Skip to main content

ACTIN

  • Chapter
  • First Online:
Book cover Cytoskeleton and Human Disease

Abstract

Eukaryotic cells contain three distinct cytoskeletal filament systems, including actin, that exhibit very different assembly properties, supramolecular architectures, dynamic behavior, and mechanical properties. Actin, which is involved in a plethora of functions, is the most abundant protein in most cell types and is impressively conserved across species. The highest concentrations of actin (about 20% of total protein) are found as stable microfilament systems assembled within myofibrillar contractile structures in striated muscles. In addition to its specialized role in muscle contraction, actin is present in all muscle and nonmuscle cells, where it plays a variety of roles thanks to its ability to assemble and disassemble depending on cell requirements. Actin plays an important role in maintaining cell structure and function by conferring mechanical strength and enabling intracellular contraction and/or tension. In nonmuscle cells, microfilaments are involved in cell motility and cytokinesis. The dynamics of the actin cytoskeleton are maintained by two factors: (1) the ability of actin to undergo reversible transformation from the monomeric state (G-actin) to the polymeric state (F-actin) and (2) the interaction of actin with actin-binding proteins (ABPs), that can inhibit or stimulate actin polymerization, sever the polymers, cross-link actin filaments into bundles or in filamentous three-dimensional networks, and bind them to cell membranes. Considering the multiple cellular functions of actin, alterations in the organization of microfilaments will result in disorganized cell arrangement and orientation, uncontrolled cell growth, and abnormal responses to the environment. Higher vertebrates express six different highly conserved actin isoforms. Over the last decades, numerous studies have tried to elucidate the specific expressions, localizations, regulations, properties, and functions of the different isoactins. The understanding of their specific underlying mechanisms would be of major relevance not only for fundamental research but also for clinical applications, since modulations of actin isoforms are directly or indirectly correlated with severe pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Arginylation is a post-translational modification mediated by Arg-tRNA protein transferase (ATE1) which transfers arginine (Arg) from tRNA onto proteins.

  2. 2.

    In embryonic chicken and mouse muscles, α-CAA still accounts for 90% and 60–70%, respectively.

  3. 3.

    Small amounts of α-CAA and its mRNA persist in adult skeletal muscle of different species [105, 106, 118].

  4. 4.

    The transgenically expressed γ-SMA reduces cardiac contractility even in wild-type and heterozygous mice.

  5. 5.

    The differences in amino acid composition between α-CAA and γ-SMA could affect the closure or the opening of the cleft and thus the transition from the weak to the strong binding state.

References

  1. Soufo HJ, Graumann PL (2003) Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr Biol 13:1916–1920

    PubMed  Google Scholar 

  2. Wang S, Arellano-Santoyo H, Combs PA, Shaevitz JW (2010) Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria. Proc Natl Acad Sci U S A 107:9182–9185

    PubMed  CAS  Google Scholar 

  3. Vandekerckhove J, Weber K (1978a) At least six different actins are expressed in a higher mammal: An analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126:783–802

    CAS  Google Scholar 

  4. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114:4557–4565

    PubMed  CAS  Google Scholar 

  5. Straub FB (1942) Actin. Stud Szeged 2:3–15

    CAS  Google Scholar 

  6. Hennessey ES, Drummond DR, Sparrow JC (1993) Molecular genetics of actin function. Biochem J 291(3):657–671

    PubMed  CAS  Google Scholar 

  7. Grazi E, Magri E (1979) Phosphorylation of actin and removal of its inhibitory activity on pancreatic DNAase I by liver plasma membranes. FEBS Lett 104:284–286

    PubMed  CAS  Google Scholar 

  8. Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739-13742

    PubMed  CAS  Google Scholar 

  9. Sheterline P, Clayton J, Sparrow J (1995) Actin. Protein Profile 2:1–103

    PubMed  CAS  Google Scholar 

  10. Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, Perieteanu AA, Dawson JF, Kashina A (2010) Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol Biol Cell 21:1350–1361

    PubMed  CAS  Google Scholar 

  11. Karakozova M, Kozak M, Wong CC, Bailey AO, Yates JR, 3rd, Mogilner A, Zebroski H, Kashina A (2006) Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 313:192–196

    PubMed  CAS  Google Scholar 

  12. Murakami K, Yasunaga T, Noguchi TQ, Gomibuchi Y, Ngo KX, Uyeda TQ, Wakabayashi T (2010) Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell 143:275–287

    PubMed  CAS  Google Scholar 

  13. Brooks FJ, Carlsson AE (2009) Nonequilibrium actin polymerization treated by a truncated rate-equation method. Phys Rev E Stat Nonlin Soft Matter Phys 79:031914

    PubMed  CAS  Google Scholar 

  14. Galinska-Rakoczy A, Wawro B, Strzelecka-Golaszewska H (2009) New aspects of the spontaneous polymerization of actin in the presence of salts. J Mol Biol 387:869–882

    PubMed  CAS  Google Scholar 

  15. Carlier MF (1989) Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules. Int Rev Cytol 115:139–170

    PubMed  CAS  Google Scholar 

  16. Wegner A, Engel J (1975) Kinetics of the cooperative association of actin to actin filaments. Biophys Chem 3:215–225

    PubMed  CAS  Google Scholar 

  17. Murphy DB, Gray RO, Grasser WA, Pollard TD (1988) Direct demonstration of actin filament annealing in vitro. J Cell Biol 106:1947–1954

    PubMed  CAS  Google Scholar 

  18. Fass J, Pak C, Bamburg J, Mogilner A (2008) Stochastic simulation of actin dynamics reveals the role of annealing and fragmentation. J Theor Biol 252:173–183

    PubMed  CAS  Google Scholar 

  19. Andrianantoandro E, Blanchoin L, Sept D, McCammon JA, Pollard TD (2001) Kinetic mechanism of end-to-end annealing of actin filaments. J Mol Biol 312:721–730

    PubMed  CAS  Google Scholar 

  20. Kueh HY, Mitchison TJ (2009) Structural plasticity in actin and tubulin polymer dynamics. Science 325:960–963

    PubMed  CAS  Google Scholar 

  21. Engel J, Fasold H, Hulla FW, Waechter F, Wegner A (1977) The polymerization reaction of muscle actin. Mol Cell Biochem 18:3–13

    PubMed  CAS  Google Scholar 

  22. Li X, Kierfeld J, Lipowsky R (2009) Actin polymerization and depolymerization coupled to cooperative hydrolysis. Phys Rev Lett 103:048102

    PubMed  Google Scholar 

  23. Muhlrad A, Ringel I, Pavlov D, Peyser YM, Reisler E (2006) Antagonistic effects of cofilin, beryllium fluoride complex, and phalloidin on subdomain 2 and nucleotide-binding cleft in F-actin. Biophys J 91:4490–4499

    PubMed  CAS  Google Scholar 

  24. Kardos R, Pozsonyi K, Nevalainen E, Lappalainen P, Nyitrai M, Hild G (2009) The effects of ADF/cofilin and profilin on the conformation of the ATP-binding cleft of monomeric actin. Biophys J 96:2335–2343

    PubMed  CAS  Google Scholar 

  25. Laham LE, Lamb JA, Allen PG, Janmey PA (1993) Selective binding of gelsolin to actin monomers containing ADP. J Biol Chem 268:14202–14207

    PubMed  CAS  Google Scholar 

  26. Allen PG, Laham LE, Way M, Janmey PA (1996a) Binding of phosphate, aluminum fluoride, or beryllium fluoride to F-actin inhibits severing by gelsolin. J Biol Chem 271:4665–4670

    CAS  Google Scholar 

  27. dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473

    PubMed  Google Scholar 

  28. Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55:987–1035

    PubMed  CAS  Google Scholar 

  29. Amos LA, Schlieper D (2005) Microtubules and maps. Adv Protein Chem 71:257–298

    PubMed  CAS  Google Scholar 

  30. Green KJ, Bohringer M, Gocken T, Jones JC (2005) Intermediate filament associated proteins. Adv Protein Chem 70:143–202

    PubMed  CAS  Google Scholar 

  31. Winder SJ, Ayscough KR (2005) Actin-binding proteins. J Cell Sci 118:651–654

    PubMed  CAS  Google Scholar 

  32. Lee H, Ferrer JM, Lang MJ, Kamm RD (2010) Molecular origin of strain softening in cross-linked F-actin networks. Phys Rev E Stat Nonlin Soft Matter Phys 82:011919

    PubMed  Google Scholar 

  33. Stricker J, Falzone T, Gardel ML (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43:9–14

    PubMed  Google Scholar 

  34. Mizuno D, Tardin C, Schmidt CF, Mackintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370–373

    PubMed  CAS  Google Scholar 

  35. Vandekerckhove J, Weber K (1978b) Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins. Proc Natl Acad Sci U S A 75:1106–1110

    CAS  Google Scholar 

  36. Kabsch W, Vandekerckhove J (1992) Structure and function of actin. Annu Rev Biophys Biomol Struct 21:49–76

    PubMed  CAS  Google Scholar 

  37. Gunning P, Ponte P, Kedes L, Eddy R, Shows T (1984a) Chromosomal location of the co-expressed human skeletal and cardiac actin genes. Proc Natl Acad Sci U S A 81:1813–1817

    CAS  Google Scholar 

  38. Hightower RC, Meagher RB (1986) The molecular evolution of actin. Genetics 114:315–332

    PubMed  CAS  Google Scholar 

  39. Obinata T, Maruyama K, Sugita H, Kohama K, Ebashi S (1981) Dynamic aspects of structural proteins in vertebrate skeletal muscle. Muscle Nerve 4:456–488

    PubMed  CAS  Google Scholar 

  40. Vandekerckhove J, Weber K (1978c) Comparison of the amino acid sequences of three tissue-specific cytoplasmic actins with rabbit skeletal muscle actin (proceedings). Arch Int Physiol Biochim 86:891–892

    CAS  Google Scholar 

  41. Vandekerckhove J, Weber K (1979a) Amino-acid sequence analysis of the amino-terminal tryptic peptides of different actins from the same mammal (proceedings). Arch Int Physiol Biochim 87:210–212

    CAS  Google Scholar 

  42. Vandekerckhove J, Weber K (1979b) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. A protein-chemical analysis of muscle actin differentiation. Differentiation 14:123–133

    CAS  Google Scholar 

  43. Garrels JI, Gibson W (1976) Identification and characterization of multiple forms of actin. Cell 9:793–805

    PubMed  CAS  Google Scholar 

  44. Rubenstein PA, Spudich JA (1977) Actin microheterogeneity in chick embryo fibroblasts. Proc Natl Acad Sci U S A 74:120–123

    PubMed  CAS  Google Scholar 

  45. Schutt CE, Myslik JC, Rozycki MD, Goonesekere NC, Lindberg U (1993) The structure of crystalline profilin-beta-actin. Nature 365:810–816

    PubMed  CAS  Google Scholar 

  46. Mounier N, Sparrow JC (1997) Structural comparisons of muscle and nonmuscle actins give insights into the evolution of their functional differences. J Mol Evol 44:89–97

    PubMed  CAS  Google Scholar 

  47. Allen PG, Shuster CB, Kas J, Chaponnier C, Janmey PA, Herman IM (1996b) Phalloidin binding and rheological differences among actin isoforms. Biochemistry 35:14062–14069

    CAS  Google Scholar 

  48. Orban J, Lorinczy D, Nyitrai M, Hild G (2008) Nucleotide dependent differences between the alpha-skeletal and alpha-cardiac actin isoforms. Biochem Biophys Res Commun 368:696–702

    PubMed  CAS  Google Scholar 

  49. Khaitlina S, Hinssen H (2008) Difference in polymerization and steady-state dynamics of free and gelsolin-capped filaments formed by alpha- and beta-isoactins. Arch Biochem Biophys 477:279–284

    PubMed  CAS  Google Scholar 

  50. Bergeron SE, Zhu M, Thiem SM, Friderici KH, Rubenstein PA (2010) Ion-dependent polymerization differences between mammalian beta- and gamma-nonmuscle actin isoforms. J Biol Chem 285:16087–16095

    PubMed  CAS  Google Scholar 

  51. Strzelecka-Golaszewska H, Sobieszek A (1981) Activation of smooth muscle myosin by smooth and skeletal muscle actins. FEBS Lett 134:197–202

    PubMed  CAS  Google Scholar 

  52. Mossakowska M, Strzelecka-Golaszewska H (1985) Identification of amino acid substitutions differentiating actin isoforms in their interaction with myosin. Eur J Biochem 153:373–381

    PubMed  CAS  Google Scholar 

  53. Orlova A, Yu X, Egelman EH (1994) Three-dimensional reconstruction of a co-complex of F-actin with antibody Fab fragments to actin’s NH2 terminus. Biophys J 66:276–285

    PubMed  CAS  Google Scholar 

  54. Larsson H, Lindberg U (1988) The effect of divalent cations on the interaction between calf spleen profilin and different actins. Biochim Biophys Acta 953:95–105

    PubMed  CAS  Google Scholar 

  55. Ohshima S, Abe H, Obinata T (1989) Isolation of profilin from embryonic chicken skeletal muscle and evaluation of its interaction with different actin isoforms. J Biochem 105:855–857

    PubMed  CAS  Google Scholar 

  56. Weber A, Nachmias VT, Pennise CR, Pring M, Safer D (1992) Interaction of thymosin beta 4 with muscle and platelet actin: implications for actin sequestration in resting platelets. Biochemistry 31:6179–6185

    PubMed  CAS  Google Scholar 

  57. Prassler J, Stocker S, Marriott G, Heidecker M, Kellermann J, Gerisch G (1997) Interaction of a Dictyostelium member of the plastin/fimbrin family with actin filaments and actin-myosin complexes. Mol Biol Cell 8:83–95

    PubMed  CAS  Google Scholar 

  58. Namba Y, Ito M, Zu Y, Shigesada K, Maruyama K (1992) Human T cell L-plastin bundles actin filaments in a calcium-dependent manner. J Biochem 112:503–507

    PubMed  CAS  Google Scholar 

  59. Shuster CB, Lin AY, Nayak R, Herman IM (1996) Beta cap73: a novel beta actin-specific binding protein. Cell Motil Cytoskeleton 35:175–187

    PubMed  CAS  Google Scholar 

  60. Shuster CB, Herman IM (1995) Indirect association of ezrin with F-actin: isoform specificity and calcium sensitivity. J Cell Biol 128:837–848

    PubMed  CAS  Google Scholar 

  61. Yao X, Cheng L, Forte JG (1996) Biochemical characterization of ezrin-actin interaction. J Biol Chem 271:7224–7229

    PubMed  CAS  Google Scholar 

  62. Winder SJ, Hemmings L, Maciver SK, Bolton SJ, Tinsley JM, Davies KE, Critchley DR, Kendrick-Jones J (1995) Utrophin actin binding domain: analysis of actin binding and cellular targeting. J Cell Sci 108(1):63–71

    PubMed  CAS  Google Scholar 

  63. Tzima E, Trotter PJ, Orchard MA, Walker JH (2000) Annexin V relocates to the platelet cytoskeleton upon activation and binds to a specific isoform of actin. Eur J Biochem 267:4720–4730

    PubMed  CAS  Google Scholar 

  64. Gallant C, Appel S, Graceffa P, Leavis PC, Lin JJ, Gunning PW, Schevzov G, Chaponnier C, Degnore J, Lehman W, Morgan KG (2011) Tropomyosin variants describe distinct functional subcellular domains in differentiated vascular smooth muscle cells. Am J Physiol Cell Physiol 300(6):1356–1365

    Google Scholar 

  65. Storti RV, Coen DM, Rich A (1976) Tissue-specific forms of actin in the developing chick. Cell 8:521–527

    PubMed  CAS  Google Scholar 

  66. Wiens D, Spooner BS (1983) Actin isotype biosynthetic transitions in early cardiac organogenesis. Eur J Cell Biol 30:60–66

    PubMed  CAS  Google Scholar 

  67. Owens GK, Thompson MM (1986) Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation. J Biol Chem 261:13373–13380

    PubMed  CAS  Google Scholar 

  68. Gunning P, Hardeman E, Jeffrey P, Weinberger R (1998a) Creating intracellular structural domains: spatial segregation of actin and tropomyosin isoforms in neurons. Bioessays 20:892–900

    CAS  Google Scholar 

  69. Gunning P, Weinberger R, Jeffrey P, Hardeman E (1998b) Isoform sorting and the creation of intracellular compartments. Annu Rev Cell Dev Biol 14:339–372

    CAS  Google Scholar 

  70. Gunning P, Mohun T, Ng SY, Ponte P, Kedes L (1984b) Evolution of the human sarcomeric-actin genes: evidence for units of selection within the 3’ untranslated regions of the mRNAs. J Mol Evol 20:202–214

    CAS  Google Scholar 

  71. Yaffe D, Nudel U, Mayer Y, Neuman S (1985) Highly conserved sequences in the 3’ untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res 13:3723–3737

    PubMed  CAS  Google Scholar 

  72. Parker TG, Chow KL, Schwartz RJ, Schneider MD (1992) Positive and negative control of the skeletal alpha-actin promoter in cardiac muscle. A proximal serum response element is sufficient for induction by basic fibroblast growth factor (FGF) but not for inhibition by acidic FGF. J Biol Chem 267:3343–3350

    PubMed  CAS  Google Scholar 

  73. Blank RS, McQuinn TC, Yin KC, Thompson MM, Takeyasu K, Schwartz RJ, Owens GK (1992) Elements of the smooth muscle alpha-actin promoter required in cis for transcriptional activation in smooth muscle. Evidence for cell type-specific regulation. J Biol Chem 267:984–989

    PubMed  CAS  Google Scholar 

  74. Foster DN, Min B, Foster LK, Stoflet ES, Sun S, Getz MJ, Strauch AR (1992) Positive and negative cis-acting regulatory elements mediate expression of the mouse vascular smooth muscle alpha-actin gene. J Biol Chem 267:11995–12003

    PubMed  CAS  Google Scholar 

  75. Treisman R, Alberts AS, Sahai E (1998) Regulation of SRF activity by Rho family GTPases. Cold Spring Harb Symp Quant Biol 63:643–651

    PubMed  CAS  Google Scholar 

  76. Miano JM (2003) Serum response factor: toggling between disparate programs of gene expression. J Mol Cell Cardiol 35:577–593

    PubMed  CAS  Google Scholar 

  77. Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16:588–596

    PubMed  CAS  Google Scholar 

  78. Carson JA, Fillmore RA, Schwartz RJ, Zimmer WE (2000) The smooth muscle gamma-actin gene promoter is a molecular target for the mouse bagpipe homologue, mNkx3–1, and serum response factor. J Biol Chem 275:39061–39072

    PubMed  CAS  Google Scholar 

  79. Kuwahara K, Barrientos T, Pipes GC, Li S, Olson EN (2005) Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Mol Cell Biol 25:3173–3181

    PubMed  CAS  Google Scholar 

  80. Chen CY, Croissant J, Majesky M, Topouzis S, McQuinn T, Frankovsky MJ, Schwartz RJ (1996) Activation of the cardiac alpha-actin promoter depends upon serum response factor, Tinman homologue, Nkx-2.5, and intact serum response elements. Dev Genet 19:119–130

    PubMed  CAS  Google Scholar 

  81. Mack CP, Owens GK (1999) Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5’ and first intron promoter regions. Circ Res 84:852–861

    PubMed  CAS  Google Scholar 

  82. Miralles F, Visa N (2006) Actin in transcription and transcription regulation. Curr Opin Cell Biol 18:261–266

    PubMed  CAS  Google Scholar 

  83. Singer RH (1992) The cytoskeleton and mRNA localization. Curr Opin Cell Biol 4:15–19

    PubMed  CAS  Google Scholar 

  84. Gunning P, Weinberger R, Jeffrey P (1997) Actin and tropomyosin isoforms in morphogenesis. Anat Embryol (Berl) 195:311–315

    CAS  Google Scholar 

  85. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    PubMed  CAS  Google Scholar 

  86. Latham VM, Jr., Kislauskis EH, Singer RH, Ross AF (1994) Beta-actin mRNA localization is regulated by signal transduction mechanisms. J Cell Biol 126:1211–1219

    PubMed  CAS  Google Scholar 

  87. Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM, Singer RH, Bertrand E (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13:161–167

    PubMed  CAS  Google Scholar 

  88. Oleynikov Y, Singer RH (2003) Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization. Curr Biol 13:199–207

    PubMed  CAS  Google Scholar 

  89. Kislauskis EH, Li Z, Singer RH, Taneja KL (1993) Isoform-specific 3’-untranslated sequences sort alpha-cardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol 123:165–172

    PubMed  CAS  Google Scholar 

  90. Ross AF, Oleynikov Y, Kislauskis EH, Taneja KL, Singer RH (1997) Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol 17:2158–2165

    PubMed  CAS  Google Scholar 

  91. Huttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M, Meng X, Bassell GJ, Condeelis J, Singer RH (2005) Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438:512–515

    PubMed  Google Scholar 

  92. Hill MA, Gunning P (1993) Beta and gamma actin mRNAs are differentially located within myoblasts. J Cell Biol 122:825–832

    PubMed  CAS  Google Scholar 

  93. Hannan AJ, Gunning P, Jeffrey PL, Weinberger RP (1998) Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. Mol Cell Neurosci 11:289–304

    PubMed  CAS  Google Scholar 

  94. Fulton AB (1993) Spatial organization of the synthesis of cytoskeletal proteins. J Cell Biochem 52:148–152

    PubMed  CAS  Google Scholar 

  95. Peng I, Fischman DA (1991) Post-translational incorporation of actin into myofibrils in vitro: evidence for isoform specificity. Cell Motil Cytoskeleton 20:158–168

    PubMed  CAS  Google Scholar 

  96. Kashina AS (2006) Differential arginylation of actin isoforms: the mystery of the actin N-terminus. Trends Cell Biol 16:610–615

    PubMed  CAS  Google Scholar 

  97. Wong CC, Xu T, Rai R, Bailey AO, Yates JR, 3rd, Wolf YI, Zebroski H, Kashina A (2007) Global analysis of posttranslational protein arginylation. PLoS Biol 5:e258

    Google Scholar 

  98. Zhang F, Saha S, Shabalina SA, Kashina A (2010) Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 329:1534–1537

    PubMed  CAS  Google Scholar 

  99. Rai R, Wong CC, Xu T, Leu NA, Dong DW, Guo C, McLaughlin KJ, Yates JR, 3rd, Kashina A (2008) Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development. Development 135:3881–3889

    PubMed  CAS  Google Scholar 

  100. Lambrechts A, Van Troys M, Ampe C (2004) The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol 36:1890–1909

    PubMed  CAS  Google Scholar 

  101. Chaponnier C, Gabbiani G (2004) Pathological situations characterized by altered actin isoform expression. J Pathol 204:386–395

    PubMed  CAS  Google Scholar 

  102. Tondeleir D, Vandamme D, Vandekerckhove J, Ampe C, Lambrechts A (2009) Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models. Cell Motil Cytoskeleton 66:798–815

    PubMed  CAS  Google Scholar 

  103. Perrin BJ, Ervasti JM (2010) The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 67:630–634

    CAS  Google Scholar 

  104. Gunning P, Ponte P, Blau H, Kedes L (1983) Alpha-skeletal and alpha-cardiac actin genes are coexpressed in adult human skeletal muscle and heart. Mol Cell Biol 3:1985–1995

    PubMed  CAS  Google Scholar 

  105. Paterson BM, Eldridge JD (1984) Alpha-Cardiac actin is the major sarcomeric isoform expressed in embryonic avian skeletal muscle. Science 224:1436–1438

    PubMed  CAS  Google Scholar 

  106. Vandekerckhove J, Bugaisky G, Buckingham M (1986) Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. A quantitative determination of the two actin isoforms. J Biol Chem 261:1838–1843

    PubMed  CAS  Google Scholar 

  107. Gunning P, Hardeman E, Wade R, Ponte P, Bains W, Blau HM, Kedes L (1987) Differential patterns of transcript accumulation during human myogenesis. Mol Cell Biol 7:4100–4114

    PubMed  CAS  Google Scholar 

  108. McHugh KM, Crawford K, Lessard JL (1991) A comprehensive analysis of the developmental and tissue-specific expression of the isoactin multigene family in the rat. Dev Biol 148:442–458

    PubMed  CAS  Google Scholar 

  109. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    PubMed  CAS  Google Scholar 

  110. Gimona M, Vandekerckhove J, Goethals M, Herzog M, Lando Z, Small JV (1994) Beta-actin specific monoclonal antibody. Cell Motil Cytoskeleton 27:108–116

    PubMed  CAS  Google Scholar 

  111. Dugina V, Zwaenepoel I, Gabbiani G, Clement S, Chaponnier C (2009) Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. J Cell Sci 122:2980–2988

    PubMed  CAS  Google Scholar 

  112. Franke WW, Stehr S, Stumpp S, Kuhn C, Heid H, Rackwitz HR, Schnolzer M, Baumann R, Holzhausen HJ, Moll R (1996) Specific immunohistochemical detection of cardiac/fetal alpha-actin in human cardiomyocytes and regenerating skeletal muscle cells. Differentiation 60:245–250

    PubMed  CAS  Google Scholar 

  113. Clement S, Orlandi A, Bocchi L, Pizzolato G, Foschini MP, Eusebi V, Gabbiani G (2003) Actin isoform pattern expression: a tool for the diagnosis and biological characterization of human rhabdomyosarcoma. Virchows Arch 442:31–38

    PubMed  CAS  Google Scholar 

  114. Driesen RB, Verheyen FK, Debie W, Blaauw E, Babiker FA, Cornelussen RN, Ausma J, Lenders MH, Borgers M, Chaponnier C, Ramaekers FC (2009) Re-expression of alpha skeletal actin as a marker for dedifferentiation in cardiac pathologies. J Cell Mol Med 13:896–908

    PubMed  CAS  Google Scholar 

  115. Clement S, Chaponnier C, Gabbiani G (1999) A subpopulation of cardiomyocytes expressing alpha-skeletal actin is identified by a specific polyclonal antibody. Circ Res 85:e51–58

    Google Scholar 

  116. Hanft LM, Rybakova IN, Patel JR, Rafael-Fortney JA, Ervasti JM (2006) Cytoplasmic gamma-actin contributes to a compensatory remodeling response in dystrophin-deficient muscle. Proc Natl Acad Sci U S A 103:5385–5390

    PubMed  CAS  Google Scholar 

  117. Sawtell NM, Lessard JL (1989) Cellular distribution of smooth muscle actins during mammalian embryogenesis: expression of the alpha-vascular but not the gamma-enteric isoform in differentiating striated myocytes. J Cell Biol 109:2929–2937

    PubMed  CAS  Google Scholar 

  118. Minty AJ, Alonso S, Caravatti M, Buckingham ME (1982) A fetal skeletal muscle actin mRNA in the mouse and its identity with cardiac actin mRNA. Cell 30:185–192

    PubMed  CAS  Google Scholar 

  119. Carrier L, Boheler KR, Chassagne C, de la Bastie D, Wisnewsky C, Lakatta EG, Schwartz K (1992) Expression of the sarcomeric actin isogenes in the rat heart with development and senescence. Circ Res 70:999–1005

    PubMed  CAS  Google Scholar 

  120. Bertola LD, Ott EB, Griepsma S, Vonk FJ, Bagowski CP (2008) Developmental expression of the alpha-skeletal actin gene. BMC Evol Biol 8:166

    PubMed  Google Scholar 

  121. Ruzicka DL, Schwartz RJ (1988) Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. J Cell Biol 107:2575–2586

    PubMed  CAS  Google Scholar 

  122. Woodcock-Mitchell J, Mitchell JJ, Low RB, Kieny M, Sengel P, Rubbia L, Skalli O, Jackson B, Gabbiani G (1988) Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation 39:161–166

    PubMed  CAS  Google Scholar 

  123. Hewett TE, Grupp IL, Grupp G, Robbins J (1994) Alpha-skeletal actin is associated with increased contractility in the mouse heart. Circ Res 74:740–746

    PubMed  CAS  Google Scholar 

  124. Clement S, Stouffs M, Bettiol E, Kampf S, Krause KH, Chaponnier C, Jaconi M (2007) Expression and function of alpha-smooth muscle actin during embryonic-stem-cell-derived cardiomyocyte differentiation. J Cell Sci 120:229–238

    PubMed  CAS  Google Scholar 

  125. Moll R, Holzhausen HJ, Mennel HD, Kuhn C, Baumann R, Taege C, Franke WW (2006) The cardiac isoform of alpha-actin in regenerating and atrophic skeletal muscle, myopathies and rhabdomyomatous tumors: an immunohistochemical study using monoclonal antibodies. Virchows Arch 449:175–191

    PubMed  CAS  Google Scholar 

  126. Kumar A, Crawford K, Close L, Madison M, Lorenz J, Doetschman T, Pawlowski S, Duffy J, Neumann J, Robbins J, Boivin GP, O’Toole BA, Lessard JL (1997) Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proc Natl Acad Sci U S A 94:4406–4411

    PubMed  CAS  Google Scholar 

  127. Martin AF, Phillips RM, Kumar A, Crawford K, Abbas Z, Lessard JL, de Tombe P, Solaro RJ (2002) Ca(2+) activation and tension cost in myofilaments from mouse hearts ectopically expressing enteric gamma-actin. Am J Physiol Heart Circ Physiol 283:H642–649

    Google Scholar 

  128. Blau HM, Baltimore D (1991) Differentiation requires continuous regulation. J Cell Biol 112:781–783

    PubMed  CAS  Google Scholar 

  129. Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A 86:5434–5438

    PubMed  CAS  Google Scholar 

  130. Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H, Buckingham M (1989) Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341:303–307

    PubMed  CAS  Google Scholar 

  131. Lassar AB, Buskin JN, Lockshon D, Davis RL, Apone S, Hauschka SD, Weintraub H (1989) MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831

    PubMed  CAS  Google Scholar 

  132. Gabbiani G, Ryan GB, Majne G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:549–550

    PubMed  CAS  Google Scholar 

  133. Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR (1971) Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173:548–550

    PubMed  CAS  Google Scholar 

  134. Schurch W (1999) The myofibroblast in neoplasia. Curr Top Pathol 93:135–148

    PubMed  CAS  Google Scholar 

  135. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    PubMed  CAS  Google Scholar 

  136. Dugina V, Fontao L, Chaponnier C, Vasiliev J, Gabbiani G (2001) Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J Cell Sci 114:3285–3296

    PubMed  CAS  Google Scholar 

  137. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816

    PubMed  CAS  Google Scholar 

  138. Hinz B, Gabbiani G (2010) Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. F1000 Biol Rep 2:78

    PubMed  Google Scholar 

  139. Orlandi A, Hao H, Ferlosio A, Clement S, Hirota S, Spagnoli LG, Gabbiani G, Chaponnier C (2009) Alpha actin isoforms expression in human and rat adult cardiac conduction system. Differentiation 77:360–368

    PubMed  CAS  Google Scholar 

  140. Saborio JL, Segura M, Flores M, Garcia R, Palmer E (1979) Differential expression of gizzard actin genes during chick embryogenesis. J Biol Chem 254:11119–11125

    PubMed  CAS  Google Scholar 

  141. Kuroda M (1985) Change of actin isomers during differentiation of smooth muscle. Biochim Biophys Acta 843:208–213

    PubMed  CAS  Google Scholar 

  142. Hirai S, Hirabayashi T (1983) Developmental change of protein constituents in chicken gizzards. Dev Biol 97:483–493

    PubMed  CAS  Google Scholar 

  143. Izant JG, Lazarides E (1977) Invariance and heterogeneity in the major structural and regulatory proteins of chick muscle cells revealed by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A 74:1450–1454

    PubMed  CAS  Google Scholar 

  144. Stromer MH, Mayes MS, Bellin RM (2002) Use of actin isoform-specific antibodies to probe the domain structure in three smooth muscles. Histochem Cell Biol 118:291–299

    PubMed  CAS  Google Scholar 

  145. Cavaille F, Leger JJ (1983) Characterization and comparison of the contractile proteins from human gravid and non-gravid myometrium. Gynecol Obstet Invest 16:341–353

    PubMed  CAS  Google Scholar 

  146. Skalli O, Vandekerckhove J, Gabbiani G (1987) Actin-isoform pattern as a marker of normal or pathological smooth-muscle and fibroblastic tissues. Differentiation 33:232–238

    PubMed  CAS  Google Scholar 

  147. Shynlova O, Tsui P, Dorogin A, Chow M, Lye SJ (2005) Expression and localization of alpha-smooth muscle and gamma-actins in the pregnant rat myometrium. Biol Reprod 73:773–780

    PubMed  CAS  Google Scholar 

  148. Otey CA, Kalnoski MH, Bulinski JC (1987) Identification and quantification of actin isoforms in vertebrate cells and tissues. J Cell Biochem 34:113–124

    PubMed  CAS  Google Scholar 

  149. Shawlot W, Deng JM, Fohn LE, Behringer RR (1998) Restricted beta-galactosidase expression of a hygromycin-lacZ gene targeted to the beta-actin locus and embryonic lethality of beta-actin mutant mice. Transgenic Res 7:95–103

    PubMed  CAS  Google Scholar 

  150. Bunnell TM, Ervasti JM (2010) Delayed embryonic development and impaired cell growth and survival in Actg1 null mice. Cytoskeleton (Hoboken) 67:564–572

    CAS  Google Scholar 

  151. Watanabe H, Kislauskis EH, Mackay CA, Mason-Savas A, Marks SC, Jr (1998) Actin mRNA isoforms are differentially sorted in normal osteoblasts and sorting is altered in osteoblasts from a skeletal mutation in the rat. J Cell Sci 111(9):1287–1292

    PubMed  CAS  Google Scholar 

  152. Bassell GJ, Zhang H, Byrd AL, Femino AM, Singer RH, Taneja KL, Lifshitz LM, Herman IM, Kosik KS (1998) Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J Neurosci 18:251–265

    PubMed  CAS  Google Scholar 

  153. Lawrence JB, Singer RH (1986) Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 45:407–415

    PubMed  CAS  Google Scholar 

  154. Shestakova EA, Singer RH, Condeelis J (2001) The physiological significance of beta-actin mRNA localization in determining cell polarity and directional motility. Proc Natl Acad Sci U S A 98:7045–7050

    PubMed  CAS  Google Scholar 

  155. Otey CA, Kalnoski MH, Lessard JL, Bulinski JC (1986) Immunolocalization of the gamma isoform of nonmuscle actin in cultured cells. J Cell Biol 102:1726–1737

    PubMed  CAS  Google Scholar 

  156. Schevzov G, Vrhovski B, Bryce NS, Elmir S, Qiu MR, O’Neill G M, Yang N, Verrills NM, Kavallaris M, Gunning PW (2005) Tissue-specific tropomyosin isoform composition. J Histochem Cytochem 53:557–570

    PubMed  CAS  Google Scholar 

  157. Hoock TC, Newcomb PM, Herman IM (1991) Beta actin and its mRNA are localized at the plasma membrane and the regions of moving cytoplasm during the cellular response to injury. J Cell Biol 112:653–664

    PubMed  CAS  Google Scholar 

  158. Belyantseva IA, Perrin BJ, Sonnemann KJ, Zhu M, Stepanyan R, McGee J, Frolenkov GI, Walsh EJ, Friderici KH, Friedman TB, Ervasti JM (2009) Gamma-actin is required for cytoskeletal maintenance but not development. Proc Natl Acad Sci U S A 106:9703–9708

    PubMed  CAS  Google Scholar 

  159. Peckham M, Miller G, Wells C, Zicha D, Dunn GA (2001) Specific changes to the mechanism of cell locomotion induced by overexpression of beta-actin. J Cell Sci 114:1367–1377

    PubMed  CAS  Google Scholar 

  160. Clement S, Hinz B, Dugina V, Gabbiani G, Chaponnier C (2005) The N-terminal Ac-EEED sequence plays a role in alpha-smooth-muscle actin incorporation into stress fibers. J Cell Sci 118:1395–1404

    PubMed  CAS  Google Scholar 

  161. Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157:657–663

    PubMed  CAS  Google Scholar 

  162. Chaponnier C, Goethals M, Janmey PA, Gabbiani F, Gabbiani G, Vandekerckhove J (1995) The specific NH2-terminal sequence Ac-EEED of alpha-smooth muscle actin plays a role in polymerization in vitro and in vivo. J Cell Biol 130:887–895

    PubMed  CAS  Google Scholar 

  163. Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C (2003) Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell 14:2508–2519

    PubMed  CAS  Google Scholar 

  164. Kim HR, Gallant C, Leavis PC, Gunst SJ, Morgan KG (2008) Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent. Am J Physiol Cell Physiol. 295:C768–778

    Google Scholar 

Download references

Acknowledgments

The research in the authors’ laboratories is supported by SNF grant # 310030_125320 (CC, RA) and Scientific & Technological Cooperation Programme Switzerland-Russia (CC, VD), Russian Foundation of Basic Investigation grant # 10–04-00227-a (VD) and US NIH GM083272 (PAJ). We thank David Slochower for help with Figs. 1.1 and 1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Chaponnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dugina, V., Arnoldi, R., Janmey, P.A., Chaponnier, C. (2012). ACTIN. In: Kavallaris, M. (eds) Cytoskeleton and Human Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-788-0_1

Download citation

Publish with us

Policies and ethics