Skip to main content

Tissue Engineering Based on the Importance of Collaboration Between Clinicians and Basic Scientists Regarding Mesenchymal Stromal Cells

  • Chapter
  • First Online:
Book cover Adult and Embryonic Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1305 Accesses

Abstract

Tissue engineering is an interdisciplinary field that applies the principles of biology and engineering to developing tissue substitutes to restore, maintain, or improve the function of diseased or damaged human tissues. Autologous mesenchymal stromal cells (MSCs) are good candidates for tissue engineering and regenerative medicine in that they can replace damaged tissues in the human body owing to their self-renewal, plasticity, engraftment, and homing capacity. MSCs can easily differentiate into adipocytes, osteoblasts, and fibroblasts using various transcription factors and hormones. For cell treatments, nanotechnological scaffolds in various structures are needed for differentiation of stem cells. Biodegradable polymeric constructs for bone tissue engineering, are three-dimensional structures that allow bone cells to attach and reproduce on them. Because of biodegradability properties, they are not permanent in the body and are degraded slowly while bone cells are reproducing. Thus, bone cells replace the scaffold in time, which means healing of the defective site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89:1235–1249

    Article  PubMed  CAS  Google Scholar 

  • Bobis S, Jarocha D, Majka M (2006) Mesenchymal stem cells: characteristics and clinical ­applications. Folia Histochem Cytobiol 44(4):215–230

    PubMed  CAS  Google Scholar 

  • Boiret N, Rapatel C, Veyrat-Masson R, Guillouard L, Guérin J-J, Pigeon P, Descamps S, Boisgard S, Berger MG (2005) Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol 33:219–225

    Article  PubMed  CAS  Google Scholar 

  • Cao F-J, Feng S-Q (2009) Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury. Chin Med J (Engl) 122(2):225–231

    Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347

    Article  PubMed  CAS  Google Scholar 

  • Carlo-Stella C, Gianni MA (2005) Biology and clinical applications of marrow mesenchymal stem cells. Pathol Biol 53:162–164

    Article  PubMed  Google Scholar 

  • Choppes RP et al (2009) Stem cell therapy to reduce radiation-induced normal tissue damage. Semin Radiat Oncol 19:112–121

    Article  Google Scholar 

  • Cognet PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73

    Article  Google Scholar 

  • Corsten MF et al (2008) Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol 9:376–384

    Article  PubMed  Google Scholar 

  • Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170:73–82

    Article  PubMed  Google Scholar 

  • Devine SM, Hoffman R (2000) Role of mesenchymal stemcell in hematopoietic stem cell transplantation. Curr Opin Hematol 7:358–363

    Article  PubMed  CAS  Google Scholar 

  • Dwyer RM et al (2007) Monocyte chemotactic proteion-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13(17):5020–5027

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JS et al (2009) Bone marrow-derived stem cells and radiation response. Semin Radiat Oncol 19:133–139

    Article  Google Scholar 

  • Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189:54–63

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Zannettino AC, Hay DJ, Shi S, Graves SE, Kortesidis A, Simmonos PJ (2003) Molecular and cellular characterization of highly purified stromal stems derived from human bone marrow. J Cell Sci 116:1827–1835

    Article  PubMed  CAS  Google Scholar 

  • Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6:543–553

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen C et al (2009) Link between cancer stem cells and adult mesenchymal stromal cells: implications for cancer therapy. Regen Med 4(2):149–152

    Article  PubMed  Google Scholar 

  • Kidd S et al (2008) The auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy 10(7):657–667

    Article  PubMed  CAS  Google Scholar 

  • Klingemann H et al (2008) Mesenchymal stem cells: sources and clinical applications. Transfus Med Hemother 35:272–277

    Article  PubMed  Google Scholar 

  • Koç ON et al (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222

    Article  PubMed  Google Scholar 

  • Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67(13): 6304–6313

    Article  PubMed  CAS  Google Scholar 

  • Lazennec G et al (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26(6):1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Lee K-D (2005) Mesenchymal stem cells. Chang Gung Med J 31(3):228–235

    Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812

    Article  PubMed  CAS  Google Scholar 

  • Neuenschwander S, Hoerstrup SP (2004) Organogenesis and tissue engineering in transplantation medicine. Transpl Immunol 12(3–4):359–365

    Article  PubMed  CAS  Google Scholar 

  • Nishida K (2003) Tissue engineering of the cornea. Cornea 22:S28–S34

    Article  PubMed  Google Scholar 

  • Ozawa K et al (2008) Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun 30:121–127

    Article  PubMed  CAS  Google Scholar 

  • Patel SA, Sherman L, Munoz J, Rameshwar P (2008a) Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp 56:1–8

    Article  CAS  Google Scholar 

  • Patel SA et al (2008b) Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp (Warsz) 56:1–8

    Article  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simoneti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Studeny M et al (2004) Mesenchymal stem cells: potential precursors for tumor stroma and ­targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96(21):1593–1603

    Article  PubMed  CAS  Google Scholar 

  • Sacks MS, Schoen FJ, Mayer JE (2009) Bioengineering challenges for heart valve tissue engineering. Ann Rev Biomed Eng 11:289–313

    Article  PubMed  CAS  Google Scholar 

  • Tsai MS, Lee JL, Chang YJ, Hwang SM (2004) Isolation of human multipotent mesenchymal stem cells from second trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456

    Article  PubMed  Google Scholar 

  • Wang HS et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord blood. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  • Woodward WA et al (2009) Radiosensitivity of cancer-initiated cells and normal stem cells (or what the Heisenberg uncertainly principle has to do with biology). Semin Radiat Oncol 19:87–95

    Article  PubMed  Google Scholar 

  • Zielske SP et al (2009) Radiation increases invasion of gene-modified mesenchymal stem cells into tumors. Int J Radiat Oncol Biol Phys 75(3):843–853

    Article  Google Scholar 

  • Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN (2000) Mesenchymal precursor, cells in the blood of normal individuals. Arthritis Res 2:477–488

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Yurtsever M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yurtsever, A. (2012). Tissue Engineering Based on the Importance of Collaboration Between Clinicians and Basic Scientists Regarding Mesenchymal Stromal Cells. In: Turksen, K. (eds) Adult and Embryonic Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-630-2_7

Download citation

Publish with us

Policies and ethics