Skip to main content

Bone Marrow–Derived Cells as Treatment Vehicles in the Central Nervous System

  • Chapter
  • First Online:
Regenerative Therapy Using Blood-Derived Stem Cells

Abstract

Substantial research has focused on the potential for bone marrow–derived cells (BMDCs) to function as vehicles to transport pharmaceuticals into the diseased central nervous system (CNS). By employing bone marrow–chimeric models, investigators have determined that BMDCs retain their hematopoietic identity within the CNS with a majority of cells acquiring macrophage phenotypes. Although the use of irradiation in creating bone marrow chimeras is believed to be necessary for the engraftment of BMDCs within the CNS, further investigations into alternative conditioning regimens will improve the clinical potential for this treatment modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedi M, Greer DA, Colvin GA et al (2004) Tissue injury in marrow transdifferentiation. Blood Cells Mol Dis 32:42–46

    Article  PubMed  CAS  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al (2003) Fusion of bone-marrow-derived cells with purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    Article  PubMed  CAS  Google Scholar 

  • Appel SH, Engelhardt JI, Henkel JS et al (2008) Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology 71:1326–1334

    Article  PubMed  CAS  Google Scholar 

  • Balazs AB, Fabian AJ, Esmon CT, Mulligan RC (2006) Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107:2317–2321

    Article  PubMed  CAS  Google Scholar 

  • Biju K, Zhou Q, Li G et al (2010) Macrophage-mediated GDNF delivery protects against dopaminergicneurodegeneration: A therapeutic strategy for Parkinson’s disease. Mol Therapy 18:1536–1544

    Article  CAS  Google Scholar 

  • Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779

    Article  PubMed  CAS  Google Scholar 

  • Chinnery HR, Ruitenberg MJ, McMenamin PG (2010) Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice. J Neuropath Exp Neurol 69:896–909

    Article  PubMed  Google Scholar 

  • Chiu IM, Phatnani H, Kuligowski M et al (2009) Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci USA 106:20960–20965

    Article  PubMed  CAS  Google Scholar 

  • Corti S, Locatelli F, Donadoni C et al (2004) Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127:2518–2532

    Article  PubMed  Google Scholar 

  • Davoust N, Vuaillat C, Androdias G, Nataf S (2008) From bone marrow to microglia: barriers and avenues. Trends in Immun 29:227–234

    Article  CAS  Google Scholar 

  • Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085

    Article  PubMed  CAS  Google Scholar 

  • El Khoury J, Luster AD (2008) Mechanisms of microglia accumulation in alzheimer’s disease: Therapeutic implications. Trends in Pharm Sci 29:626–632

    Article  CAS  Google Scholar 

  • Geissmann F, Auffray C, Palframan R et al (2008) Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Imm Cell Biol 86:398–408

    Article  CAS  Google Scholar 

  • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    Article  PubMed  CAS  Google Scholar 

  • Gourmelon P, Marquette C, Agay D, Mathieu J, Clarencon D (2005) Involvement of the central nervous system in radiation-induced multi-organ dysfunction and/or failure. Br J Radiography Supplements 27:62–68

    CAS  Google Scholar 

  • Hess DC, Abe T, Hill WD et al (2004) Hematopoietic origin of microglial and perivascular cells in brain. Exp Neuro 186:134–144

    Article  CAS  Google Scholar 

  • Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292

    Article  PubMed  CAS  Google Scholar 

  • Hume DA (2006) The mononuclear phagocyte system. Curr Opin Immun 18:49–53

    Article  CAS  Google Scholar 

  • Iwasaki H, Akashi K (2007) Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26:726–740

    Article  PubMed  CAS  Google Scholar 

  • Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protocols 2:141–151

    Article  CAS  Google Scholar 

  • Johansson CB, Youssef S, Koleckar K et al (2008) Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol 10:575–583

    Article  PubMed  CAS  Google Scholar 

  • Kamei M, Carman CV (2010) New observations on the trafficking and diapedesis of monocytes. Curr Opin Hematol 17:43–52

    Article  PubMed  Google Scholar 

  • Kennedy DW, Abkowitz JL (1997) Kinetics of central nervous system microglial and macrophage engraftment: Analysis using a transgenic bone marrow transplantation model. Blood 90:986–993

    PubMed  CAS  Google Scholar 

  • Keshet GI, Tolwani RJ, Trejo A et al (2007) Increased host neuronal survival and motor function in BMT parkinsonian mice: Involvement of immunosuppression. J Comp Neurol 504:690–701

    Article  PubMed  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  PubMed  CAS  Google Scholar 

  • Kokovay E, Cunningham LA (2005) Bone marrow-derived microglia contribute to the neuroinflammatory response and express iNOS in the MPTP mouse model of Parkinson’s disease. Neurobiol Disease 19:471–478

    Article  CAS  Google Scholar 

  • Lagasse E, Connors H, Al-Dhalimy M et al (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med 6:1229–1234

    Article  PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415

    Article  PubMed  CAS  Google Scholar 

  • Lebson L, Nash K, Kamath S et al (2010) Trafficking CD11b-positive blood cells deliver therapeutic genes to the brain of amyloid-depositing transgenic mice. J Neurosci 30:9651–9658

    Article  PubMed  CAS  Google Scholar 

  • Lewis CA, Solomon JN, Rossi FM, Krieger C (2009) Bone marrow-derived cells in the central nervous system of a mouse model of amyotrophic lateral sclerosis are associated with blood vessels and express CX(3)CR1. Glia 57:1410–1419

    Article  PubMed  Google Scholar 

  • Li YQ, Chen P, Jain V, Reilly RM, Wong CS (2004) Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res 161:143–152

    Article  PubMed  CAS  Google Scholar 

  • Malm TM, Koistinaho M, Pärepalo M, Vatanen T, Ooka A, Karlsson S, Koistinaho J (2005) Bone marrow-derived cells contribute to the recruitment of microglial cells in response to beta-­amyloid deposition in APP/PSEN1 double transgenic Alzheimer’s mice. Neurobiol Dis 18(1):134–42.

    PubMed  Google Scholar 

  • Massengale M, Wagers AJ, Vogel H, Weissman IL (2005) Hematopoietic cells maintain hematopoietic fates upon entering the brain. J Exp Med 201:1579–1589

    Article  PubMed  CAS  Google Scholar 

  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    Article  PubMed  CAS  Google Scholar 

  • Mildner A, Schmidt H, Nitsche M et al (2007) Microglia in the adult brain arise from ly-6ChiCCR2+ monocytes only under defined host conditions. Nature Neurosci 10:1544–1553

    Article  PubMed  CAS  Google Scholar 

  • Nevozhay D, Opolski A (2006) Key factors in experimental mouse hematopoietic stem cell transplantation. Archiv Immunol Ther Exp 54:253–269

    Article  Google Scholar 

  • Pardridge WM (2002) Why is the global CNS pharmaceutical market so under-penetrated? Drug Discov Today 7:5–7

    Article  PubMed  Google Scholar 

  • Pardridge WM (2003) Blood-brain barrier drug targeting: The future of brain drug development. Mol Intervent 3(90–105):51

    Google Scholar 

  • Simard AR, Rivest S (2004) Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 18:998–1000

    PubMed  CAS  Google Scholar 

  • Rodić N, Rutenberg MS, Terada N (2004) Cell fusion and reprogramming: resolving our transdifferences. Trends Mol Med 10:93–96

    Article  PubMed  Google Scholar 

  • Rodriguez M, Alvarez-Erviti L, Blesa FJ et al (2007) Bone-marrow-derived cell differentiation into microglia: a study in a progressive mouse model of Parkinson’s disease. Neurobiol Dis 28:316–325

    Article  PubMed  CAS  Google Scholar 

  • Seita J, Weissman IL (2010) Hematopoietic stem cell: Self-renewal versus differentiation. Syst Biol Med 2:640–653

    Article  CAS  Google Scholar 

  • Serbina NV, Pamer EG (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nature Immunol 7:311–317

    Article  CAS  Google Scholar 

  • Solomon JN, Lewis CA, Ajami B, Corbel SY, Rossi FM, Krieger C (2006) Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis. Glia 53:744–753

    Article  PubMed  Google Scholar 

  • Stalder AK, Ermini F, Bondolfi L et al (2005) Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J Neurosci 25(48):11125–11132

    Article  PubMed  CAS  Google Scholar 

  • Swirski FK, Nahrendorf M, Etzrodt M et al (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616

    Article  PubMed  CAS  Google Scholar 

  • Tacke F, Randolph GJ (2006) Migratory fate and differentiation of blood monocyte subsets. Immunobiol 211:609–618

    Article  CAS  Google Scholar 

  • Unger ER, Sung JH, Manivel JC, Chenggis ML, Blazar BR, Krivit W (1993) Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: A Y-chromosome specific in situ hybridization study. J Neuropath Exp Neurol 52:460–470

    Article  PubMed  CAS  Google Scholar 

  • Vallieres L, Sawchenko PE (2003) Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J Neurosci 23:5197–5207

    PubMed  CAS  Google Scholar 

  • Weimann JM, Johansson CB, Trejo A, Blau HM (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nature Cell Biol 5:959–966

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka N, Wong CJ, Gertsenstein M, Casper RF, Nagy A, Rogers IM (2009) Bone marrow transplantation results in human donor blood cells acquiring and displaying mouse recipient class I MHC and CD45 antigens on their surface. PLoS One 4:e8489

    Article  PubMed  Google Scholar 

  • Yona S, Jung S (2010) Monocytes: Subsets, origins, fates and functions. Curr Opin Hemato 17:53–59

    Article  Google Scholar 

  • Zhu J, Emerson SG (2002) Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21:3295–3313

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Krieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lewis, CA.B., Rossi, F.M., Krieger, C. (2012). Bone Marrow–Derived Cells as Treatment Vehicles in the Central Nervous System. In: Allan, D., Strunk, D. (eds) Regenerative Therapy Using Blood-Derived Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-471-1_9

Download citation

Publish with us

Policies and ethics