Skip to main content

Role of Malondialdehyde in the Age-Related Macular Degeneration

  • Chapter
  • First Online:
Book cover Studies on Retinal and Choroidal Disorders

Abstract

The pathogenesis of age-related macular degeneration (AMD) is not clear. The most important risk factors for developing AMD are age, race, and smoking. Genetics, inflammation, and oxidative stress have all been suggested to play a role. The retina is rich in oxygen, free radicals, polyunsaturated fatty acid, and photoactive substances such as lipofuscin, and is exposed to high levels of visible irradiation. Aging is associated with increased oxidative injury. Lipid peroxidation and lipofuscin formation is also increased with aging. Malondialdehyde (MDA) is a product of lipid peroxidation and can be used as a biomarker for oxidative stress. In this chapter, we summarize the available evidence of oxidative stress in the pathogenesis of AMD. In addition, we have demonstrated that high levels of MDA were present in patients with AMD compared to patients without AMD. This suggests that lipid peroxidation-induced oxidative stress may play a role in the pathogenesis of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122:564–572

    Article  PubMed  Google Scholar 

  2. Klein R, Peto T, Bird A, Vannewkirk MR (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137:486–495

    Article  PubMed  Google Scholar 

  3. Tomany SC, Wang JJ, Van Leeuwen R, Klein R, Mitchell P, Vingerling JR et al (2004) Risk factors for incident age-related macular degeneration: pooled findings from 3 continents. Ophthalmology 11:1280–1287

    Article  Google Scholar 

  4. Busch H, Vinding T, la Cour M, Jensen GB, Prause JU, Nielsen NV (2005) Risk factors for age-related maculopathy in 14-year follow-up study: the Copenhagen City Eye Study. Acta Ophthalmol Scand 83:409–418

    Article  Google Scholar 

  5. Smith W, Mitchell P (1998) Family history and age-related maculopathy: the Blue Mountains Eye Study. Aust N Z J Ophthalmol 26:203–206

    Article  PubMed  CAS  Google Scholar 

  6. Hyman L, Neborsky R (2002) Risk factors for age-related macular degeneration: an update. Curr Opin Ophthalmol 13:171–175

    Article  PubMed  Google Scholar 

  7. Frank RN, Puklin JE, Stock C, Canter LA (2000) Race, iris color, and age-related macular degeneration. Trans Am Ophthalmol Soc 98:109–117

    PubMed  CAS  Google Scholar 

  8. Weiter JJ, Delori FC, Wing GL, Fith KA (1986) Retinal pigment epithelial lipofuscin and melanin choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27:145–152

    PubMed  CAS  Google Scholar 

  9. Tomany SC, Cruickshanks KJ, Klein R, Klein BE, Knudtson MD (2004) Sunlight and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study. Arch Ophthalmol 122:750–757

    Article  PubMed  Google Scholar 

  10. Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, Kelly SP (2005) Smoking and age-related macular degeneration: a review of association. Eye 19:935–944

    Article  PubMed  CAS  Google Scholar 

  11. Klein R, Klein BE, Tomany SC, Cruickshanks KJ (2003) The association of cardiovascular disease with the long-term incidence of age-related maculopathy: Beaver Dam Eye Study. Ophthalmology 110(6):1273–1280

    Article  PubMed  Google Scholar 

  12. Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL (2005) Risk factors for the incidence of advanced age-related macular degeneration in the Age-Related Eye Disease Study (AREDS): AREDS report No. 19. Ophthalmology 112:533–539

    Article  PubMed  Google Scholar 

  13. SanGiovanni JP, Chew EY, Clemons TE, Davis MD, Ferris FL, Gensler GR et al (2007) Age-Related Eye Disease Study Research Group. The relationship of dietary lipid intake and age-related macular degeneration in a case-control study. Arch Ophthalmol 125:671–679

    Article  PubMed  CAS  Google Scholar 

  14. Cho E, Stampfer MJ, Seddon JM, Hung S, Spiegelman D, Rimm EB et al (2001) Prospective study of zinc intake and the risk of age-related macular degeneration. Ann Epidemiol 11:328–336

    Article  PubMed  CAS  Google Scholar 

  15. Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598–614

    Article  PubMed  Google Scholar 

  16. Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1:441–445

    PubMed  CAS  Google Scholar 

  17. Borish ET, Prior WA, Venuugopal S et al (1987) DNA synthesis is blocked by cigarette tar-induced DNA single-strand breaks. Carcinogenesis 8:1517–1520

    Article  PubMed  CAS  Google Scholar 

  18. Beatty S, Koh HH, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  PubMed  CAS  Google Scholar 

  19. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32–46

    PubMed  CAS  Google Scholar 

  20. Cai J, Nelson KC, Wu M, Sternberg P, Jones DP (2000) Oxidative damage and protection of the RPE. Prog Retin Eye Res 19:205–221

    Article  PubMed  CAS  Google Scholar 

  21. Feeney-Burns L, Hilderbrand ES, Eldridge S (1984) Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 25:195–200

    PubMed  CAS  Google Scholar 

  22. Coudray C, Roussel AM, Arnau J, Favier A (1997) Selenium and antioxidant vitamin and lipidoperoxidation levels in presaging French population: EVA Study Group. Biol Trace Elem Res 57:183–190

    Article  PubMed  CAS  Google Scholar 

  23. De La Paz M, Anderson RE (1992) Region and age-dependent variation in susceptibility of the human retina to lipid peroxidation. Invest Ophthalmol Vis Sci 13:3497–3499

    Google Scholar 

  24. Vandewoude MFJ, Vandewoude MG (1987) Vitamin E status in normal population: the influence of age. J Am Coll Nutr 6:307–311

    PubMed  CAS  Google Scholar 

  25. Samiec PS, Drews-Botsch C, Flagg EW et al (1998) Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med 24:699–704

    Article  PubMed  CAS  Google Scholar 

  26. Liles MR, Newsome DA, Oliver PD (1991) Antioxidant enzymes in the aging human retinal pigment epithelium. Arch Ophthalmol 109:1285–1288

    Article  PubMed  CAS  Google Scholar 

  27. Chow CK, Thacker RR, Changchit C et al (1986) Lower levels of vitamin C and carotenes in plasma of cigarette smokers. J Am Coll Nutr 5:305–312

    PubMed  CAS  Google Scholar 

  28. Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    Article  PubMed  CAS  Google Scholar 

  29. Age-Related Eye Disease Study Group (2001) A randomized, placebo-controlled clinical trial of high-dose supplementation with vitamin C and E, beta carotene, and zinc for age-related macular degeneration and visual loss. Arch Ophthalmol 119:1417–1436

    Google Scholar 

  30. Karcioglu ZA (1982) Zinc in the eye. Surv Ophthalmol 27:114–122

    Article  PubMed  CAS  Google Scholar 

  31. The Eye Disease Case–control Study Group (1993) Antioxidant status and neovascular age-related macular degeneration. Arch Ophthalmol 111:104–109

    Article  Google Scholar 

  32. Seddon JM, Ajani UA, Sperduto RD et al (1994) Dietary carotenoids, vitamin A, C and E, and advanced age-related macular degeneration. Eye Disease Case-control Study Group. JAMA 272:1413–1420

    Article  PubMed  CAS  Google Scholar 

  33. Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76:397–403

    Article  PubMed  CAS  Google Scholar 

  34. Cohen SM, Olin KL, Feuer WJ, Hjelmeland L, Keen CL, Morse LS (1994) Low glutathione reductase and peroxidase activity in age-related macular degeneration. Br J Ophthalmol 78:791–794

    Article  PubMed  CAS  Google Scholar 

  35. Frank RN, Amin RH, Puklin JE (1999) Antioxidant enzymes in the macular retinal pigment epithelium of eyes with neovascular age-related macular degeneration. Am J Ophthalmol 127:694–709

    Article  PubMed  CAS  Google Scholar 

  36. Evereklioglu C, Er H, Doganay S, Cekmen M, Turkoz Y, Otlu B, Ozerol E (2003) Nitric oxide and lipid peroxidation are increased and associated with decreased antioxidant enzyme activities in patients with age-related macular degeneration. Doc Ophthalmol 106:129–136

    Article  PubMed  Google Scholar 

  37. Schutt F, Bergmann M, Holz FG, Kopitz J (2003) Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44:3663–3668

    Article  PubMed  Google Scholar 

  38. Krohne TU, Stratmann NK, Kopitz J, Holz FG (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90:465–471

    Article  PubMed  CAS  Google Scholar 

  39. Rozanowska M, Jarvis-Evans J, Korytowski W et al (1995) Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem 270:18825–18830

    Article  PubMed  CAS  Google Scholar 

  40. Schutt F, Davies S, Kopitz J, Holz FG, Boulton ME (2000) Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41:2303–2308

    PubMed  CAS  Google Scholar 

  41. Shamsi FA, Boulton M (2001) Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Vis Sci 42:3041–3046

    PubMed  CAS  Google Scholar 

  42. Kopitz J, Holz FG, Kaemmerer E, Schutt F (2004) Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration. Biochimie 86:825–831

    Article  PubMed  CAS  Google Scholar 

  43. Bergmann M, Schutt F, Holz FG, Kopitz J (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 18:562–564

    PubMed  CAS  Google Scholar 

  44. Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P (1997) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43:1209–1214

    PubMed  CAS  Google Scholar 

  45. Totan Y, Cekic O, Borazan M, Uz E, Sogut S, Akyol O (2001) Plasma malondialdehyde and nitric oxide levels in age related macular degeneration. Br J Ophthalmol 85:1426–1428

    Article  PubMed  CAS  Google Scholar 

  46. Nowak M, Swietochowska E, Wielkoszynski T, Marek B, Karpe J, Gorski J, Glogowska SJ, Kos-Kudla B, Ostrowska Z (2003) Changes in blood antioxidants and several lipid peroxidation products in women with age-related macular degeneration. Eur J Ophthalmol 13:281–286

    PubMed  CAS  Google Scholar 

  47. Ates O, Azizi S, Alp HH, Kiziltunc A, Beydemir S, Cinici E, Kocer I, Baykal O (2009) Decreased serum paraoxonase 1 activity and increased serum homocysteine and malondialdehyde levels in age-related macular degeneration. Tohoku J Exp Med 217:17–22

    Article  PubMed  CAS  Google Scholar 

  48. Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ (2003) Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem 278:31426–31433

    Article  PubMed  CAS  Google Scholar 

  49. Krohne TU, Kaemmerer E, Holz FG, Kopitz J (2010) Lipid peroxidation products reduce lysosomal protease activities in human retinal pigment epithelial cells via two different mechanisms of action. Exp Eye Res 90:261–266

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, H., Zhao, B., Vrcek, I., Johnston, J.M., He, YG. (2012). Role of Malondialdehyde in the Age-Related Macular Degeneration. In: Stratton, R., Hauswirth, W., Gardner, T. (eds) Studies on Retinal and Choroidal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-606-7_4

Download citation

Publish with us

Policies and ethics