Clinical Consequences of Oxidative Stress in Male Infertility

  • Tamer M. Said
  • Sheila R. Gokul
  • Ashok Agarwal
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Male infertility affects 40% of infertile couples in the USA and may be attributed to conditions such as varicocele, leukocytospermia, infection, and idiopathic infertility. Such conditions may be associated with elevated levels of reactive oxygen species (ROS), decreased antioxidants, and oxidative stress (OS). OS can lead to male infertility in both an in vitro and in vivo setting. The negative effects of ROS on male fertility present as sperm DNA damage, decreasing motility, apoptosis, and lipid peroxidation. ROS and antioxidant levels can be measured and quantified in order to detect OS in semen samples. Both oral antioxidant therapy and culture media supplementation have proven to be effective in reducing OS. Future research is still needed in order to better understand the mechanisms involved in oxidative damage in the context of male infertility and to improve the treatments available for patients with OS-mediated male factor infertility.


Male infertility Oxidative stress Reactive oxygen species Varicocele Infection Leukocytospermia Idiopathic infertility DNA damage Antioxidants 


  1. 1.
    Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infer­tility: an update. Am J Reprod Immunol. 2008;59(1):2–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Sharlip I, Jarow JP, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang X, Sharma RK, Sikka SC, Thomas Jr AJ, Falcone T, Agarwal A. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril. 2003;80(3):531–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Ollero M, Gil-Guzman E, Lopez MC, Sharma RK, Agarwal A, Larson K, Evenson D, et al. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16(9):1912–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl. 1996;17(3):276–87.PubMedGoogle Scholar
  6. 6.
    Agarwal A, Said TM, Bedaiwy MA, Banerjee J, Alvarez JG. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006;86(3):503–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays. 1994;16(4):259–67.PubMedCrossRefGoogle Scholar
  8. 8.
    Saleh R, Agarwal A, Kandirali E, Sharma RK, Thomas AJ, Nada EA, et al. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril. 2002;78(6):1215–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Jones R, Mann T, Sherins R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril. 1979;31(5):531–7.PubMedGoogle Scholar
  10. 10.
    Aitken R. Molecular mechanisms regulating human sperm function. Mol Hum Reprod. 1997;3(3):169–73.PubMedCrossRefGoogle Scholar
  11. 11.
    de Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10 Suppl 1:15–21.PubMedGoogle Scholar
  12. 12.
    Sikka S. Relative impact of oxidative stress on male reproductive function. Curr Med Chem. 2001;8(7):851–62.PubMedGoogle Scholar
  13. 13.
    Herrero M, de Lamirande E, Gagnon C. Nitric oxide is a signaling molecule in spermatozoa. Curr Pharm Des. 2003;9(5):419–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA ­damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68(3):519–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Said T, Paasch U, Glander HJ, Agarwal A. Role of caspases in male infertility. Hum Reprod Update. 2004;10(1):39–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Weng S, Taylor SL, Morshedi M, Schuffner A, Duran EH, Beebe S, Oehninger S. Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod. 2002;8(11):984–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Pasqualotto F, Agarwal A. Varicocele and male infertility: an evidence based review. Arch Med Sci. 2009;5(1A):S20–7.Google Scholar
  19. 19.
    Madgar I, Weissenberg R, Lunenfeld B, Karasik A, Goldwasser B. Controlled trial of high spermatic vein ligation for varicocele in infertile men. Fertil Steril. 1995;63(1):120–4.PubMedGoogle Scholar
  20. 20.
    Naughton C, Nangia A, Agarwal A. Varicocele and male infertility: part II: pathophysiology of varicoceles in male infertility. Hum Reprod. 2001;7(5):473–81.CrossRefGoogle Scholar
  21. 21.
    Romeo C, Ientile R, Santoro G, Impellizzeri P, Turiaco N, Impalà P, et al. Nitric oxide production is increased in the spermatic veins of adolescents with left idiophatic varicocele. J Pediatr Surg. 2001;36(2):389–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Agarwal A, Prabakaran S, Allamaneni SS. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod Biomed Online. 2006;12(5):630–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Davies M, Fulton GJ, Hagen PO. Clinical biology of nitric oxide. Br J Surg. 1995;82(12):1598–610.PubMedCrossRefGoogle Scholar
  24. 24.
    Ozbeka E, Turkozc Y, Gokdenizb R, Davarcia M, Ozugurluc F. Increased nitric oxide production in the spermatic vein of patients with varicocele. Eur Urol. 2000;37(2):172–5.CrossRefGoogle Scholar
  25. 25.
    Weinberg J, Doty E, Bonaventura J, Haney AF. Nitric oxide inhibition of human sperm motility. Fertil Steril. 1995;64(2):408–13.PubMedGoogle Scholar
  26. 26.
    Agarwal A, Sharma RK, Desai N, Prabakran S, Tavares A, Sabanaegh E. Role of oxidative stress in pathogenesis of varicocele and infertility. Urology. 2009;73(3):461–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Schoor R, Elhanbly SM, Niederberger C. The pathophysiology of varicocele-associated male infertility. Curr Urol Rep. 2001;2(6):432–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Hendin B, Kolettis PN, Sharma RK, Thomas Jr AJ, Agarwal A. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol. 1999;161(6):1831–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Allamaneni S, Naughton CK, Sharma RK, Thomas Jr AJ, Agarwal A. Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size. Fertil Steril. 2004;82(6):1684–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Künzle R, Mueller MD, Hänggi W, Birkhäuser MH, Drescher H, Bersinger NA. Semen quality of male smokers and nonsmokers in infertile couples. Fertil Steril. 2003;79(2):287–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Abd-Elmoaty M, Saleh R, Sharma R, Agarwal A. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril. 2010;94(4):1531–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Cocuzza M, Athayde KS, Agarwal A, Pagani R, Sikka SC, Lucon AM, et al. Impact of clinical varicocele and testis size on seminal reactive oxygen species levels in a fertile population: a prospective controlled study. Fertil Steril. 2008;90(4):1103–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Unal D, Yeni E, Verit A, Karatas OF. Clomiphene citrate versus varicocelectomy in treatment of subclinical varicocele: a prospective randomized study. Int J Urol. 2001;8(5):227–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Eggert-Kruse W, Bellmann A, Rohr G, Tilgen W, Runnebaum B. Differentiation of round cells in semen by means of monoclonal antibodies and relationship with male fertility. Fertil Steril. 1992;58(5):1046–55.PubMedGoogle Scholar
  35. 35.
    Saran M, Beck-Speier I, Fellerhoff B, Bauer G. Phagocytic killing of microorganisms by ­radical processes: consequences of the reaction of hydroxyl radicals with chloride yielding chlorine atoms. Free Radic Biol Med. 1999;26(3–4):482–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Munuce M, Bregni C, Carizza C, Mendeluk G. Semen culture, leukocytospermia, and the ­presence of sperm antibodies in seminal hyperviscosity. Arch Androl. 1999;42(1):21–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Close C, Roberts PL, Berger RE. Cigarettes, alcohol and marijuana are related to pyospermia in infertile men. J Urol. 1990;144(4):900–3.PubMedGoogle Scholar
  38. 38.
    Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril. 1994;62(2):387–93.PubMedGoogle Scholar
  39. 39.
    Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005;95(4):503–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Vicari E, La Vignera S, Calogero AE. Antioxidant treatment with carnitines is effective in infertile patients with prostatovesiculoepididymitis and elevated seminal leukocyte concentrations after treatment with nonsteroidal anti-inflammatory compounds. Fertil Steril. 2002;78(6):1203–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Sharma R, Pasqualotto AE, Nelson DR, Thomas Jr AJ, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22(4):575–83.PubMedGoogle Scholar
  42. 42.
    Aziz N, Agarwal A, Lewis-Jones I, Sharma RK, Thomas Jr AJ. Novel associations between specific sperm morphological defects and leukocytospermia. Fertil Steril. 2004;82(3):621–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Lackner J, Agarwal A, Mahfouz R, du Plessis SS, Schatzl G. The association between leukocytes and sperm quality is concentration dependent. Reprod Biol Endocrinol. 2010;8:12.PubMedCrossRefGoogle Scholar
  44. 44.
    Pasqualotto F, Sharma RK, Nelson DR, Thomas AJ, Agarwal A. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73(3):459–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Maruyama DJ, Hale RW, Rogers BJ. Effects of white blood cells on the in vitro penetration of zona-free hamster eggs by human spermatozoa. J Androl. 1985;6(2):127–35.PubMedGoogle Scholar
  46. 46.
    Tomlinson M, Barratt CL, Cooke ID. Prospective study of leukocytes and leukocyte subpopulations in semen suggests they are not a cause of male infertility. Fertil Steril. 1993;60(6):1069–75.PubMedGoogle Scholar
  47. 47.
    Aitken J, Krausz C, Buckingham D. Relationships between biochemical markers for residual sperm cytoplasm, reactive oxygen species generation, and the presence of leukocytes and precursor germ cells in human sperm suspensions. Mol Reprod Dev. 1994;39(3):268–79.PubMedCrossRefGoogle Scholar
  48. 48.
    Agarwal A, Prabakaran S, Allamaneni S. What an andrologist/urologist should know about free radicals and why. Urology. 2006;67(1):2–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Ochsendorf F. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.PubMedCrossRefGoogle Scholar
  50. 50.
    Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online. 2004;8(6):616–27.PubMedCrossRefGoogle Scholar
  51. 51.
    Rowe P, Comhaire F, Hargreave T, Mahmoud A, Rowe P, Comhaire F, Hargreave T, Mahmoud A. WHO manual for the standardized investigation, diagnosis and management of the infertile male. 1st ed. Cambridge: Cambridge University Press; 2000.Google Scholar
  52. 52.
    Comhaire F, Mahmoud AMA, Depuydt CE, Zalata AA, Christophe AB. Mechanisms and effects of male genital tract infection on sperm quality and fertilizing potential: the andrologist’s viewpoint. Hum Reprod. 1999;5(5):393–8.CrossRefGoogle Scholar
  53. 53.
    Shibata K, Kajihara J, Kato K, Hirano K. Purification and characterization of prostate specific antigen from human urine. Biochim Biophys Acta. 1997;1336(3):425–33.PubMedCrossRefGoogle Scholar
  54. 54.
    Kvist U, Björndahl L. Zinc preserves an inherent capacity for human sperm chromatin decondensation. Acta Physiol Scand. 1985;124(2):195–200.PubMedCrossRefGoogle Scholar
  55. 55.
    Kundu T, Rao M. DNA condensation by the rat spermatidal protein TP2 shows GC-rich sequence preference and is zinc dependent. Biochemistry. 1995;34(15):5143–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Comhaire F, Vermeulen L, Pieters O. Study of the accuracy of physical and biochemical markers in semen to detect infectious dysfunction of the accessory sex glands. J Androl. 1989;10(1):50–3.PubMedGoogle Scholar
  57. 57.
    Kjellberg S, Björndahl L, Kvist U. Sperm chromatin stability and zinc binding properties in semen from men in barren unions. Int J Androl. 1992;15(2):103–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Pasqualotto F, Sharma RK, Kobayashi H, Nelson DR, Thomas Jr AJ, Agarwal A. Oxidative stress in normospermic men undergoing infertility evaluation. J Androl. 2001;22(2):316–22.PubMedGoogle Scholar
  59. 59.
    Alkan I, Simşek F, Haklar G, Kervancioğlu E, Ozveri H, Yalçin S, Akdaş A. Reactive oxygen species production by the spermatozoa of patients with idiopathic infertility: relationship to seminal plasma antioxidants. J Urol. 1997;157(1):140–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Saleh R, Agarwal A, Sharma RK, Nelson DR, Thomas Jr AJ. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril. 2002;78(3):491–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Fraga C, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res. 1996;351(2):199–203.PubMedCrossRefGoogle Scholar
  62. 62.
    Traber M, van der Vliet A, Reznick AZ, Cross CE. Tobacco-related diseases. Is there a role for antioxidant micronutrient supplementation? Clin Chest Med. 2000;21(1):173–87.PubMedCrossRefGoogle Scholar
  63. 63.
    Pasqualotto F, Sobreiro BP, Hallak J, Pasqualotto EB, Lucon AM. Cigarette smoking is related to a decrease in semen volume in a population of fertile men. BJU Int. 2006;97(2):324–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Koizumi T, Li ZG. Role of oxidative stress in single-dose, cadmium-induced testicular cancer. J Toxicol Environ Health. 1992;37(1):25–36.PubMedCrossRefGoogle Scholar
  65. 65.
    De Rosa M, Zarrilli S, Paesano L, Carbone U, Boggia B, Petretta M, et al. Traffic pollutants affect fertility in men. Hum Reprod. 2003;18(5):1055–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Fowler B, Whittaker MH, Lipsky M, Wang G, Chen XQ. Oxidative stress induced by lead, cadmium and arsenic mixtures: 30-day, 90-day, and 180-day drinking water studies in rats: an overview. Biometals. 2004;17(5):567–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Kumar S. Occupational exposure associated with reproductive dysfunction. J Occup Health. 2004;46(1):1–19.PubMedCrossRefGoogle Scholar
  68. 68.
    Skakkebaek N, Jørgensen N, Main KM, Rajpert-De Meyts E, Leffers H, Andersson AM, et al. Is human fecundity declining? Int J Androl. 2006;29(1):2–11.PubMedCrossRefGoogle Scholar
  69. 69.
    Hauser R. The environment and male fertility: recent research on emerging chemicals and semen quality. Semin Reprod Med. 2006;24(3):156–67.PubMedCrossRefGoogle Scholar
  70. 70.
    Agarwal A, Ikemoto I, Loughlin KR. Effect of sperm washing on levels of reactive oxygen species in semen. Arch Androl. 1994;33(3):157–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Saleh R, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;22(6):737–52.Google Scholar
  72. 72.
    Zorn B, Vidmar G, Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl. 2003;26(5):279–85.PubMedCrossRefGoogle Scholar
  73. 73.
    Bedaiwy M, Falcone T, Mohamed MS, Aleem AA, Sharma RK, Worley SE, et al. Differential growth of human embryos in vitro: role of reactive oxygen species. Fertil Steril. 2004;82(3):593–600.PubMedCrossRefGoogle Scholar
  74. 74.
    Høst E, Lindenberg S, Smidt-Jensen S. The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstet Gynecol Scand. 2000;79(7):559–63.PubMedCrossRefGoogle Scholar
  75. 75.
    Aitken R. The Amoroso lecture. The human spermatozoon—a cell in crisis? J Reprod Fertil. 1999;115(1):1–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Agarwal A, Allamaneni SS, Said TM. Chemiluminescence technique for measuring reactive oxygen species. Reprod Biomed Online. 2004;9(4):466–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Pasqualotto F, Sharma RK, Pasqualotto EB, Agarwal A. Poor semen quality and ROS-TAC scores in patients with idiopathic infertility. Urol Int. 2008;81(3):263–70.PubMedCrossRefGoogle Scholar
  78. 78.
    Sharma R, Pasqualotto FF, Nelson DR, Thomas Jr AJ, Agarwal A. The reactive oxygen ­species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod. 1999;14(11):2801–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Aitken R, Harkiss D, Buckingham DW. Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol Reprod Dev. 1993;35(3):302–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Oral O, Kutlu T, Aksoy E, Fiçicioğlu C, Uslu H, Tuğrul S. The effects of oxidative stress on outcomes of assisted reproductive techniques. J Assist Reprod Genet. 2006;23(2):81–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Tavilani H, Doosti M, Saeidi H. Malondialdehyde levels in sperm and seminal plasma of ­asthenozoospermic and its relationship with semen parameters. Clin Chim Acta. 2005;356(1–2):199–203.PubMedCrossRefGoogle Scholar
  82. 82.
    Hsieh Y, Chang CC, Lin CS. Seminal malondialdehyde concentration but not glutathione ­peroxidase activity is negatively correlated with seminal concentration and motility. Int J Biol Sci. 2006;2(1):23–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Suleiman S, Ali ME, Zaki ZM, el-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17(5):530–7.PubMedGoogle Scholar
  84. 84.
    Keskes-Ammar L, Feki-Chakroun N, Rebai T, Sahnoun Z, Ghozzi H, Hammami S, et al. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl. 2003;49(2):83–94.PubMedCrossRefGoogle Scholar
  85. 85.
    Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349–53.PubMedCrossRefGoogle Scholar
  86. 86.
    Greco E, Romano S, Iacobelli M, Ferrero S, Baroni E, Minasi MG, et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod. 2005;20(9):2590–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Thiele J, Friesleben HJ, Fuchs J, Ochsendorf FR. Ascorbic acid and urate in human seminal plasma: determination and interrelationships with chemiluminescence in washed semen. Hum Reprod. 1995;10(1):110–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Ricci G, Perticarari S, Boscolo R, Simeone R, Martinelli M, Fischer-Tamaro L, et al. Leukocytospermia and sperm preparation—a flow cytometric study. Reprod Biol Endocrinol. 2009;7:128.PubMedCrossRefGoogle Scholar
  89. 89.
    Mortimer D. Sperm preparation methods. J Androl. 2000;21(3):357–66.PubMedGoogle Scholar
  90. 90.
    Agarwal A, Deepinder F, Cocuzza M, Agarwal R, Short RA, Sabanegh E, Marmar JL. Efficacy of varicocelectomy in improving semen parameters: new meta-analytical approach. Urology. 2007;70(3):532–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen SS, Huang WJ, Chang LS, Wei YH. Attenuation of oxidative stress after varicocelectomy in subfertile patients with varicocele. J Urol. 2008;179(2):639–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tamer M. Said
    • 1
  • Sheila R. Gokul
    • 2
  • Ashok Agarwal
    • 3
  1. 1.Andrology Laboratory and Reproductive Tissue BankThe Toronto Institute for Reproductive MedicineTorontoCanada
  2. 2.Center for Reproductive MedicineCleveland ClinicClevelandUSA
  3. 3.Center for Reproductive MedicineCleveland Clinic, Lerner College of MedicineClevelandUSA

Personalised recommendations