Skip to main content

Deposition and Oxidation of Lipoproteins in Bruch’s Membrane and Choriocapillaris Are “Age-Related” Risk Factors with Implications in Age-Related Macular Degeneration

  • Chapter
  • First Online:
Studies on Retinal and Choroidal Disorders
  • 1123 Accesses

Abstract

This chapter reviews the deposition and oxidation of LDL in Bruch’s membrane (BrM), the retinal pigment epithelium (RPE), and the choriocapillaris (CH) and the potential consequences of this deposition in relation to age-related macular degeneration (AMD). Lipid deposition and oxidation are age-related effects that when considered systemically play an important role in most if not all age-related diseases. Oxidized lipid deposits are found throughout the vascular system where they can initiate chronic inflammatory responses that cause cellular stress and loss of function. Aging is a complex multifactorial process that sets the stage for genetic and environmental factors that initiate the pathogenesis of AMD and other age-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fine SL, Berger JW, Maguire MG, Ho AC (2000) Age-related macular degeneration. N Engl J Med 342:483–492

    Article  PubMed  CAS  Google Scholar 

  2. Gehrs KM, Anderson DH, Johnson LV, Hageman GS (2006) Age-related macular degeneration—emerging pathogenetic and therapeutic concepts. Ann Med 38:450–471

    Article  PubMed  Google Scholar 

  3. Curcio CA, Johnson M, Huang JD, Rudolf M (2009) Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 28(6):393–422. Review

    Google Scholar 

  4. Rodríguez IR, Larrayoz IM (2010) Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J Lipid Res 51(10):2847–2862. Review

    Google Scholar 

  5. Oyster WC (ed) (1999) The human eye: structure and function. Sinauer Associates, Sunderland, pp 247–289

    Google Scholar 

  6. Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20:175–208

    Article  PubMed  CAS  Google Scholar 

  7. Hayflick L (2000) The future of ageing. Nature 408(6809):267–269

    Article  PubMed  CAS  Google Scholar 

  8. Ljubuncic P, Reznick AZ (2009) The evolutionary theories of aging revisited—a mini-review. Gerontology 55(2):205–216

    Article  PubMed  CAS  Google Scholar 

  9. Jin K (2010) Modern biological theories of aging. Aging Dis 1(2):72–74

    PubMed  Google Scholar 

  10. Kirkwood TB (2010) Global aging and the brain. Nutr Rev 68(Suppl 2):S65–S69. Review

    Google Scholar 

  11. Robert L, Labat-Robert J, Robert AM (2010) Genetic, epigenetic and posttranslational mechanisms of aging. Biogerontology 11(4):387–399. Review

    Google Scholar 

  12. Salminen A, Kaarniranta K (2009) NF-kappaB signaling in the aging process. J Clin Immunol 29(4):397–405

    Article  PubMed  CAS  Google Scholar 

  13. Haigis MC, Yankner BA (2010) The aging stress response. Mol Cell 40(2):333–344. Review

    Google Scholar 

  14. Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G (2010) Oxidative stress and aging. J Nephrol 23(Suppl 15):S29–S36. Review

    Google Scholar 

  15. Larrayoz IM, Huang JD, Lee JW, Pascual I, Rodríguez IR (2010) 7-ketocholesterol-induced inflammation: involvement of multiple kinase signaling pathways via NFκB but independently of reactive oxygen species formation. Invest Ophthalmol Vis Sci 51(10):4942–4955

    Article  PubMed  Google Scholar 

  16. Seimon T, Tabas I (2009) Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res 50(Suppl):S382–S387. Review

    Google Scholar 

  17. Tabas I (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 10:36–46. Review

    Google Scholar 

  18. Hevonoja T, Pentikainen MO, Hyvonen MT, Kovanen PT, Ala-Korpela M (2000) Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta 1488:189–210. Review

    Google Scholar 

  19. Yoshida H, Kisugi R (2010) Mechanisms of LDL oxidation. Clin Chim Acta 411:1875–1882. Review

    Google Scholar 

  20. Steinberg D (2009) The LDL modification hypothesis of atherogenesis: an update. J Lipid Res 50:S376–S381

    Article  PubMed  Google Scholar 

  21. Dzeletovic S, Babiker A, Lund E, Diczfalusy U (1995) Time course of oxysterol formation during in vitro oxidation of low density lipoprotein. Chem Phys Lipids 78:119–128

    Article  PubMed  CAS  Google Scholar 

  22. Brown AJ, Dean RT, Jessup W (1996) Free and esterified oxysterol: formation during copper-oxidation of low density lipoprotein and uptake by macrophages. J Lipid Res 37:320–335

    PubMed  CAS  Google Scholar 

  23. Curcio CA, Johnson M, Huang JD, Rudolf M (2010) Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration. J Lipid Res 51(3):451–467. Review

    Google Scholar 

  24. Gordiyenko N, Campos M, Lee JW, Fariss RN, Sztein J, Rodriguez IR (2004) RPE cells internalize low-density lipoprotein (LDL) and oxidized LDL (oxLDL) in large quantities in vitro and in vivo. Invest Ophthalmol Vis Sci 45(8):2822–2829

    Article  PubMed  Google Scholar 

  25. Tserentsoodol N, Sztein J, Campos M, Gordiyenko NV, Fariss RN, Lee JW, Fliesler SJ, Rodriguez IR (2006) Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Mol Vis 12:1306–1318

    PubMed  CAS  Google Scholar 

  26. Moreira EF, Larrayoz IM, Lee JW, Rodriguez IR (2009) 7-Ketocholesterol is present in lipid deposits in the primate retina: potential implication in the induction of VEGF and CNV formation. Invest Ophthalmol Vis Sci 50:523–532

    Article  PubMed  Google Scholar 

  27. Tserentsoodol N, Gordiyenko NV, Pascual I, Lee JW, Fliesler SJ, Rodriguez IR (2006) Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol Vis 12:1319–1333

    PubMed  CAS  Google Scholar 

  28. Pawlak A, Wrona M, Rózanowska M, Zareba M, Lamb LE, Roberts JE, Simon JD, Sarna T (2003) Comparison of the aerobic photoreactivity of A2E with its precursor retinal. Photochem Photobiol 77:253–258

    Article  PubMed  CAS  Google Scholar 

  29. Rodriguez IR, Fliesler SJ (2009) Photodamage generates 7-keto- and 7-hydroxycholesterol in the rat retina via a free radical-mediated mechanism. Photochem Photobiol 85:1116–1125

    Article  PubMed  CAS  Google Scholar 

  30. Ma W, Zhao L, Fontainhas AM, Fariss RN, Wong WT (2009) Microglia in the mouse retina alters the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD. PLoS One 4(11):e7945

    Article  PubMed  Google Scholar 

  31. Karlstetter M, Ebert S, Langmann T (2010) Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiology 215(9–10):685–691

    Article  PubMed  CAS  Google Scholar 

  32. Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT (2011) Age-related alterations in the dynamic behavior of microglia. Aging Cell 10(2):263–276

    Article  PubMed  CAS  Google Scholar 

  33. Langmann T (2007) Microglia activation and retinal degeneration. J Leukoc Biol 81:1345–1351

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez IR, Alam S, Lee JW (2004) Cytotoxicity of oxidized low-density lipoprotein in cultured RPE cells is dependent on the formation of 7-ketocholesterol. Invest Ophthalmol Vis Sci 45:2830–2837

    Article  PubMed  Google Scholar 

  35. van Reyk DM, Brown AJ, Hulten LM, Dean RT, Jessup W (2006) Oxysterols in biological systems: sources, metabolism and pathophysiological relevance. Redox Rep 11:255–262

    Article  PubMed  Google Scholar 

  36. Huang Z, Liu Q, Li W, Wang R, Wang D, Zhang Y, Zhang F, Chi Y, Liu Z, Matsuura E, Liu Z, Zhang Q (2010) 7-ketocholesterol induces cell apoptosis by activation of nuclear factor kappa B in mouse macrophages. Acta Med Okayama 64(2):85–93

    PubMed  CAS  Google Scholar 

  37. Sung SC, Kim K, Lee KA, Choi KH, Kim SM, Son YH, Moon YS, Eo SK, Rhim BY (2009) 7-Ketocholesterol upregulates interleukin-6 via mechanisms that are distinct from those of tumor necrosis factor-alpha, in vascular smooth muscle cells. J Vasc Res 46(1):36–44

    Article  PubMed  CAS  Google Scholar 

  38. Naito Y, Shimozawa M, Manabe H, Nakabe N, Katada K, Kokura S, Yoshida N, Ichikawa H, Kon T, Yoshikawa T (2006) Azelnidipine, a new calcium channel blocker, inhibits endothelial inflammatory response by reducing intracellular levels of reactive oxygen species. Eur J Pharmacol 546(1–3):11–18

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki K, Sakiyama Y, Usui M, Obama T, Kato R, Itabe H, Yamamoto M (2010) Oxidized low-density lipoprotein increases interleukin-8 production in human gingival epithelial cell line Ca9-22. J Periodontal Res 45(4):488–495

    PubMed  CAS  Google Scholar 

  40. Lizard G, Gueldry S, Sordet O, Monier S, Athias A, Miguet C, Bessede G, Lemaire S, Solary E, Gambert P (1998) Glutathione is implied in the control of 7-ketocholesterol-induced apoptosis, which is associated with radical oxygen species production. FASEB J 12(15): 1651–1663

    PubMed  CAS  Google Scholar 

  41. Lizard G, Miguet C, Besséde G, Monier S, Gueldry S, Neel D, Gambert P (2000) Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occuring during 7-ketocholesterol-induced apoptosis. Free Radic Biol Med 28(5):743–753

    Article  PubMed  CAS  Google Scholar 

  42. Huang RF, Yaong HC, Chen SC, Lu YF (2004) In vitro folate supplementation alleviates oxidative stress, mitochondria-associated death signalling and apoptosis induced by 7-ketocholesterol. Br J Nutr 92(6):887–894

    Article  PubMed  CAS  Google Scholar 

  43. Shimozawa M, Naito Y, Manabe H, Uchiyama K, Kuroda M, Katada K, Yoshida N, Yoshikawa T (2004) 7-Ketocholesterol enhances the expression of adhesion molecules on human aortic endothelial cells by increasing the production of reactive oxygen species. Redox Rep 9(6):370–375

    Article  PubMed  CAS  Google Scholar 

  44. Leonarduzzi G, Vizio B, Sottero B, Verde V, Gamba P, Mascia C, Chiarpotto E, Poli G, Biasi F (2006) Early involvement of ROS overproduction in apoptosis induced by 7-ketocholesterol. Antioxid Redox Signal 8(3–4):375–380

    Article  PubMed  CAS  Google Scholar 

  45. Panini SR, Yang L, Rusinol AE, Sinensky MS, Bonvetre JV, Leslie CC (2001) Arichidonate metabolism and signaling pathway of induction of apoptosis by oxidized LDL/oxysterol. J Lipid Res 42:1678–1686

    PubMed  CAS  Google Scholar 

  46. Akiba S, Yoneda Y, Ohno S, Nemoto M, Sato T (2003) Oxidized LDL activates phospholipase A2 to supply fatty acids required for cholesterol esterification. J Lipid Res 44:1676–1685

    Article  PubMed  CAS  Google Scholar 

  47. Akiba S, Ii H, Yoneda Y, Sato T (2004) Translocation of phospholipase A2 to membranes by oxidized LDL and hydroxyoctadecadienoic acid to contribute to cholesteryl ester formation. Biochim Biophys Acta 1686:77–84

    PubMed  CAS  Google Scholar 

  48. Freeman NE, Rusinol AE, Linton MR, Hachey DL, Fazio S, Sinensky MS, Thewke D (2005) Acyl-coenzyme A: cholesterol acyltransferase promotes oxidized LDL/oxysterol-induced apoptosis in macrophages. J Lipid Res 46:1933–1943

    Article  PubMed  CAS  Google Scholar 

  49. Davis PJ (1992) n-3 and n-6 polyunsaturated fatty acids have different effects on acyl-CoA: cholesterol acyltransferase in J774 macrophages. Biochem Cell Biol 70(12):1313–1318

    Article  PubMed  CAS  Google Scholar 

  50. Pal S, Davis PJ (1991) Effects of different types of polyunsaturated fatty acids on cholesterol esterification in human fibroblasts. Biochem Int 25(2):281–288

    PubMed  CAS  Google Scholar 

  51. Antalis CJ, Arnold T, Lee B, Buhman KK, Siddiqui RA (2009) Docosahexaenoic acid is a substrate for ACAT1 and inhibits cholesteryl ester formation from oleic acid in MCF-10A cells. Prostaglandins Leukot Essent Fatty Acids 80(2–3):165–171

    Article  PubMed  CAS  Google Scholar 

  52. Layé S (2010) Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot Essent Fatty Acids 82(4–6):295–303. Review

    Google Scholar 

  53. Boutros C, Somasundar P, Razzak A, Helton S, Espat NJ (2010) Omega-3 fatty acids: investigations from cytokine regulation to pancreatic cancer gene suppression. Arch Surg 145(6):515–520. Review

    Google Scholar 

  54. Curcio CA, Johnson M, Huang JD, Rudolf M (2010) Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration. J Lipid Res 51(3):451–467. Review

    Google Scholar 

  55. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431. Review

    Google Scholar 

  56. Vingerling JR, Dielemans I, Bots ML, Hofman A, Grobbee DE, de Jong PT (1995) Age-related macular degeneration is associated with atherosclerosis. The Rotterdam Study. Am J Epidemiol 142:404–409

    PubMed  CAS  Google Scholar 

  57. van Leeuwen R, Klaver CC, Vingerling JR, Hofman A, de Jong PT (2003) Epidemiology of age-related maculopathy: a review. Eur J Epidemiol 18(9):845–854. Review

    Google Scholar 

  58. Swaroop A, Chew EY, Rickman CB, Abecasis GR (2009) Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 10:19–43. Review

    Google Scholar 

  59. Katta S, Kaur I, Chakrabarti S (2009) The molecular genetic basis of age-related macular degeneration: an overview. J Genet 88(4):425–449. Review

    Google Scholar 

  60. Chen W, Stambolian D, Edwards AO et al (2010) Genetic variants near TIMP3 and HDL-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci USA 107(16):7401–7406

    Article  PubMed  CAS  Google Scholar 

  61. Torrini M, Marchese C, Vanzetti M, Marini V, Origone P, Garre C, Mareni C (2007) Mutation analysis of oxisterol-binding-protein gene in patients with age-related macular degeneration. Genet Test 11:421–426

    Article  PubMed  CAS  Google Scholar 

  62. Neale BM, Fagerness J, Reynolds R, Sobrin L, Parker M, Raychaudhuri S, Tan PL, Oh EC, Merriam JE, Souied E, Bernstein PS, Li B, Frederick JM, Zhang K, Brantley MA Jr, Lee AY, Zack DJ, Campochiaro B, Campochiaro P, Ripke S, Smith RT, Barile GR, Katsanis N, Allikmets R, Daly MJ, Seddon JM (2010) Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc Natl Acad Sci USA 107(16):7395–7400

    Article  PubMed  CAS  Google Scholar 

  63. Moreira EF, Jaworski C, Li A, Rodriguez IR (2001) Molecular and biochemical characterization of a novel oxysterol-binding protein (OSBP2) highly expressed in retina. J Biol Chem 276:18570–18578

    Article  PubMed  CAS  Google Scholar 

  64. Handa JT (2007) New molecular histopathologic insights into the pathogenesis of age-related macular degeneration. Int Ophthalmol Clin 47:15–50

    Article  PubMed  Google Scholar 

  65. SanGiovanni JP, Mehta S, Mehta S (2009) Variation in lipid-associated genes as they relate to risk of advanced age-related macular degeneration. World Rev Nutr Diet 99:105–158

    Article  PubMed  CAS  Google Scholar 

  66. Bird AC (2010) Therapeutic targets in age-related macular disease. J Clin Invest 120(9):3033–3041. Review

    Google Scholar 

  67. Ozkiris A (2010) Anti-VEGF agents for age-related macular degeneration. Expert Opin Ther Pat 20(1):103–118. Review

    Google Scholar 

  68. Lardizabal JA, Deedwania PC (2010) Benefits of statin therapy and compliance in high risk cardiovascular patients. Vasc Health Risk Manag 6:843–853. Review

    Google Scholar 

  69. Chatzizisis YS, Koskinas KC, Misirli G, Vaklavas C, Hatzitolios A, Giannoglou GD (2010) Risk factors and drug interactions predisposing to statin-induced myopathy: implications for risk assessment, prevention and treatment. Drug Saf 33(3):171–187. Review

    Google Scholar 

  70. Russo MW, Scobey M, Bonkovsky HL (2009) Drug-induced liver injury associated with statins. Semin Liver Dis 29(4):412–422. Review

    Google Scholar 

  71. Peponis V, Chalkiadakis SE, Bonovas S, Sitaras NM (2010) The controversy over the association between statins use and progression of age-related macular degeneration: a mini review. Clin Ophthalmol 4:865–869

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio R. Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodriguez, I.R. (2012). Deposition and Oxidation of Lipoproteins in Bruch’s Membrane and Choriocapillaris Are “Age-Related” Risk Factors with Implications in Age-Related Macular Degeneration. In: Stratton, R., Hauswirth, W., Gardner, T. (eds) Studies on Retinal and Choroidal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-606-7_15

Download citation

Publish with us

Policies and ethics