions. J Am Oil Chem Soc. 2004;81(2):195–202.
CAS
Google Scholar
Serra A, Macià A, Romero MP, Bladé C, Arola L, Motilva MJ. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. Br J Nutr. 2010;103(7):944–52.
PubMed
CAS
CrossRef
Google Scholar