Skip to main content

Biomarkers in Prostate Cancer

  • Chapter
  • First Online:
Book cover Biotargets of Cancer in Current Clinical Practice

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 828 Accesses

Abstract

Prostate cancer is the most common neoplasm occurring in a solid organ in industrialized countries and a leading cause of cancer death in the same western world areas. Besides classical detection procedures like digital rectal exam, a biomarker like prostate-specific antigen serum measurement remains a milestone in the diagnosis and follow-up. Many more biomarkers have been discovered in recent times, thanks to genetics, proteomics, and metabolomics, but very few are reaching wide and universal clinical use. In this chapter, the most recent discoveries in the field are reviewed, together with the main and established themes aiding the clinical decision in the diagnosis, staging, grading, and clinical significance considerations concerning this very common neoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BPH:

Benign prostatic hyperplasia

CaPSURE:

Cancer of Prostate Strategic Urologic Research Endeavor

CRPC:

Castration-resistant prostate cancer

CTC:

Circulating tumor cells

DMAB:

(3,2′-Dimethyl-4-aminobiphenyl)

DRE:

Digital rectal examination

ETS:

Erythroblastosis virus E26 transforming sequence: a family of transcription factors

GRP:

Gastrin-releasing peptide

GSTP1:

Glutathione S-transferase

HDAC:

Histone deacetylase

hK2:

Human glandular kallikrein-2

HRPCa:

Hormone-resistant prostate cancer

LH:

Luteinizing hormone

LHRH:

Luteinizing hormone-releasing hormone

MMPs:

Matrix metalloproteases

NE:

Neuroendocrine

NET:

Neuroendocrine transdifferentiation

NSE:

Neuron-specific enolase

PAP:

Prostatic acid phosphatase

PCa:

Prostate cancer

PCA3:

Prostate cancer gene 3

PIN:

Prostatic intraepithelial neoplasia

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

PSP94:

Prostate secretory protein-94

TMPRSS2:

Prostate-specific gene transmembrane protease serine 2

uPA:

Urokinase-type plasminogen acti­vator

VPA:

Valproic acid

References

  1. Martinez-Pineiro L. Personalised patient diagnosis and prognosis in prostate cancer: what are the future perspectives? Eur Urol Suppl. 2010;9:794–89.

    Article  Google Scholar 

  2. Kumar V, Abbas AA, Fausto N. Robbins and Cotran—pathologic basis of disease. New York: Elsevier; 2005.

    Google Scholar 

  3. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  4. Carroll PR, Carducci MA, Zietman AL, Rothaermel JM. Report to the nation on prostate cancer. Santa Monica, CA, USA: Prostate Cancer Foundation; 2006.

    Google Scholar 

  5. Farwell WR, Linder JA, Jha AK. Trends in prostate-specific antigen testing from 1995 through 2004. Arch Intern Med. 2007;167(22):2497–502.

    Article  PubMed  CAS  Google Scholar 

  6. Rao AR, Motiwala HG, Karim OM. The discovery of prostate-specific antigen. BJU Int. 2008;101(1):5–10.

    PubMed  CAS  Google Scholar 

  7. Eurostat Cancer Death rates. European Commission—Health and Consumers Directorate-General; 2008. Accessed Jan 2011

    Google Scholar 

  8. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol. 2007;18(3):581–92.

    Article  PubMed  CAS  Google Scholar 

  9. Rubin E, Gorstein F, Rubin R, Schwartig R, Strayer D. Rubin’s pathology: clinicopathologic foundations of medicine. Philadelphia, USA: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  10. D’Amico AV, Whittington R, Malkowicz SB, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969–74.

    Article  PubMed  Google Scholar 

  11. Cooperberg MR, Lubeck DP, Mehta SS, Carroll PR. Time trends in clinical risk stratification for prostate cancer: implications for outcomes (data from CaPSURE). J Urol. 2003;170(6 Pt 2):S21–5. discussion S26-27.

    Article  PubMed  Google Scholar 

  12. DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI. Pathological and molecular aspects of prostate cancer. Lancet. 2003;361(9361):955–64.

    Article  PubMed  CAS  Google Scholar 

  13. Rhodes DR, Sanda MG, Otte AP, Chinnaiyan AM, Rubin MA. Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J Natl Cancer Inst. 2003;95(9):661–8.

    Article  PubMed  CAS  Google Scholar 

  14. Carpten J, Nupponen N, Isaacs S, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet. 2002;30(2):181–4.

    Article  PubMed  CAS  Google Scholar 

  15. Xu J, Zheng SL, Komiya A, et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet. 2002;32(2):321–5.

    Article  PubMed  CAS  Google Scholar 

  16. Xu J, Zheng SL, Turner A, et al. Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res. 2002;62(8):2253–7.

    PubMed  CAS  Google Scholar 

  17. Woodson K, Tangrea JA, Lehman TA, et al. Manganese superoxide dismutase (MnSOD) polymorphism, alpha-tocopherol supplementation and prostate cancer risk in the alpha-tocopherol, beta-carotene cancer prevention study (Finland). Cancer Causes Control. 2003;14(6):513–8.

    Article  PubMed  Google Scholar 

  18. McCarron SL, Edwards S, Evans PR, et al. Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res. 2002;62(12):3369–72.

    PubMed  CAS  Google Scholar 

  19. Lindmark F, Zheng SL, Wiklund F, et al. H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer. J Natl Cancer Inst. 2004;96(16):1248–54.

    Article  PubMed  CAS  Google Scholar 

  20. Zheng SL, Augustsson-Balter K, Chang B, et al. Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the cancer prostate in Sweden study. Cancer Res. 2004;64(8):2918–22.

    Article  PubMed  CAS  Google Scholar 

  21. Ding Z, Wu CJ, Chu GC, et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 2011;470(7333):269–73.

    Article  PubMed  CAS  Google Scholar 

  22. Giovannucci E. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst. 1999;91(4):317–31.

    Article  PubMed  CAS  Google Scholar 

  23. Salmon CP, Knize MG, Panteleakos FN, Wu RW, Nelson DO, Felton JS. Minimization of heterocyclic amines and thermal inactivation of Escherichia coli in fried ground beef. J Natl Cancer Inst. 2000;92(21):1773–8.

    Article  PubMed  CAS  Google Scholar 

  24. Nelson CP, Kidd LC, Sauvageot J, et al. Protection against 2-hydroxyamino-1-methyl-6-phenylimidazo [4,5-b] pyridine cytotoxicity and DNA adduct formation in human prostate by glutathione S-transferase P1. Cancer Res. 2001;61(1):103–9.

    PubMed  CAS  Google Scholar 

  25. Gupta S. Prostate cancer chemoprevention: current status and future prospects. Toxicol Appl Pharmacol. 2007;224(3):369–76.

    Article  PubMed  CAS  Google Scholar 

  26. Barber NJ, Zhang X, Zhu G, et al. Lycopene inhibits DNA synthesis in primary prostate epithelial cells in vitro and its administration is associated with a reduced prostate-specific antigen velocity in a phase II clinical study. Prostate Cancer Prostatic Dis. 2006;9(4):407–13.

    Article  PubMed  CAS  Google Scholar 

  27. Bostwick DG, Liu L, Brawer MK, Qian J. High-grade prostatic intraepithelial neoplasia. Rev Urol. 2004;6(4):171–9.

    PubMed  Google Scholar 

  28. Montironi R, Mazzucchelli R, Santinelli A, Scarpelli M, Beltran AL, Bostwick DG. Incidentally detected prostate cancer in cystoprostatectomies: pathological and morphometric comparison with clinically detected cancer in totally embedded specimens. Hum Pathol. 2005;36(6):646–54.

    Article  PubMed  Google Scholar 

  29. Rubin MA, Zhou M, Dhanasekaran SM, et al. alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA. 2002;287(13):1662–70.

    Article  PubMed  CAS  Google Scholar 

  30. Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol. 1974;111(1):58–64.

    PubMed  CAS  Google Scholar 

  31. Tetu B, Ro JY, Ayala AG, Johnson DE, Logothetis CJ, Ordonez NG. Small cell carcinoma of the prostate. Part I. A clinicopathologic study of 20 cases. Cancer. 1987;59(10):1803–9.

    Article  PubMed  CAS  Google Scholar 

  32. Ro JY, Tetu B, Ayala AG, Ordonez NG. Small cell carcinoma of the prostate. II. Immunohistochemical and electron microscopic studies of 18 cases. Cancer. 1987;59(5):977–82.

    Article  PubMed  CAS  Google Scholar 

  33. Gaudin PB, Rosai J, Epstein JI. Sarcomas and related proliferative lesions of specialized prostatic stroma: a clinicopathologic study of 22 cases. Am J Surg Pathol. 1998;22(2):148–62.

    Article  PubMed  CAS  Google Scholar 

  34. Cheville JC, Dundore PA, Nascimento AG, et al. Leiomyosarcoma of the prostate. Report of 23 cases. Cancer. 1995;76(8):1422–7.

    Article  PubMed  CAS  Google Scholar 

  35. Bologna M, Vicentini C, Festuccia C, et al. Early diagnosis of prostatic carcinoma based on in vitro culture of viable tumor cells harvested by prostatic massage. Eur Urol. 1988;14:474–6.

    PubMed  CAS  Google Scholar 

  36. Oesterling JE, Jacobsen SJ, Chute CG, et al. Serum prostate-specific antigen in a community-based population of healthy men. Establishment of age-specific reference ranges. JAMA. 1993;270(7):860–4.

    Article  PubMed  CAS  Google Scholar 

  37. Catalona WJ. Clinical utility of measurements of free and total prostate-specific antigen (PSA): a review. Prostate Suppl. 1996;7:64–9.

    Article  PubMed  CAS  Google Scholar 

  38. Stenman UH, Leinonen J, Alfthan H, Rannikko S, Tuhkanen K, Alfthan O. A complex between prostate-specific antigen and alpha 1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Res. 1991;51(1):222–6.

    PubMed  CAS  Google Scholar 

  39. Catalona WJ, Smith DS, Wolfert RL, et al. Evaluation of percentage of free serum prostate-specific antigen to improve specificity of prostate cancer screening. JAMA. 1995;274(15):1214–20.

    Article  PubMed  CAS  Google Scholar 

  40. Cloutier SM, Chagas JR, Mach JP, Gygi CM, Leisinger HJ, Deperthes D. Substrate specificity of human kallikrein 2 (hK2) as determined by phage display technology. Eur J Biochem. 2002;269(11):2747–54.

    Article  PubMed  CAS  Google Scholar 

  41. Martin BJ, Finlay JA, Sterling K, et al. Early detection of prostate cancer in African-American men through use of multiple biomarkers: human kallikrein 2 (hK2), prostate-specific antigen (PSA), and free PSA (fPSA). Prostate Cancer Prostatic Dis. 2004;7(2):132–7.

    Article  PubMed  CAS  Google Scholar 

  42. Stephan C, Jung K, Nakamura T, Yousef GM, Kristiansen G, Diamandis EP. Serum human glandular kallikrein 2 (hK2) for distinguishing stage and grade of prostate cancer. Int J Urol. 2006;13(3):238–43.

    Article  PubMed  CAS  Google Scholar 

  43. Aggarwal S, Ricklis RM, Williams SA, Denmeade SR. Comparative study of PSMA expression in the prostate of mouse, dog, monkey, and human. Prostate. 2006;66(9):903–10.

    Article  PubMed  CAS  Google Scholar 

  44. Wolf P, Gierschner D, Buhler P, Wetterauer U, Elsasser-Beile U. A recombinant PSMA-specific single-chain immunotoxin has potent and selective toxicity against prostate cancer cells. Cancer Immunol Immunother. 2006;55(11):1367–73.

    Article  PubMed  CAS  Google Scholar 

  45. Fortmuller K, Alt K, Gierschner D, et al. Effective targeting of prostate cancer by lymphocytes redirected by a PSMA  ×  CD3 bispecific single-chain diabody. Prostate. 2010;71(6):588–96.

    Google Scholar 

  46. Wolf P, Freudenberg N, Buhler P, et al. Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Prostate. 2010;70(5):562–9.

    PubMed  CAS  Google Scholar 

  47. Catalona WJ, Richie JP, Ahmann FR, et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol. 1994;151(5):1283–90.

    PubMed  CAS  Google Scholar 

  48. Hernandez J, Thompson IM. Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer. 2004;101(5):894–904.

    Article  PubMed  CAS  Google Scholar 

  49. Zeliadt SB, Hoffman RM, Etzioni R, Gore JL, Kessler LG, Lin DW. Influence of publication of US and European prostate cancer screening trials on PSA testing practices. J Natl Cancer Inst. 2011;103(6):520–3.

    Article  PubMed  Google Scholar 

  50. Epstein JI, Walsh PC, Carmichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA. 1994;271(5):368–74.

    Article  PubMed  CAS  Google Scholar 

  51. Epstein JI. PSA and PAP as immunohistochemical markers in prostate cancer. Urol Clin North Am. 1993;20(4):757–70.

    PubMed  CAS  Google Scholar 

  52. Bastian PJ, Mangold LA, Epstein JI, Partin AW. Characteristics of insignificant clinical T1c prostate tumors. A contemporary analysis. Cancer. 2004;101(9):2001–5.

    Article  PubMed  Google Scholar 

  53. Carter HB, Kettermann A, Warlick C, et al. Expectant management of prostate cancer with curative intent: an update of the Johns Hopkins experience. J Urol. 2007;178(6):2359–64. discussion 2364–2355.

    Article  PubMed  Google Scholar 

  54. Jeldres C, Suardi N, Walz J, et al. Validation of the contemporary epstein criteria for insignificant prostate cancer in European men. Eur Urol. 2008;54(6):1306–13.

    Article  PubMed  Google Scholar 

  55. Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA. 1997;277(18):1445–51.

    Article  PubMed  CAS  Google Scholar 

  56. Kattan MW, Eastham JA, Wheeler TM, et al. Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol. 2003;170(5):1792–7.

    Article  PubMed  Google Scholar 

  57. Chun FK, Haese A, Ahyai SA, et al. Critical assessment of tools to predict clinically insignificant prostate cancer at radical prostatectomy in contemporary men. Cancer. 2008;113(4):701–9.

    Article  PubMed  Google Scholar 

  58. Bologna M, et al. Cancer multitarget pharmacology in prostate tumors: tyrosine kinase inhibitors and beyond. Curr Med Chem. 2011;18:2827–35.

    Google Scholar 

  59. Lassiter LK, Carducci MA. Endothelin receptor antagonists in the treatment of prostate cancer. Semin Oncol. 2003;30(5):678–88.

    Article  PubMed  CAS  Google Scholar 

  60. Nelson JB, Love W, Chin JL, et al. Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer. 2008;113(9):2478–87.

    Article  PubMed  CAS  Google Scholar 

  61. Bologna M, Vicentini C, Festuccia C, Muzi P, Angeletti PU, Miano L. Human prostatic carcinoma in tissue culture - correlations between histological diagnosis and in vitro parameters. Eur Urol. 1985;11:330–3.

    PubMed  CAS  Google Scholar 

  62. Bologna M, Festuccia C, Muzi P, Biordi L, Ciomei M. Bombesin stimulates growth of human prostatic cancer cells in vitro. Cancer. 1989;63(9):1714–20.

    Article  PubMed  CAS  Google Scholar 

  63. Festuccia C, Vincentini C, di PA, et al. Plasminogen activator activities in short-term tissue cultures of benign prostatic hyperplasia and prostatic carcinoma. Oncol Res. 1995;7(3–4):131–8.

    PubMed  CAS  Google Scholar 

  64. Festuccia C, Guerra F, D’Ascenzo S, Giunciuglio D, Albini A, Bologna M. In vitro regulation of pericellular proteolysis in prostatic tumor cells treated with bombesin. Int J Cancer. 1998;75:418–31.

    Article  PubMed  CAS  Google Scholar 

  65. Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–9.

    PubMed  CAS  Google Scholar 

  66. Hessels D, Klein Gunnewiek JM, van Oort I, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44(1):8–15. discussion 15–16.

    Article  PubMed  CAS  Google Scholar 

  67. Marks LS, Fradet Y, Deras IL, et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology. 2007;69(3):532–5.

    Article  PubMed  Google Scholar 

  68. Nakanishi H, Groskopf J, Fritsche HA, et al. PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance. J Urol. 2008;179(5):1804–9. discussion 1809–1810.

    Article  PubMed  Google Scholar 

  69. Whitman EJ, Groskopf J, Ali A, et al. PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J Urol. 2008;180(5):1975–8. discussion 1978–1979.

    Article  PubMed  Google Scholar 

  70. Lee GL, Dobi A, Srivastava S. Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol. 2011;8(3):123–4.

    Article  PubMed  Google Scholar 

  71. Tomlins SA, Aubin SM, Siddiqui J, et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med. 2011;3(94):94ra72.

    Article  PubMed  CAS  Google Scholar 

  72. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7(4):233–45.

    Article  PubMed  CAS  Google Scholar 

  73. Morris DS, Tomlins SA, Montie JE, Chinnaiyan AM. The discovery and application of gene fusions in prostate cancer. BJU Int. 2008;102(3):276–82.

    Article  PubMed  CAS  Google Scholar 

  74. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.

    Article  PubMed  CAS  Google Scholar 

  75. Prensner JR, Iyer MK, Balbin OA, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 2011;29(8):742–9.

    Article  PubMed  CAS  Google Scholar 

  76. FitzGerald LM, Kwon EM, Conomos MP, et al. Genome-wide association study identifies a genetic variant associated with risk for more aggressive prostate cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(6):1196–203.

    Article  PubMed  CAS  Google Scholar 

  77. Urisman A, Molinaro RJ, Fischer N, et al. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog. 2006;2(3):e25.

    Article  PubMed  Google Scholar 

  78. Kim S, Kim N, Dong B, et al. Integration site preference of xenotropic murine leukemia virus-related virus, a new human retrovirus associated with prostate cancer. J Virol. 2008;82(20):9964–77.

    Article  PubMed  CAS  Google Scholar 

  79. Aloia AL, Sfanos KS, Isaacs WB, et al. XMRV: a new virus in prostate cancer? Cancer Res. 2010;70(24):10028–33.

    Article  PubMed  CAS  Google Scholar 

  80. Garson JA, Kellam P, Towers GJ. Analysis of XMRV integration sites from human prostate cancer tissues suggests PCR contamination rather than genuine human infection. Retrovirology. 2011;8:13.

    Article  PubMed  CAS  Google Scholar 

  81. Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904.

    Article  PubMed  Google Scholar 

  82. de Bono JS, Scher HI, Montgomery RB, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–9.

    Article  PubMed  Google Scholar 

  83. Scher HI, Jia X, de Bono JS, et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009;10(3):233–9.

    Article  PubMed  CAS  Google Scholar 

  84. Kumar M, Jagtap DD, Mahale SD, et al. Crystallization and preliminary X-ray diffraction analysis of human seminal plasma protein PSP94. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009;65(Pt 4):389–91.

    Article  PubMed  Google Scholar 

  85. Beke L, Nuytten M, Van Eynde A, Beullens M, Bollen M. The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene. 2007;26(31):4590–5.

    Article  PubMed  CAS  Google Scholar 

  86. Annabi B, Bouzeghrane M, Currie JC, et al. Inhibition of MMP-9 secretion by the anti-metastatic PSP94-derived peptide PCK3145 requires cell surface laminin receptor signaling. Anticancer Drugs. 2006;17(4):429–38.

    Article  PubMed  CAS  Google Scholar 

  87. Angelucci A, Muzi P, Cristiano L, et al. Neuroendocrine transdifferentiation induced by VPA is mediated by PPARgamma activation and confers resistance to antiblastic therapy in prostate carcinoma. Prostate. 2008;68(6):588–98.

    Article  PubMed  CAS  Google Scholar 

  88. Angelucci A, Festuccia C, Gravina GL, et al. Osteopontin enhances the cell proliferation induced by the epidermal growth factor in human prostate cancer cells. Prostate. 2004;59(2):157–66.

    Article  PubMed  CAS  Google Scholar 

  89. Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005;5(1):21–8.

    Article  PubMed  CAS  Google Scholar 

  90. Bill-Axelson A, Holmberg L, Ruutu M, et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med. 2011;364(18):1708–17.

    Article  PubMed  CAS  Google Scholar 

  91. Smith MR. Effective treatment for early-stage prostate cancer–possible, necessary, or both? N Engl J Med. 2011;364(18):1770–2.

    Article  PubMed  CAS  Google Scholar 

  92. Oon SF, Pennington SR, Fitzpatrick JM, Watson RW. Biomarker research in prostate cancer-towards utility, not futility. Nat Rev Urol. 2011;8(3):131–8.

    Article  PubMed  CAS  Google Scholar 

  93. Thompson IM, Klotz L. Active surveillance for prostate cancer. JAMA. 2010;304(21):2411–2.

    Article  PubMed  CAS  Google Scholar 

  94. Hayes JH, Ollendorf DA, Pearson SD, et al. Active surveillance compared with initial treatment for men with low-risk prostate cancer: a decision analysis. JAMA. 2010;304(21):2373–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Bologna M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bologna, M., Vicentini, C. (2012). Biomarkers in Prostate Cancer. In: Bologna, M. (eds) Biotargets of Cancer in Current Clinical Practice. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-61779-615-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-615-9_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-614-2

  • Online ISBN: 978-1-61779-615-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics