Role of Oxidative Stress in ED: Unraveling the Molecular Mechanism

  • Biljana Musicki
  • Arthur L. Burnett
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Many advances in the understanding of erection physiology and pathophysiology have been made in recent years. These advances have revealed the importance of oxidative stress and a complex interaction between oxidative stress and regulatory pathways in the penis in the development and progression of erectile dysfunction (ED) associated with various disease states. In this chapter, we present current knowledge of the pathophysiology of ED pertaining to the mechanisms of reactive oxygen species (ROS) production, the interaction between ROS-generating sources and the main regulatory pathways in the penis, the status of the antioxidant systems that reduce ROS bioavailability, and cellular targets for ROS action in vasculogenic and neurogenic ED. We further discuss a therapeutic strategy to improve erectile function in disease states by targeting specific ROS mechanisms in the penis.


Oxidative stress Erectile dysfunction Molecular mechanism Penis Vasculogenic ED Neurogenic ED Superoxide Peroxynitrite Vasorelaxation Vasoconstriction 


  1. 1.
    Hurt KJ, Musicki B, Palese MA, et al. Akt-dependent phosphorylation of endothelial nitric oxide synthase mediated penile erection. Proc Natl Acad Sci USA. 2002;99:4061–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Burnett AL. Novel nitric oxide signaling mechanisms regulate the erectile response. Int J Impot Res. 2004;16 Suppl 1:S15–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Gratzke C, Angulo J, Chitaley K, et al. Anatomy, physiology, and pathophysiology of erectile dysfunction. J Sex Med. 2010;7(1 Pt 2):445–75.PubMedCrossRefGoogle Scholar
  4. 4.
    Musicki B, Ross AE, Champion HC, et al. Post-translational modification of constitutive nitric oxide synthase in the penis. J Androl. 2009;30:352–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Burnett AL. The role of nitric oxide in erectile dysfunction: implications for medical therapy. J Clin Hypertens (Greenwich). 2006;8(12 Suppl 4):53–62.CrossRefGoogle Scholar
  6. 6.
    Burnett AL. Molecular pharmacotherapeutic targeting of PDE5 for preservation of penile health. J Androl. 2008;29:3–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Sáenz de Tejada I, Angulo J, Cellek S, et al. Physiology of erectile function. J Sex Med. 2004;1:254–65.PubMedCrossRefGoogle Scholar
  8. 8.
    Chitaley K, Wingard CJ, Webb RC, et al. Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med. 2001;7:119–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang H, Eto M, Steers WD, et al. RhoA-mediated Ca2+ sensitization in erectile function. J Biol Chem. 2002;277:30614–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Wingard CJ, Husain S, Williams J, et al. RhoA-Rho kinase mediates synergistic ET-1 and phenylephrine contraction of rat corpus cavernosum. Am J Physiol Regul Integr Comp Physiol. 2003;285:R1145–52.PubMedGoogle Scholar
  11. 11.
    National Institute of Health. Impotence. NIH Consens Statement. 1992;10(4):1–31.Google Scholar
  12. 12.
    Aytac IA, McKinlay JB, Krane RJ. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. BJU Int. 1999;84:50–6.CrossRefGoogle Scholar
  13. 13.
    Musicki B, Burnett AL. eNOS function and dysfunction in the penis. Exp Biol Med (Maywood). 2006;231:154–65.Google Scholar
  14. 14.
    Gazzaruso C, Solerte SB, Pujia A, et al. Erectile dysfunction as a predictor of cardiovascular events and death in diabetic patients with angiographically proven asymptomatic coronary artery disease: a potential protective role for statins and 5-phosphodiesterase inhibitors. J Am Coll Cardiol. 2008;51:2040–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Musicki B, Burnett AL. Pathophysiology of erectile dysfunction: molecular basis. In: Carson C, Kirby R, Goldstein I, editors. Textbook of erectile dysfunction. 4th ed. New York: Informa Healthcare; 2009. p. 72–82.Google Scholar
  16. 16.
    Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2008;10:1713–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Elahi MM, Kong YX, Matata BM. Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev. 2009;2:259–69.PubMedCrossRefGoogle Scholar
  18. 18.
    Leto TL, Morand S, Hurt D, et al. Targeting and regulation of reactive oxygen species ­generation by Nox family NADPH oxidases. Antioxid Redox Signal. 2009;11:2607–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Brandes RP, Weissmann N, Schröder K. NADPH oxidases in cardiovascular disease. Free Radic Biol Med. 2010;49:687–706.PubMedCrossRefGoogle Scholar
  20. 20.
    Aslan M, Ryan TM, Adler B, et al. Oxygen radical inhibition of nitric oxide-dependent ­vascular function in sickle cell disease. Proc Natl Acad Sci USA. 2001;98:15215–20.PubMedCrossRefGoogle Scholar
  21. 21.
    McNally JS, Davis ME, Giddens DP, et al. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol. 2003;285:H2290–7.PubMedGoogle Scholar
  22. 22.
    Fostermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 2010;459:923–39.CrossRefGoogle Scholar
  23. 23.
    Katusic ZS, d’Uscio LV, Nath KA. Vascular protection by tetrahydrobiopterin: progress and therapeutic prospects. Trends Pharmacol Sci. 2009;30:48–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Li H, Förstermann U. Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des. 2009;15:3133–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11:1373–414.PubMedCrossRefGoogle Scholar
  26. 26.
    Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Cohen RA, Tong X. Vascular oxidative stress: the common link in hypertensive and diabetic vascular disease. J Cardiovasc Pharmacol. 2010;55:308–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Vassort G, Turan B. Protective role of antioxidants in diabetes-induced cardiac dysfunction. Cardiovasc Toxicol. 2010;10:73–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Dudzinski DM, Igarashi J, Greif D, et al. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol. 2006;46:235–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Cunnington C, Channon KM. Tetrahydrobiopterin: pleiotropic roles in cardiovascular pathophysiology. Heart. 2010;96:1872–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Pritchard KA, Ackerman AW, Ou J, et al. Native low-density lipoprotein induces endothelial nitric oxide synthase dysfunction: role of heat shock protein 90 and caveolin-1. Free Radic Biol Med. 2002;33:52–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Gardiner J, Barton D, Overall R, et al. Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. Neuroscientist. 2009;15:47–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Shi JP, Zhao YM, Song YT. Effect of aging on expression of nitric oxide synthase I and activity of nitric oxide synthase in rat penis. Asian J Androl. 2003;5:117–20.PubMedGoogle Scholar
  34. 34.
    Cellek S, Qu W, Schmidt AM, et al. Synergistic action of advanced glycation end products and endogenous nitric oxide leads to neuronal apoptosis in vitro: a new insight into selective nitrergic neuropathy in diabetes. Diabetologia. 2004;47:331–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Cellek NA, Foxwell NA, Moncada S. Two phases of nitrergic neuropathy in streptozotocin-induced diabetic rats. Diabetes. 2003;52:2353–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Jackson G, Rosen RC, Kloner RA, et al. The second Princeton consensus on sexual dysfunction and cardiac risk: new guidelines for sexual medicine. J Sex Med. 2006;3:26–36.CrossRefGoogle Scholar
  37. 37.
    Bivalacqua TJ, Armstrong JS, Biggerstaff J, et al. Gene transfer of extracellular SOD to the penis reduces O2-* and improves erectile function in aged rats. Am J Physiol Heart Circ Physiol. 2003;284:H1408–21.PubMedGoogle Scholar
  38. 38.
    Ferrini MG, Davila H, Valente EG, et al. Aging-related induction of inducible nitric oxide synthase is vasculo-protective in the arterial media. Cardiovasc Res. 2004;61:796–805.PubMedCrossRefGoogle Scholar
  39. 39.
    Ferrini MG, Magee TR, Vernet D, et al. Aging-related expression of inducible nitric oxide synthase and markers of tissue damage in the rat penis. Biol Reprod. 2001;64:974–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson JM, Bivalacqua TJ, Lagoda GA, et al. eNOS-uncoupling in age-related erectile dysfunction. Int J Impot Res. 2011;23(2):43–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Musicki B, Burnett AL. Endothelial dysfunction in diabetic erectile dysfunction. Int J Impot Res. 2007;19:129–38.PubMedCrossRefGoogle Scholar
  42. 42.
    Tuncayengin A, Biri H, Onaran M, et al. Cavernosal tissue nitrite, nitrate, malondialdehyde and glutathione levels in diabetic and non-diabetic erectile dysfunction. Int J Androl. 2003;26:250–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Costa C, Soares R, Castela A, et al. Increased endothelial apoptotic cell density in human diabetic erectile tissue-comparison with clinical data. J Sex Med. 2008;6:826–35.PubMedCrossRefGoogle Scholar
  44. 44.
    Esposito K, Ciotola M, Giugliano F, et al. Phenotypic assessment of endothelial microparticles in diabetic and nondiabetic men with erectile dysfunction. J Sex Med. 2008;5:1436–42.PubMedCrossRefGoogle Scholar
  45. 45.
    Burnett AL, Strong T, Bivalacqua TJ, et al. Serum biomarker measurements of endothelial function and oxidative stress after daily dosing of sildenafil in type 2 diabetic men with erectile dysfunction. J Urol. 2009;181:245–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Bivalacqua TJ, Usta MF, Kendirci M, et al. Superoxide anion production in the rat penis impairs erectile function in diabetes: influence of in vivo extracellular superoxide dismutase gene therapy. J Sex Med. 2005;2:187–97.PubMedCrossRefGoogle Scholar
  47. 47.
    Ryu JK, Kim DJ, Lee T, et al. The role of free radical in the pathogenesis of impotence in streptozotocin-induced diabetic rats. Yonsei Med J. 2003;44:236–41.PubMedGoogle Scholar
  48. 48.
    De Young L, Yu D, Bateman RM, et al. Oxidative stress and antioxidant therapy: their impact in diabetes-associated erectile dysfunction. J Androl. 2004;25:830–6.PubMedGoogle Scholar
  49. 49.
    Paskaloglu K, Sener G, Ayangolu-Dulger G. Melatonin treatment protects against diabetes-induced functional and biochemical changes in rat aorta and corpus cavernosum. Eur J Pharmacol. 2004;499:345–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Shukla N, Hotston M, Persad R, et al. The administration of folic acid improves erectile function and reduces intracavernosal oxidative stress in the diabetic rabbit. BJU Int. 2009;103:98–103.PubMedCrossRefGoogle Scholar
  51. 51.
    Jin HR, Kim WJ, Song JS, et al. Functional and morphologic characterizations of the diabetic mouse corpus cavernosum: comparison of a multiple low-dose and a single high-dose streptozotocin protocols. J Sex Med. 2009;6:3289–304.PubMedCrossRefGoogle Scholar
  52. 52.
    Angulo J, Peiró C, Cuevas P, et al. The novel antioxidant, AC3056 (2,6-di-t-butyl-4-((dimethyl-4-methoxyphenylsilyl)methyloxy)phenol), reverses erectile dysfunction in diabetic rats and improves NO-mediated responses in penile tissue from diabetic men. J Sex Med. 2009;6:373–87.PubMedCrossRefGoogle Scholar
  53. 53.
    Wan ZH, Li WZ, Li YZ, et al. Poly(ADP-ribose) polymerase inhibition improves erectile function in diabetic rats. J Sex Med. 2011;8(4):1002–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Musicki B, Kramer MF, Becker RE, et al. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci USA. 2005;102:11870–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Angulo J, Cuevas P, Fernández A, et al. Enhanced thromboxane receptor-mediated responses and impaired endothelium-dependent relaxation in human corpus cavernosum from diabetic impotent men: role of protein kinase C activity. J Pharmacol Exp Ther. 2006;319:783–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Nangle MR, Cotter MA, Cameron NE. Protein kinase C beta inhibition and aorta and corpus cavernosum function in streptozotocin-diabetic mice. Eur J Pharmacol. 2003;475:99–106.PubMedCrossRefGoogle Scholar
  57. 57.
    Fatehi-Hassanabad Z, Chan CB, Furman BL. Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol. 2010;636:8–17.PubMedCrossRefGoogle Scholar
  58. 58.
    Picchi A, Capobianco S, Qiu T, et al. Coronary microvascular dysfunction in diabetes mellitus: a review. World J Cardiol. 2010;25:377–90.CrossRefGoogle Scholar
  59. 59.
    Keegan A, Jack AM, Cotter MA, Cameron NE. Effects of aldose reductase inhibition on responses of the corpus cavernosum and mesenteric vascular bed of diabetic rats. J Cardiovasc Pharmacol. 2000;35:606–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Nangle MR, Cotter MA, Cameron NE. Poly(ADP-ribose) polymerase inhibition reverses nitrergic neurovascular dysfunctions in penile erectile tissue from streptozotocin-diabetic mice. J Sex Med. 2010;7:3396–403.PubMedCrossRefGoogle Scholar
  61. 61.
    Nangle MR, Cotter MA, Cameron NE. IkappaB kinase 2 inhibition corrects defective nitrergic erectile mechanisms in diabetic mouse corpus cavernosum. Urology. 2006;68:214–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Jin HR, Kim WJ, Song JS, et al. Intracavernous delivery of a designed angiopoietin-1 variant rescues erectile function by enhancing endothelial regeneration in the streptozotocin-induced diabetic mouse. Diabetes. 2011;60:969–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Escrig A, Marin R, Abreu P, et al. Changes in mating behavior, erectile function, and nitric oxide levels in penile corpora cavernosa in streptozotocin-diabetic rats. Biol Reprod. 2002;66:185–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Chitaley K, Kupelian V, Subak L, et al. Diabetes, obesity and erectile dysfunction: field overview and research priorities. J Urol. 2009;182:S45–50.PubMedCrossRefGoogle Scholar
  65. 65.
    Kovanecz I, Ferrini MG, Vernet D, et al. Pioglitazone prevents corporal veno-occlusive dysfunction in a rat model of type 2 diabetes mellitus. BJU Int. 2006;98:116–24.PubMedCrossRefGoogle Scholar
  66. 66.
    Kloner R. Erectile dysfunction and hypertension. Int J Impot Res. 2007;19:296–302.PubMedCrossRefGoogle Scholar
  67. 67.
    Touyz RM. Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Exp Physiol. 2005;90:449–55.PubMedCrossRefGoogle Scholar
  68. 68.
    Ushiyama M, Morita T, Kuramochi T, et al. Erectile dysfunction in hypertensive rats results from impairment of the relaxation evoked by neurogenic carbon monoxide and nitric oxide. Hypertens Res. 2004;27:253–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Ushiyama M, Kuramochi T, Yagi S, et al. Antioxidant treatment with alpha-tocopherol improves erectile function in hypertensive rats. Hypertens Res. 2008;31:1007–103.PubMedCrossRefGoogle Scholar
  70. 70.
    Claudino MA, Franco-Penteado CF, Priviero FB, et al. Upregulation of gp91phox subunit of NAD(P)H oxidase contributes to erectile dysfunction caused by long-term nitric oxide inhibition in rats: reversion by regular physical training. Urology. 2010;75:961–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Jin L, Lagoda G, Leite R, et al. NADPH oxidase activation: a mechanism of hypertension-associated erectile dysfunction. J Sex Med. 2008;5:544–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Yesilli C, Yaman O, Anafarta K. Effect of experimental hypercholesterolemia on cavernosal structures. Urology. 2001;57:1184–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Gholami SS, Rogers R, Chang J, et al. The effect of vascular endothelial growth factor and adeno-associated virus mediated brain derived neurotrophic factor on neurogenic and vasculogenic erectile dysfunction induced by hyperlipidemia. J Urol. 2003;169:1577–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Park K, Kim SW, Rhu KS, et al. Chronic administration of an oral Rho kinase inhibitor prevents the development of vasculogenic erectile dysfunction in a rat model. J Sex Med. 2006;3:996–1003.PubMedCrossRefGoogle Scholar
  75. 75.
    Musicki B, Liu T, Strong T, et al. Low-fat diet and exercise preserve eNOS regulation and endothelial function in the penis of early atherosclerotic pigs: a molecular analysis. J Sex Med. 2008;5:552–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Musicki B, Liu T, Lagoda GA, et al. Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase. J Sex Med. 2010;7:3023–32.PubMedCrossRefGoogle Scholar
  77. 77.
    Shukla N, Jones R, Persad R, et al. Effect of sildenafil citrate and a nitric oxide donating sildenafil derivative, NCX 911, on cavernosal relaxation and superoxide formation in hypercholesterolaemic rabbits. Eur J Pharmacol. 2005;517:224–31.PubMedCrossRefGoogle Scholar
  78. 78.
    Baumhäkel M, Custodis F, Schlimmer N, et al. Improvement of endothelial function of the corpus cavernosum in apolipoprotein E knockout mice treated with irbesartan. J Pharmacol Exp Ther. 2008;327:692–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Baumhäkel M, Schlimmer N, Büyükafsar K, et al. Nebivolol, but not metoprolol, improves endothelial function of the corpus cavernosum in apolipoprotein e-knockout mice. J Pharmacol Exp Ther. 2008;325:818–23.PubMedCrossRefGoogle Scholar
  80. 80.
    Zouaoui Boudjeltia K, Roumeguere T, Delree P, et al. Presence of LDL modified by myeloperoxidase in the penis in patients with vascular erectile dysfunction: a preliminary study. Eur Urol. 2007;51:262–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Schulz E, Anter E, Keaney Jr JF. Oxidative stress, antioxidants, and endothelial function. Curr Med Chem. 2004;11:1093–104.PubMedGoogle Scholar
  82. 82.
    Barbieri SS, Zacchi E, Amadio P, et al. Cytokines present in smokers’ serum interact with smoke components to enhance endothelial dysfunction. Cardiovasc Res. 2011;90(3):475–83.PubMedCrossRefGoogle Scholar
  83. 83.
    Lowe ER, Everett AC, Lee AJ, et al. Time-dependent inhibition and tetrahydrobiopterin depletion of endothelial nitric-oxide synthase caused by cigarettes. Drug Metab Dispos. 2005;33:131–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Rosen RC, Fisher WA, Eardley I, et al. The multinational Men’s Attitudes to Life Events and Sexuality (MALES) study: I. Prevalence of erectile dysfunction and related health concerns in the general population. Curr Med Res Opin. 2004;20:607–17.PubMedCrossRefGoogle Scholar
  85. 85.
    Tostes RC, Carneiro FS, Lee AJ, et al. Cigarette smoking and erectile dysfunction: focus on NO bioavailability and ROS generation. J Sex Med. 2008;5:1284–95.PubMedCrossRefGoogle Scholar
  86. 86.
    Imamura M, Waseda Y, Marinova GV, et al. Alterations of NOS, arginase, and DDAH protein expression in rabbit cavernous tissue after administration of cigarette smoke extract. Am J Physiol Regul Integr Comp Physiol. 2007;293:R2081–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Hotston MR, Jeremy JY, Bloor J, et al. Sildenafil inhibits the up-regulation of phosphodiesterase type 5 elicited with nicotine and tumour necrosis factor-alpha in cavernosal vascular smooth muscle cells: mediation by superoxide. BJU Int. 2007;99:612–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Xie Y, Garban H, Ng C, et al. Effect of long-term passive smoking on erectile function and penile nitric oxide synthase in the rat. J Urol. 1997;157:1121–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Kupelian V, Link CL, McKinlay JB. Association between smoking, passive smoking, and erectile dysfunction: results from the Boston Area Community Health (BACH) survey. Eur Urol. 2007;52:416–22.PubMedCrossRefGoogle Scholar
  90. 90.
    Göçmez S, Utkan T, Duman C, et al. Secondhand tobacco smoke impairs neurogenic and endothelium-dependent relaxation of rabbit corpus cavernosum smooth muscle: improvement with chronic oral administration of L-arginine. Int J Impot Res. 2005;17:437–44.PubMedCrossRefGoogle Scholar
  91. 91.
    Bivalacqua TJ, Sussan TE, Gebska MA, et al. Sildenafil inhibits superoxide formation and prevents endothelial dysfunction in a mouse model of secondhand smoke induced erectile dysfunction. J Urol. 2009;181:899–906.PubMedCrossRefGoogle Scholar
  92. 92.
    Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. 2004;11 Suppl 1:S56–64.PubMedCrossRefGoogle Scholar
  93. 93.
    Demir T, Comlekçi A, Demir O, et al. Hyperhomocysteinemia: a novel risk factor for erectile dysfunction. Metabolism. 2006;55:1564–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Al-Hunayan A, Thalib L, Kehinde EO, et al. Hyperhomocysteinemia is a risk factor for ­erectile dysfunction in men with adult-onset diabetes mellitus. Urology. 2008;71:897–900.PubMedCrossRefGoogle Scholar
  95. 95.
    Lombardo F, Tsamatropoulos P, Piroli E, et al. Treatment of erectile dysfunction due to C677T mutation of the MTHFR gene with vitamin B6 and folic acid in patients non responders to PDE5i. J Sex Med. 2010;7:216–23.PubMedCrossRefGoogle Scholar
  96. 96.
    Jones RW, Jeremy JY, Koupparis A, et al. Cavernosal dysfunction in a rabbit model of hyperhomocysteinaemia. BJU Int. 2005;95:125–30.PubMedCrossRefGoogle Scholar
  97. 97.
    Koupparis AJ, Jeremy J, Angelini G, et al. Penicillamine administration reverses the inhibitory effect of hyperhomocysteinaemia on endothelium-dependent relaxation in the corpus cavernosum in the rabbit. BJU Int. 2006;98:440–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Kato GJ, Hebbel RP, Steinberg MH, et al. Vasculopathy in sickle cell disease: biology, pathophysiology, genetics, translational medicine, and new research directions. Am J Hematol. 2009;84:618–25.PubMedCrossRefGoogle Scholar
  99. 99.
    Wood KC, Granger DN. Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clin Exp Pharmacol Physiol. 2007;34:926–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Wood KC, Hsu LL, Gladwin MT. Sickle cell disease vasculopathy: a state of nitric oxide resistance. Free Radic Biol Med. 2008;44:1506–28.PubMedCrossRefGoogle Scholar
  101. 101.
    Montague DK, Jarow J, Broderick GA, et al. Members of the erectile dysfunction guideline update panel, American Urological Association. American Urological Association Guideline on the management of priapism. J Urol. 2003;170:1318–24.PubMedCrossRefGoogle Scholar
  102. 102.
    Burnett AL, Bivalacqua TJ. Priapism: current principles and practice. Urol Clin North Am. 2007;34:631–42.PubMedCrossRefGoogle Scholar
  103. 103.
    Bivalacqua TJ, Musicki B, Hsu LL, Gladwin MT, Burnett AL, Champion HC. Establishment of a transgenic sickle-cell mouse model to study the pathophysiology of priapism. J Sex Med. 2009;6:2494–504.PubMedCrossRefGoogle Scholar
  104. 104.
    Broderick GA, Kadioglu A, Bivalacqua TJ, et al. Priapism: pathogenesis, epidemiology, and management. J Sex Med. 2010;7:476–500.PubMedCrossRefGoogle Scholar
  105. 105.
    Mi T, Abbasi S, Zhang H, et al. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling. J Clin Invest. 2008;118:1491–501.PubMedCrossRefGoogle Scholar
  106. 106.
    Wen J, Jiang X, Dai Y, et al. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling. FASEB J. 2010;24:740–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Kanika ND, Tar M, Tong Y, et al. The mechanism of opiorphin-induced experimental ­priapism in rats involves activation of the polyamine synthetic pathway. Am J Physiol Cell Physiol. 2009;297:C916–27.PubMedCrossRefGoogle Scholar
  108. 108.
    Champion HC, Bivalacqua TJ, Takimoto E, et al. Phosphodiesterase-5A dysregulation in penile erectile tissue is a mechanism of priapism. Proc Natl Acad Sci USA. 2005;102:1661–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Burnett AL, Bivalacqua TJ, Champion HC, et al. Long-term oral phosphodiesterase 5 inhibitor therapy alleviates recurrent priapism. Urology. 2006;67:1043–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Burnett AL, Bivalacqua TJ, Champion HC, et al. Feasibility of the use of phosphodiesterase type 5 inhibitors in a pharmacologic prevention program for recurrent priapism. J Sex Med. 2006;3:1077–84.PubMedCrossRefGoogle Scholar
  111. 111.
    Musicki B, Champion HC, Hsu LL, et al. Posttranslational inactivation of endothelial nitric oxide synthase in the transgenic sickle cell mouse penis. J Sex Med. 2011;8:419–26.PubMedCrossRefGoogle Scholar
  112. 112.
    Kanika ND, Melman A, Davies KP. Experimental priapism is associated with increased oxidative stress and activation of protein degradation pathways in corporal tissue. Int J Impot Res. 2010;22:363–73.PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang Q, Radisavljevic ZM, Siroky MB, et al. Dietary antioxidants improve arteriogenic erectile dysfunction. Int J Androl. 2011;34(3):225–35.PubMedCrossRefGoogle Scholar
  114. 114.
    Azadzoi KM, Golabek T, Radisavljevic ZM. Oxidative stress and neurodegeneration in penile ischaemia. BJU Int. 2010;105:404–10.PubMedCrossRefGoogle Scholar
  115. 115.
    Uluocak N, Atılgan D, Erdemir F, et al. An animal model of ischemic priapism and the effects of melatonin on antioxidant enzymes and oxidative injury parameters in rat penis. Int Urol Nephrol. 2010;42:889–95.PubMedCrossRefGoogle Scholar
  116. 116.
    Lagoda G, Jin L, Lehrfeld TJ, et al. FK506 and sildenafil promote erectile function recovery after cavernous nerve injury through antioxidative mechanisms. J Sex Med. 2007;4(4 Pt 1):908–16.PubMedCrossRefGoogle Scholar
  117. 117.
    Tagliabue M, Pinach S, Di Bisceglie C, et al. Glutathione levels in patients with erectile dysfunction, with or without diabetes mellitus. Int J Androl. 2005;28:156–62.PubMedCrossRefGoogle Scholar
  118. 118.
    Kawakami T, Urakami S, Hirata H, et al. Superoxide dismutase analog (Tempol: 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine 1-oxyl) treatment restores erectile function in diabetes-induced impotence. Int J Impot Res. 2009;21:348–55.PubMedCrossRefGoogle Scholar
  119. 119.
    Kim SC, Kim IK, Seo KK, et al. Involvement of superoxide radical in the impaired endothelium-dependent relaxation of cavernous smooth muscle in hypercholesterolemic rabbits. Urol Res. 1997;25:341–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Goçmen C, Seçilmiş A, Kumcu EK, et al. Effects of vitamin E and sodium selenate on ­neurogenic and endothelial relaxation of corpus cavernosum in the diabetic mouse. Eur J Pharmacol. 2000;398:93–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Keegan A, Cotter MA, Cameron NE. Corpus cavernosum dysfunction in diabetic rats: effects of combined alpha-lipoic acid and gamma-linolenic acid treatment. Diabetes Metab Res Rev. 2001;17:380–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Khan MA, Thompson CS, Jeremy JY, et al. The effect of superoxide dismutase on nitric oxide-mediated and electrical field-stimulated diabetic rabbit cavernosal smooth muscle relaxation. BJU Int. 2001;87:98–103.PubMedCrossRefGoogle Scholar
  123. 123.
    Nangle MR, Cotter MA, Cameron NE. Effects of the peroxynitrite decomposition catalyst, FeTMPyP, on function of corpus cavernosum from diabetic mice. Eur J Pharmacol. 2004;502:143–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Gur S, Karahan ST, Ozturk B, et al. Effect of ascorbic acid treatment on endothelium-­dependent and neurogenic relaxation of corpus cavernosum from middle-aged non-insulin dependent diabetic rats. Int J Urol. 2005;12:821–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Hirata H, Kawamoto K, Kikuno N, et al. Restoring erectile function by antioxidant therapy in diabetic rats. J Urol. 2009;182:2518–25.PubMedCrossRefGoogle Scholar
  126. 126.
    Koh KK, Oh PC, Quon MJ. Does reversal of oxidative stress and inflammation provide ­vascular protection? Cardiovasc Res. 2009;81:649–59.PubMedCrossRefGoogle Scholar
  127. 127.
    Lonn E, Bosch J, Yusuf S, et al. HOPE HOPE-TOO Trial Investigators. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338–47.PubMedCrossRefGoogle Scholar
  128. 128.
    Sesso HD, Buring JE, Christen WG, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123–33.PubMedCrossRefGoogle Scholar
  129. 129.
    Hotston M, Jeremy JY, Bloor J, et al. Homocysteine and copper interact to promote type 5 phosphodiesterase expression in cavernosal smooth muscle cells. Asian J Androl. 2008;10:905–13.PubMedCrossRefGoogle Scholar
  130. 130.
    Koupparis AJ, Jeremy JY, Muzaffar S, et al. Sildenafil inhibits the formation of superoxide and the expression of gp47 NAD[P]H oxidase induced by the thromboxane A2 mimetic, U46619, in corpus cavernosal smooth muscle cells. BJU Int. 2005;96:423–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Verit A, Savas M, Ciftci H, et al. Assessment of the acute effects of tadalafil on the cardiovascular system based on examination of serum oxidative status and paraoxonase activity in men with erectile dysfunction: a preliminary study. Int J Impot Res. 2010;22:115–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Shukla N, Rossoni G, Hotston M, et al. Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int. 2009;103:1522–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Selemidis S, Dusting GJ, Peshavariya H, et al. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells. Cardiovasc Res. 2007;75:349–58.PubMedCrossRefGoogle Scholar
  134. 134.
    Duerrschmidt N, Stielow C, Muller G, et al. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. J Physiol. 2006;576:557–67.PubMedCrossRefGoogle Scholar
  135. 135.
    Harrison CB, Drummond GR, Sobey CG, et al. Evidence that nitric oxide inhibits vascular inflammation and superoxide production via a p47phox-dependent mechanism in mice. Clin Exp Pharmacol Physiol. 2010;37:429–34.PubMedCrossRefGoogle Scholar
  136. 136.
    Muzaffar S, Shukla N, Angelini GD, et al. Nitroaspirins and morpholinosydnonimine, but not aspirin, inhibit the formation of superoxide and the expression of gp91phox induced by endotoxin and cytokines in pig pulmonary artery vascular smooth muscle cells and endothelial cells. Circulation. 2004;110:1140–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Muzaffar S, Shukla N, Bond M, et al. Superoxide from NADPH oxidase upregulates type 5 phosphodiesterase in human vascular smooth muscle cells: inhibition with iloprost and NONOate. Br J Pharmacol. 2008;155(6):847–56.PubMedCrossRefGoogle Scholar
  138. 138.
    Hotston M, Jeremy JY, Persad R, et al. 8-isoprostane F2α up-regulates the expression of type 5 phosphodiesterase in cavernosal vascular smooth muscle cells: inhibition with sildenafil, iloprost, nitric oxide and picotamide. BJU Int. 2010;106:1794–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Hornig B, Landmesser U, Kohler C, et al. Comparative effect of ace inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation. 2001;103:799–805.PubMedGoogle Scholar
  140. 140.
    Kuster GM, Nietlispach F, Kiowski W, et al. Role of RAS inhibition in the regulation of Cu/Zn-SOD in the cardiac and peripheral arterial beds in humans. Clin Pharmacol Ther. 2010;87:686–92.PubMedCrossRefGoogle Scholar
  141. 141.
    Landmesser U, Drexler H. Effect of angiotensin II type 1 receptor antagonism on endothelial function: role of bradykinin and nitric oxide. J Hypertens Suppl. 2006;24:S39–43.PubMedCrossRefGoogle Scholar
  142. 142.
    Friedrich EB, Teo KK, Böhm M. ACE inhibition in secondary prevention: are the results controversial? Clin Res Cardiol. 2006;95:61–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Yang R, Yang B, Wen Y, et al. Losartan, an Angiotensin type I receptor, restores erectile ­function by downregulation of cavernous renin-angiotensin system in streptozocin-induced diabetic rats. J Sex Med. 2009;6:696–707.PubMedCrossRefGoogle Scholar
  144. 144.
    Fogari R, Zoppi A, Poletti L, et al. Sexual activity in hypertensive men treated with valsartan or carvedilol: a crossover study. Am J Hypertens. 2001;14:27–31.PubMedCrossRefGoogle Scholar
  145. 145.
    Llisterri JL, Lozano Vidal JV, Aznar Vicente J, et al. Sexual dysfunction in hypertensive patients treated with losartan. Am J Med Sci. 2001;321:336–41.PubMedCrossRefGoogle Scholar
  146. 146.
    Ferrario CM, Levy P. Sexual dysfunction in patients with hypertension: implications for therapy. J Clin Hypertens (Greenwich). 2002;4:424–32.CrossRefGoogle Scholar
  147. 147.
    Park K, Shin JW, Oh JK, et al. Restoration of erectile capacity in normotensive aged rats by modulation of angiotensin receptor type 1. J Androl. 2005;26:123–8.PubMedGoogle Scholar
  148. 148.
    Abdel Aziz MT, El Asmer MF, Mostafa T, et al. Effects of losartan, HO-1 inducers or HO-1 inhibitors on erectile signaling in diabetic rats. J Sex Med. 2009;6:3254–64.PubMedCrossRefGoogle Scholar
  149. 149.
    Toblli JE, Stella I, Mazza ON, et al. Different effect of losartan and amlodipine on penile structures in male spontaneously hypertensive rats. Am J Nephrol. 2004;24:614–23.PubMedCrossRefGoogle Scholar
  150. 150.
    Landmesser U, Bahlmann F, Mueller M, et al. Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation. 2005;111:2356–63.PubMedCrossRefGoogle Scholar
  151. 151.
    Adam O, Laufs U. Antioxidative effects of statins. Arch Toxicol. 2008;82:885–92.PubMedCrossRefGoogle Scholar
  152. 152.
    Wassmann S, Laufs U, Bäumer AT, et al. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension. 2001;37:1450–7.PubMedGoogle Scholar
  153. 153.
    Wenzel P, Daiber A, Oelze M, et al. Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus. Atherosclerosis. 2008;198:65–76.PubMedCrossRefGoogle Scholar
  154. 154.
    Morelli A, Chavalmane AK, Filippi S, et al. Atorvastatin ameliorates sildenafil-induced penile erections in experimental diabetes by inhibiting diabetes-induced RhoA/Rho-kinase signaling hyperactivation. J Sex Med. 2009;6:91–106.PubMedCrossRefGoogle Scholar
  155. 155.
    Nangle MR, Cotter MA, Cameron NE. Effects of rosuvastatin on nitric oxide-dependent function in aorta and corpus cavernosum of diabetic mice: relationship to cholesterol biosynthesis pathway inhibition and lipid lowering. Diabetes. 2003;52:2396–402.PubMedCrossRefGoogle Scholar
  156. 156.
    Wingard CJ, Moukdar F, Prasad RY, et al. Reversal of voltage-dependent erectile responses in the Zucker obese-diabetic rat by rosuvastatin-altered RhoA/Rho-kinase signaling. J Sex Med. 2009;6 Suppl 3:269–78.PubMedCrossRefGoogle Scholar
  157. 157.
    Fibbi B, Morelli A, Marini M, et al. Atorvastatin but not elocalcitol increases sildenafil responsiveness in spontaneously hypertensive rats by regulating the RhoA/ROCK pathway. J Androl. 2008;29:70–84.PubMedCrossRefGoogle Scholar
  158. 158.
    Miner M, Billups KL. Erectile dysfunction and dyslipidemia: relevance and role of phosphodiesterase type-5 inhibitors and statins. J Sex Med. 2008;5:1066–78.PubMedCrossRefGoogle Scholar
  159. 159.
    Herrmann HC, Levine LA, Macaluso Jr J, et al. Can atorvastatin improve the response to sildenafil in men with erectile dysfunction not initially responsive to sildenafil? Hypothesis and pilot trial results. J Sex Med. 2006;3:303–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Hong SK, Han BK, Jeong SJ, et al. Effect of statin therapy on early return of potency after nerve sparing radical retropubic prostatectomy. J Urol. 2007;178:613–6.PubMedCrossRefGoogle Scholar
  161. 161.
    Dadkhah F, Safarinejad MR, Asgari MA, et al. Atorvastatin improves the response to sildenafil in hypercholesterolemic men with erectile dysfunction not initially responsive to sildenafil. Int J Impot Res. 2010;22:51–60.PubMedCrossRefGoogle Scholar
  162. 162.
    Saltzman EA, Guay AT, Jacobson J. Improvement in erectile function in men with organic erectile dysfunction by correction of elevated cholesterol levels: a clinical observation. J Urol. 2004;172:255–8.PubMedCrossRefGoogle Scholar
  163. 163.
    Rizvi K, Hapson JP, Harvey JN. Do lipid-lowering drugs cause erectile dysfunction? A systematic review. Fam Pract. 2002;567:95–8.CrossRefGoogle Scholar
  164. 164.
    Solomon H, Samarasinghe YP, Feher MD, et al. Erectile dysfunction and statin treatment in high cardiovascular risk patients. Int J Clin Pract. 2006;60:141–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Shinozaki K, Nishio Y, Ayajiki K, et al. Pitavastatin restores vascular dysfunction in insulin-resistant state by inhibiting NAD(P)H oxidase activity and uncoupled endothelial nitric oxide synthase-dependent superoxide production. J Cardiovasc Pharmacol. 2007;49:122–30.PubMedCrossRefGoogle Scholar
  166. 166.
    d’Uscio LV, Katusic ZS. Erythropoietin increases endothelial biosynthesis of tetrahydrobiopterin by activation of protein kinase B{alpha}/Akt1. Hypertension. 2008;52:93–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Antoniades C, Shirodaria C, Warrick N, et al. 5-Methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on ­vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation. 2006;114:1193–201.PubMedCrossRefGoogle Scholar
  168. 168.
    Ishii M, Shimizu S, Nagai T, et al. Stimulation of tetrahydrobiopterin synthesis induced by insulin: possible involvement of phosphatidylinositol 3-kinase. Int J Biochem Cell Biol. 2001;33:65–73.PubMedCrossRefGoogle Scholar
  169. 169.
    Heller R, Unbehaun A, Schellenberg B, et al. l-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem. 2001;276:40–7.PubMedCrossRefGoogle Scholar
  170. 170.
    Oak JH, Cai H. Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes. 2007;56:118–26.PubMedCrossRefGoogle Scholar
  171. 171.
    Azadzoi KM, Schulman RN, Aviram M, et al. Oxidative stress in arteriogenic erectile dysfunction: prophylactic role of antioxidants. J Urol. 2005;174:386–93.PubMedCrossRefGoogle Scholar
  172. 172.
    Zhang Q, Radisavljevic ZM, Siroky MB, et al. Dietary antioxidants improve arteriogenic erectile dysfunction. Int J Androl. 2011;34:225–35.PubMedCrossRefGoogle Scholar
  173. 173.
    Soner BC, Murat N, Demir O, et al. Evaluation of vascular smooth muscle and corpus cavernosum on hypercholesterolemia. Is resveratrol promising on erectile dysfunction? Int J Impot Res. 2010;22:227–33.PubMedCrossRefGoogle Scholar
  174. 174.
    Fukuhara S, Tsujimura A, Okuda H, et al. Vardenafil and resveratrol synergistically enhance the nitric oxide/cyclic guanosine monophosphate pathway in corpus cavernosal smooth muscle cells and its therapeutic potential for erectile dysfunction in the streptozotocin-induced diabetic rat: preliminary findings. J Sex Med. 2011;8:1061–71.PubMedCrossRefGoogle Scholar
  175. 175.
    Wallerath T, Deckert G, Ternes T, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. 2002;106:1652–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of UrologyJohns Hopkins HospitalBaltimoreUSA

Personalised recommendations