Skip to main content

Antioxidants and Inhibition of Cisplatin-Induced Kidney Injury: Role of Mitochondria

  • Chapter
  • First Online:

Abstract

Since its approval by the FDA in 1979, cisplatin (CP) has been widely employed in the treatment of several malignancies, including both solid and hematological tumors. Kidneys are particularly susceptible to the action of cisplatin, and despite the preventive measures currently applied, nephrotoxicity remains the most important dose-limiting factor in cisplatin chemotherapy. It has been suggested that mitochondrial oxidative stress and unbalance of the redox status play a key role in the mechanism of CP-induced nephrotoxicity. Therefore, as an attempt to counteract the renal damage associated with cisplatin chemotherapy, many antioxidants, both synthetic and natural, endogenous and exogenous, with distinct mechanisms of action, including free-radical scavengers, sulfhydryl donors and iron chelators, have had their potential as protective agents evaluated. Results are encouraging in the great majority of the studies and many different antioxidants have been presented as potential candidates to the adjuvant protective therapy. The most promising compounds, the conflicting findings and the remaining concerns are thoroughly discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cvitkovic E (1998) Cumulative toxicities from cisplatin therapy and current cytoprotective measures. Cancer Treat Rev 24:265–281

    Article  PubMed  CAS  Google Scholar 

  2. Hanigan MH, Devarajan P (2003) Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1:47–61

    PubMed  Google Scholar 

  3. Kintzel PE (2001) Anticancer drug-induced kidney disorders. Drug Saf 24:19–38

    Article  PubMed  CAS  Google Scholar 

  4. Taguchi T, Nazneen A, Abid MR, Razzaque MS (2005) Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol 148:107–121

    Article  PubMed  CAS  Google Scholar 

  5. Bajorin DF, Bosl GJ, Alcock NW, Niedzwiecki D, Gallina E, Shurgot B (1986) Pharmacokinetics of cis-diamminedichloroplatinum(II) after administration in hypertonic saline. Cancer Res 46:5969–5972

    PubMed  CAS  Google Scholar 

  6. Kuhlmann MK, Burkhardt G, Kohler H (1997) Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant 12:2478–2480

    Article  PubMed  CAS  Google Scholar 

  7. Litterst CL, Torres IJ, Guarino AM (1977) Plasma levels and organ distribution of platinum in the rat, dog, and dog fish following intravenous administration of cis-DDP (II). J Clin Hematol Oncol 7:169

    CAS  Google Scholar 

  8. Rosenberg B (1985) Fundamental studies with cisplatin. Cancer 55:2303–2316

    Article  PubMed  CAS  Google Scholar 

  9. Safirstein R, Miller P, Guttenplan JB (1984) Uptake and metabolism of cisplatin by rat kidney. Kidney Int 25:753

    Article  PubMed  CAS  Google Scholar 

  10. Go RS, Adjei AA (1999) Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol 17:409–422

    PubMed  CAS  Google Scholar 

  11. Reece PA, Stafford I, Russell J, Khan M, Gill PG (1987) Creatinine clearance as a predictor of ultrafilterable platinum disposition in cancer patients treated with cisplatin: relationship between peak ultrafilterable platinum plasma levels and nephrotoxicity. J Clin Oncol 5:304–309

    PubMed  CAS  Google Scholar 

  12. Goldstein RS (1993) Biochemical heterogeneity and site-specific tubular injury. In: Hook JB, Goldstein RS (eds) Toxicology of the kidney. Raven, New York, NY

    Google Scholar 

  13. Kröning R, Katz D, Lichtenstein AK, Nagami GT (1999) Differential effects of cisplatin in proximal and distal renal tubule epithelial cell lines. Br J Cancer 79:293–299

    Article  PubMed  Google Scholar 

  14. Santoso JT, Lucci JA 3rd, Coleman RL, Schafer I, Hannigan EV (2003) Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol 52:13–18

    Article  PubMed  CAS  Google Scholar 

  15. Servais H, Ortiz A, Devuyst O, Denamur S, Tulkens PM, Mingeot-Leclercq MP (2008) Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis 13:11–32

    Article  PubMed  CAS  Google Scholar 

  16. Tisher CA (1981) Anatomy of the kidney. In: Rectors B (ed) The kidney. Saunders, Philadelphia, PA

    Google Scholar 

  17. Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23:460–464

    Article  PubMed  CAS  Google Scholar 

  18. Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1478

    Article  PubMed  CAS  Google Scholar 

  19. Cornelison TL, Reed E (1993) Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol 50:147–158

    Article  PubMed  CAS  Google Scholar 

  20. Filipski KK, Loos WJ, Verweij J, Sparreboom A (2008) Interaction of Cisplatin with the human organic cation transporter 2. Clin Cancer Res 14:3875–3880

    Article  PubMed  CAS  Google Scholar 

  21. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298–14302

    Article  PubMed  CAS  Google Scholar 

  22. Kuo YM, Gybina AA, Pyatskowit JW, Gitschier J, Prohaska JR (2006) Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J Nutr 136:21–26

    PubMed  CAS  Google Scholar 

  23. Pinto AL, Lippard SL (1985) Binding of the antitumour drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim Biophys Acta 780:167–180

    PubMed  CAS  Google Scholar 

  24. Barabas K, Milner R, Lurie D, Adin C (2008) Cisplatin: a review of toxicities and therapeutic applications. Vet Comp Oncol 6:1–18

    Article  PubMed  CAS  Google Scholar 

  25. Bonegio R, Lieberthal W (2005) Cisplatin-induced nephrotoxicity. In: Tarloff JB, Lash LH (eds) Toxicology of the kidney, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  26. Jiang M, Dong Z (2008) Regulation and pathological role of p53 in cisplatin nephrotoxicity. J Pharmacol Exp Ther 327:300–307

    Article  PubMed  CAS  Google Scholar 

  27. Meyer KB, Madias NE (1994) Cisplatin nephrotoxicity. Miner Electrolyte Metab 20:201–213

    PubMed  CAS  Google Scholar 

  28. Boulikas T, Vougiouka M (2003) Cisplatin and platinum drugs at the molecular level. Oncol Rep 10:1663

    PubMed  CAS  Google Scholar 

  29. Cohen SM, Lippard SJ (2001) Cisplatin: from DNA damage to cancer chemotherapy prog. Nucleic Acid Res Mol Biol 67:93–130

    Article  CAS  Google Scholar 

  30. Eastman A (1999) The mechanism of action of cisplatin: from adducts to apoptosis. In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug, 2nd edn. Wiley, New York, NY

    Google Scholar 

  31. Galea AM, Murray V (2002) The interaction of cisplatin and analogues with DNA in reconstituted chromatin. Biochim Biophys Acta 1579:142

    Article  PubMed  CAS  Google Scholar 

  32. Kadikoylu G, Bolaman Z, Demir S, Balkaya M, Akalin N, Enli Y (2004) The effects of desferrioxamine on cisplatin-induced lipid peroxidation and the activities of antioxidant enzymes in rat kidneys. Hum Exp Toxicol 23:29–34

    Article  PubMed  CAS  Google Scholar 

  33. Sherman SE, Lippard SJ (1987) Structural aspects of platinum anticancer drug interactions with DNA. Chem Rev 87:1153–1181

    Article  CAS  Google Scholar 

  34. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  35. Zwelling LA, Kohn LW (1979) Mechanism of action of cisdiammineplatinium-II. Cancer Treat Rep 63:1439

    PubMed  CAS  Google Scholar 

  36. Winston JA, Safirstein R (1985) Reduced renal blood flow in early cisplatin-induced acute renal failure in the rat. Am J Physiol 249:F490–F496

    PubMed  CAS  Google Scholar 

  37. Chang B, Nishikawa M, Sato E, Utsumi K, Inoue M (2002) L-Carnitine inhibits cisplatin-induced injury of the kidney and small intestine. Arch Biochem Biophys 405:55–64

    Article  PubMed  CAS  Google Scholar 

  38. Lash LH, Jones DP (1996) Mitochondrial toxicity in renal injury. In: Zalups RK, Lash LH (eds) Methods in renal toxicology. CRC Press, Boca Raton, FL

    Google Scholar 

  39. Li-Ping X, Skrezek C, Wand H, Reibe F (2000) Mitochondrial dysfunction at the early estage of cisplatin-induced acute renal failure in rats. J Zhejiang Univ Sci 1:91–96

    Article  Google Scholar 

  40. Walker EM Jr, Gale GR (1981) Methods of reduction of cisplatin nephrotoxicity. Ann Clin Lab Sci 11(5):397–410

    PubMed  CAS  Google Scholar 

  41. Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183

    Article  PubMed  CAS  Google Scholar 

  42. Hartmann JT, Kollmannsberger C, Kanz L, Bokemeyer C (1999) Platinum organ toxicity and possible prevention in patients with testicular cancer. Int J Cancer 83:866–869

    Article  PubMed  CAS  Google Scholar 

  43. Razzaque MS (2007) Cisplatin nephropathy: is cytotoxicity avoidable? Nephrol Dial Transplant 22:2112–2116

    Article  PubMed  CAS  Google Scholar 

  44. Somani SM, Husain K, Whitworth C, Trammell GL, Malafa M, Rybak LP (2000) Dose-dependent protection by lipoic acid against cisplatin-induced nephrotoxicity in rats: antioxidant defense system. Pharmacol Toxicol 86:234–241

    Article  PubMed  CAS  Google Scholar 

  45. Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3:294–300

    Article  PubMed  CAS  Google Scholar 

  46. Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S (2005) Role of mitochondria in toxic oxidative stress. Mol Interv 5:94–111

    Article  PubMed  CAS  Google Scholar 

  47. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  CAS  Google Scholar 

  48. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Clarendon, Oxford

    Google Scholar 

  49. Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471

    Article  PubMed  CAS  Google Scholar 

  50. Santos NA, Bezerra CS, Martins NM, Curti C, Bianchi ML, Santos AC (2008) Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol 61:145–155

    Article  PubMed  CAS  Google Scholar 

  51. Santos NA, Catao CS, Martins NM, Curti C, Bianchi ML, Santos AC (2007) Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol 81:495–504

    Article  PubMed  CAS  Google Scholar 

  52. Gerschenson M, Paik CY, Gaukler EL, Diwan BA, Poirier MC (2001) Cisplatin exposure induces mitochondrial toxicity in pregnant rats and their fetuses. Reprod Toxicol 15:525–531

    Article  PubMed  CAS  Google Scholar 

  53. Kruidering M, De Water BV, De Heer E, Mulder GJ, Nagelkerke JF (1997) Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J Pharmacol Exp Ther 280:638–649

    PubMed  CAS  Google Scholar 

  54. Baliga R, Ueda N, Walker PD, Shah SV (1999) Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev 31:971–997

    Article  PubMed  CAS  Google Scholar 

  55. Koyner JL, Sher Ali R, Murray PT (2008) Antioxidants. Do they have a place in the prevention or therapy of acute kidney injury? Nephron Exp Nephrol 109:e109–e117

    Article  PubMed  CAS  Google Scholar 

  56. Brustovetsky N, Klingenberg M (1996) Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry 35:8483–8488

    Article  PubMed  CAS  Google Scholar 

  57. Hauff KD, Hatch GM (2006) Cardiolipin metabolism and Barth syndrome. Prog Lipid Res 45:91–101

    Article  PubMed  CAS  Google Scholar 

  58. Kagan VE, Tyurina YY, Bayir H, Chu CT, Kapralov AA, Vlasova II, Belikova NA, Tyurin VA, Amoscato A, Epperly M, Greenberger J, Dekosky S, Shvedova AA, Jiang J (2006) The “pro-apoptotic genies” get out of mitochondria: Oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biol Interact 163:15–28

    Article  PubMed  CAS  Google Scholar 

  59. Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17:2202–2208

    Article  PubMed  CAS  Google Scholar 

  60. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 264:343–347

    Article  PubMed  CAS  Google Scholar 

  61. Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556

    Article  PubMed  CAS  Google Scholar 

  62. Bowser DN, Petrou S, Panchal RG, Smart ML, Williams DA (2002) Release of mitochondrial Ca+2 via the permeability transition activates endoplasmic reticulum Ca+2 uptake. FASEB J 16:1105–1107

    PubMed  CAS  Google Scholar 

  63. Loeffler M, Kroemer G (2000) The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 256:19–26

    Article  PubMed  CAS  Google Scholar 

  64. Zhang JG, Lindup WE (1996) Role of calcium in cisplatin-induced cell toxicity in rat renal cortical slices. Toxicol In Vitro 10:205–209

    Article  PubMed  CAS  Google Scholar 

  65. Greggi Antunes LM, Darin JD, Bianchi MD (2000) Protective effects of vitamin C against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dose-dependent study. Pharmacol Res 41:405–411

    Article  CAS  Google Scholar 

  66. Hannemann J, Duwe J, Baumann K (1991) Iron and ascorbic acid-induced lipid peroxidation in renal microsomes isolated from rats treated with platinum compounds. Cancer Chemother Pharmacol 28:427–433

    Article  PubMed  CAS  Google Scholar 

  67. Sadzuka Y, Shoji T, Takino Y (1992) Mechanism of the increase in lipid peroxide induced by cisplatin in the kidneys of rats. Toxicol Lett 62:293–300

    Article  PubMed  CAS  Google Scholar 

  68. de Graaf TW, de Jong S, de Vries EG, Mulder NH (1997) Expression of proteins correlated with the unique cisplatin-sensitivity of testicular cancer. Anticancer Res 17:369–375

    PubMed  Google Scholar 

  69. Weijl NI, Cleton FJ, Osanto S (1997) Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treat Rev 23:209–240

    Article  PubMed  CAS  Google Scholar 

  70. Matsushima H, Yonemura K, Ohishi K, Hishida A (1998) The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med 131:518–526

    Article  PubMed  CAS  Google Scholar 

  71. Appenroth D, Fröb S, Kersten L, Splinter FK, Winnefeld K (1997) Protective effects of vitamin E and C on cisplatin nephrotoxicity in developing rats. Arch Toxicol 71:677–683

    Article  PubMed  CAS  Google Scholar 

  72. Fatima S, Arivarasu NA, Mahmood R (2007) Vitamin C attenuates cisplatin-induced alterations in renal brush border membrane enzymes and phosphate transport. Hum Exp Toxicol 26:419–426

    Article  PubMed  CAS  Google Scholar 

  73. Tarladacalisir YT, Kanter M, Uygun M (2008) Protective effects of vitamin C on cisplatin-induced renal damage: a light and electron microscopic study. Ren Fail 30:1–8

    Article  PubMed  CAS  Google Scholar 

  74. Ajith TA, Usha S, Nivitha V (2007) Ascorbic acid and alpha-tocopherol protect anticancer drug cisplatin induced nephrotoxicity in mice: a comparative study. Clin Chim Acta 375:82–86

    Article  PubMed  CAS  Google Scholar 

  75. Durak I, Ozbek H, Karaayvaz M, Oztürk HS (2002) Cisplatin induces acute renal failure by impairing antioxidant system in guinea pigs: effects of antioxidant supplementation on the cisplatin nephrotoxicity. Drug Chem Toxicol 25:1–8

    Article  PubMed  CAS  Google Scholar 

  76. Dillioglugil MO, Maral Kir H, Gulkac MD, Ozon Kanli A, Ozdogan HK, Acar O, Dillioglugil O (2005) Protective effects of increasing vitamin E and A doses on cisplatin-induced oxidative damage to kidney tissue in rats. Urol Int 75:340–344

    Article  PubMed  CAS  Google Scholar 

  77. Weijl NI, Elsendoorn TJ, Lentjes EG, Hopman GD, Wipkink-Bakker A, Zwinderman AH, Cleton FJ, Osanto S (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer 40:1713–1723

    Article  PubMed  CAS  Google Scholar 

  78. Fujieda M, Naruse K, Hamauzu T, Miyazaki E, Hayashi Y, Enomoto R, Lee E, Ohta K, Wakiguchi H, Enzan H (2006) Effect of selenium on Cisplatin-induced nephrotoxicity in rats. Nephron Exp Nephrol 104:112–122

    Article  CAS  Google Scholar 

  79. Naziroglu M, Karaoğlu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230

    Article  PubMed  CAS  Google Scholar 

  80. Camargo SM, Francescato HD, Lavrador MA, Bianchi ML (2001) Oral administration of sodium selenite minimizes cisplatin toxicity on proximal tubules of rats. Biol Trace Elem Res 83:251–262

    Article  PubMed  CAS  Google Scholar 

  81. Antunes LM, Darin JD, Bianchi NL (2001) Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacol Res 43:145–150

    Article  PubMed  CAS  Google Scholar 

  82. Hu YJ, Chen Y, Zhang YQ, Zhou MZ, Song XM, Zhang BZ, Luo L, Xu PM, Zhao YN, Zhao YB, Cheng G (1997) The protective role of selenium on the toxicity of cisplatin-contained chemotherapy regimen in cancer patients. Biol Trace Elem Res 56:331–341

    Article  PubMed  CAS  Google Scholar 

  83. Vermeulen NP, Baldew GS, Los G, McVie JG, De Goeij JJ (1993) Reduction of cisplatin nephrotoxicity by sodium selenite. Lack of interaction at the pharmacokinetic level of both compounds. Drug Metab Dispos 21:30–36

    PubMed  CAS  Google Scholar 

  84. Lee CK, Son SH, Park KK, Park JH, Lim SS, Kim SH, Chung WY (2008) Licochalcone A inhibits the growth of colon carcinoma and attenuates cisplatin-induced toxicity without a loss of chemotherapeutic efficacy in mice. Basic Clin Pharmacol Toxicol 103:48–54

    Article  PubMed  CAS  Google Scholar 

  85. Behling EB, Sendão MC, Francescato HD, Antunes LM, Costa RS, Bianchi ML (2006) Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys. Pharmacol Rep 58:526–532

    PubMed  CAS  Google Scholar 

  86. Francescato HD, Coimbra TM, Costa RS, Bianchi ML (2004) Protective effect of quercetin on the evolution of cisplatin-induced acute tubular necrosis. Kidney Blood Press Res 27:148–158

    Article  PubMed  CAS  Google Scholar 

  87. Hofmann J, Fiebig HH, Winterhalter BR, Berger DP, Grunicke H (1990) Enhancement of the antiproliferative activity of cis-diamminedichloroplatinum(II) by quercetin. Int J Cancer 45:536–539

    Article  PubMed  CAS  Google Scholar 

  88. Bokemeyer C, Fels LM, Dunn T, Voigt W, Gaedeke J, Schmoll HJ, Stolte H, Lentzen H (1996) Silibinin protects against cisplatin-induced nephrotoxicity without compromising cisplatin or ifosfamide anti-tumour activity. Br J Cancer 74:2036–2041

    Article  PubMed  CAS  Google Scholar 

  89. Gaedeke J, Fels LM, Bokemeyer C, Mengs U, Stolte H, Lentzen H (1996) Cisplatin nephrotoxicity and protection by silibinin. Nephrol Dial Transplant 11:55–62

    Article  PubMed  CAS  Google Scholar 

  90. Antunes LMG, Darin JD, Bianchi MLP (2000) Protective effects of vitamin c against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dose-dependent study. Pharmacol Res 41:405–411

    Article  PubMed  CAS  Google Scholar 

  91. Heinecke JW (2001) Is the emperor wearing clothes? Clinical trials of vitamin E and the LDL oxidation hypothesis. Arterioscler Thromb Vasc Biol 21:1261–1264

    Article  PubMed  CAS  Google Scholar 

  92. Ahn DU, Kim SM (1998) Effect of superoxide and superoxide-generating systems on the prooxidant effect of iron in oil emulsion and raw turkey homogenates. Poult Sci 77:1428–1435

    PubMed  CAS  Google Scholar 

  93. Atasayar S, Gürer-Orhan H, Orhan H, Gürel B, Girgin G, Ozgüneş H (2009) Preventive effect of aminoguanidine compared to vitamin E and C on cisplatin-induced nephrotoxicity in rats. Exp Toxicol Pathol 61:23–32

    Article  PubMed  CAS  Google Scholar 

  94. De Martinis BS, Bianchi MD (2001) Effect of vitamin C supplementation against cisplatin-induced toxicity and oxidative DNA damage in rats. Pharmacol Res 44:317–320

    Article  PubMed  CAS  Google Scholar 

  95. Kurbacher CM, Wagner U, Kolster B, Andreotti PE, Krebs D, Bruckner HW (1996) Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett 103:183–189

    Article  PubMed  CAS  Google Scholar 

  96. Adwankar M, Banerji A, Ghosh S (1991) Differential response of retinoic acid pretreated human synovial sarcoma cell line to anticancer drugs. Tumori 77:391–394

    PubMed  CAS  Google Scholar 

  97. Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F (1995) Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med 19:481–486

    Article  PubMed  CAS  Google Scholar 

  98. Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, Baker J, Kerr DJ (1996) Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2:659–668

    PubMed  CAS  Google Scholar 

  99. Kuhar M, Sen S, Singh N (2006) Role of mitochondria in quercetin-enhanced chemotherapeutic response in human non-small cell lung carcinoma H-520 cells. Anticancer Res 26:1297–1303

    PubMed  CAS  Google Scholar 

  100. Tsuruya K, Tokumoto M, Ninomiya T, Hirakawa M, Masutani K, Taniguchi M, Fukuda K, Kanai H, Hirakata H, Iida K (2003) Antioxidant ameliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways. Am J Renal Physiol 285:F208–F218

    CAS  Google Scholar 

  101. Baek SM, Kwon CH, Kim JH, Jung JS, Kim YK (2003) Differencial roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J Lab Clin Med 142:178–186

    Article  PubMed  CAS  Google Scholar 

  102. Jones MM, Basinger MA, Field L, Holscher MA (1991) Coadministration of dimethyl sulfoxide reduces cisplatin nephrotoxicity. Anticancer Res 11:1939–1942

    PubMed  CAS  Google Scholar 

  103. Sueishi K, Mishima K, Makino K, Itoh Y, Tsuruya K, Hirakata H, Oishi R (2002) Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur J Pharmacol 451:203–208

    Article  PubMed  CAS  Google Scholar 

  104. Satoh M, Kashihara N, Fujimoto S, Horike H, Tokura T, Namikoshi T, Sasaki T, Makino H (2003) A novel free radical scavenger, edarabone, protects against cisplatin-induced acute renal damage in vitro and in vivo. J Pharmacol Exp Ther 305:1183–1190

    Article  PubMed  CAS  Google Scholar 

  105. Iguchi T, Nishikawa M, Chang B, Muroya O, Sato EF, Nakatani T, Inoue M (2004) Edaravone inhibits acute renal injury and cyst formation in cisplatin-treated rat kidney. Free Radic Res 38:333–341

    Article  PubMed  CAS  Google Scholar 

  106. Milner LS, Wei SH, Houser MT (1993) Enhancement of renal and hepatic glutathione metabolism by dimethylthiourea. Toxicol Lett 66:117–123

    Article  PubMed  CAS  Google Scholar 

  107. Kim SG, Kim HJ, Yang CH (1999) Thioureas differentially induce rat hepatic microsomal epoxide hydrolase and rGSTA2 irrespective of their oxygen radical scavenging effect: effects on toxicant-induced liver injury. Chem Biol Interact 117:117–134

    Article  PubMed  CAS  Google Scholar 

  108. Beehler CJ, Ely ME, Rutledge KS, Simchuk ML, Reiss OK, Shanley PF, Repine JE (1994) Toxic effects of dimethylthiourea in rats. J Lab Clin Med 123:73–80

    PubMed  CAS  Google Scholar 

  109. Otoikhian A, Simoyi RH, Petersen JL (2005) Oxidation of a dimethylthiourea metabolite by iodine and acidified iodate: N, N′-dimethylaminoiminomethanesulfinic acid (1). Chem Res Toxicol 18:1167–1177

    Article  PubMed  CAS  Google Scholar 

  110. Mickey DD, Carvalho L, Foulkes K (1989) Conventional chemotherapeutic agents combined with DMSO or DFMO in treatment of rat prostate carcinoma. Prostate 15:221–232

    Article  PubMed  CAS  Google Scholar 

  111. Fischer SJ, Benson LM, Fauq A, Naylor S, Windebank AJ (2008) Cisplatin and dimethyl sulfoxide react to form an adducted compound with reduced cytotoxicity and neurotoxicity. Neurotoxicology 29:444–452

    Article  PubMed  CAS  Google Scholar 

  112. Rao P, Maeda H, Yutong X, Yamamoto M, Hirose N, Sasaguri S (2005) Protective effect of a radical scavenger, MCI-186 on islet cell damages induced by oxidative stress. Transplant Proc 37:3457–3458

    Article  PubMed  CAS  Google Scholar 

  113. Dohi K, Satoh K, Mihara Y, Nakamura S, Miyake Y, Ohtaki H, Nakamachi T, Yoshikawa T, Shioda S, Aruga T (2006) Alkoxyl radical-scavenging activity of edaravone in patients with traumatic brain injury. J Neurotrauma 23:1591–1599

    Article  PubMed  Google Scholar 

  114. Watanabe T, Yuki S, Egawa M, Nishi H (1994) Protective effects of MCI-186 on cerebral ischemia: possible involvement of free radical scavenging and antioxidant actions. J Pharmacol Exp Ther 268:15971604

    Google Scholar 

  115. Wu TW, Zeng LH, Wu J, Fung KP (2000) MCI-186: further histochemical and biochemical evidence of neuroprotection. Life Sci 67:2387–2392

    Article  PubMed  CAS  Google Scholar 

  116. Mizuno N, Takahashi T, Kusuhara H, Schuetz JD, Niwa T, Sugiyama Y (2007) Evaluation of the role of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in the urinary excretion of sulfate and glucuronide metabolites of edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin-5-one). Drug Metab Dispos 35:2045–2052

    Article  PubMed  CAS  Google Scholar 

  117. Hishida A (2007) Clinical analysis of 207 patients who developed renal disorders during or after treatment with edaravone reported during post-marketing surveillance. Clin Exp Nephrol 11:292–296

    Article  PubMed  CAS  Google Scholar 

  118. Dickey DT, Muldoon LL, Doolittle ND, Peterson DR, Kraemer DF, Neuwelt EA (2008) Effect of N-acetylcysteine route of administration on chemoprotection against cisplatin-induced toxicity in rat models. Cancer Chemother Pharmacol 62:235–241

    Article  PubMed  CAS  Google Scholar 

  119. Dickey DT, Wu YJ, Muldoon LL, Neuwelt EA (2005) Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levels. J Pharmacol Exp Ther 314:1052–1058

    Article  PubMed  CAS  Google Scholar 

  120. Kroning R, Lichtenstein AK, Nagami GT (2000) Sulfur-containing amino acids decrease cisplatin cytotoxicity and uptake in renal tubule epithelial cell lines. Cancer Chemother Pharmacol 45:43–49

    Article  PubMed  CAS  Google Scholar 

  121. Luo J, Tsuji T, Yasuda H, Sun Y, Fujigaki Y, Hishida A (2008) The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrol Dial Transplant 23:2198–2205

    Article  PubMed  CAS  Google Scholar 

  122. Nagai N, Hotta K, Yamamura H, Ogata H (1995) Effects of sodium thiosulfate on the pharmacokinetics of unchanged cisplatin and on the distribution of platinum species in rat kidney: protective mechanism against cisplatin nephrotoxicity. Cancer Chemother Pharmacol 36:404–410

    Article  PubMed  CAS  Google Scholar 

  123. Appenroth D, Winnefeld K, Schroter H, Rost M (1993) Beneficial effect of acetylcysteine on cisplatin nephrotoxicity in rats. J Appl Toxicol 13:189–192

    Article  PubMed  CAS  Google Scholar 

  124. Nisar S, Feinfeld DA (2002) N-acetylcysteine as salvage therapy in cisplatin nephrotoxicity. Ren Fail 24:529–533

    Article  PubMed  Google Scholar 

  125. Sheikh-Hamad D, Timmins K, Jalali Z (1997) Cisplatin-induced renal toxicity: possible reversal by N-acetylcysteine treatment. J Am Soc Nephrol 8:1640–1644

    PubMed  CAS  Google Scholar 

  126. Guastalla JP, Vermorken JB, Wils JA, George M, Scotto V, Nooij M, ten Bokkel Huinnink WW, Dalesio O, Renard J (1994) Phase II trial for intraperitoneal cisplatin plus intravenous sodium thiosulphate in advanced ovarian carcinoma patients with minimal residual disease after cisplatin-based chemotherapy–a phase II study of the EORTC Gynaecological Cancer Cooperative Group. Eur J Cancer 30A:45–49

    Article  PubMed  CAS  Google Scholar 

  127. Kemp G, Rose P, Lurain J et al (1996) Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 14:2101–2112

    PubMed  CAS  Google Scholar 

  128. Schiller JH, Storer B, Berlin J et al (1996) Amifostine, cisplatin, and vinblastine in metastatic non-small-cell lung cancer: a report of high response rates and prolonged survival. J Clin Oncol 14:1913–1921

    PubMed  CAS  Google Scholar 

  129. Asna N, Lewy H, Ashkenazi IE, Deutsch V, Peretz H, Inbar M, Ron IG (2005) Time dependent protection of amifostine from renal and hematopoietic cisplatin induced toxicity. Life Sci 76:1825–1834

    Article  PubMed  CAS  Google Scholar 

  130. Gradishar WJ, Stephenson P, Glover DJ, Neuberg DS, Moore MR, Windschitl HE, Piel I, Abeloff MD (2001) A Phase II trial of cisplatin plus WR-2721 (amifostine) for metastatic breast carcinoma: an Eastern Cooperative Oncology Group Study (E8188). Cancer 92:2517–2522

    Article  PubMed  CAS  Google Scholar 

  131. Planting AS, Catimel G, de Mulder PH, de Graeff A, Hoppener F, Verweij J, Oster W, Vermorken JB (1999) Randomized study of a short course of weekly cisplatin with or without amifostine in advanced head and neck cancer. EORTC Head and Neck Cooperative Group. Ann Oncol 10:693–700

    Article  PubMed  CAS  Google Scholar 

  132. Sastry J, Kellie SJ (2005) Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol 22:441–445

    Article  PubMed  CAS  Google Scholar 

  133. Foster-Nora JA, Siden R (1997) Amifostine for protection from antineoplastic drug toxicity. Am J Health-Syst Pharm 54:787–800

    PubMed  CAS  Google Scholar 

  134. Zhang J, Wang X, Lu H (2008) Amifostine increases cure rate of cisplatin on ascites hepatoma 22 via selectively protecting renal thioredoxin reductase. Cancer Lett 260:127–136

    Article  PubMed  CAS  Google Scholar 

  135. van der Vijgh WJ, Peters GJ (1994) Protection of normal tissues from the cytotoxic effects of chemotherapy and radiation by amifostine (Ethyol): preclinical aspects. Semin Oncol 21:2–7

    PubMed  Google Scholar 

  136. Baliga R, Zhang Z, Baliga M, Ueda N, Shah SV (1998) In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int 53:394–401

    Article  PubMed  CAS  Google Scholar 

  137. Kameyama Y, Gemba M (1991) The iron chelator deferoxamine prevents cisplatin-induced lipid peroxidation in rat kidney cortical slices. Jpn J Pharmacol 57:259–262

    Article  PubMed  CAS  Google Scholar 

  138. Ozdemir E, Dokucu AI, Uzunlar AK, Ece A, Yaldiz M, Ozturk H (2002) Experimental study on effects of deferoxamine mesilate in ameliorating cisplatin-induced nephrotoxicity. Int Urol Nephrol 33:127–131

    Article  PubMed  CAS  Google Scholar 

  139. al-Harbi MM, Osman AM, al-Gharably NM, al-Bekairi AM, al-Shabanah OA, Sabah DM, Raza M (1995) Effect of desferrioxamine on cisplatin-induced nephrotoxicity in normal rats. Chemotherapy 41:448–454

    Article  PubMed  CAS  Google Scholar 

  140. Chen SH, Liang DC, Lin HC, Cheng SY, Chen LJ, Liu HC (2005) Auditory and visual toxicity during deferoxamine therapy in transfusion-dependent patients. J Pediatr Hematol Oncol 27:651–653

    Article  PubMed  Google Scholar 

  141. Karimi M, Asadi-Pooya AA, Khademi B, Asadi-Pooya K, Yarmohammadi H (2002) Evaluation of the incidence of sensorineural hearing loss in beta-thalassemia major patients under regular chelation therapy with desferrioxamine. Acta Haematol 108:79–83

    Article  PubMed  CAS  Google Scholar 

  142. Liu H, Baliga R (2000) Effect of iron chelator, hydroxyl radical scavenger and cytochrome P450 inhibitors on the cytotoxicity of cisplatin to tumor cells. Anticancer Res 20:4547–4550

    PubMed  CAS  Google Scholar 

  143. Watanabe H, Kanno H (1998) Experimental studies of the protective effect of deferoxamine mesilate on cisplatin induced toxicity. Nippon Jibiinkoka Gakkai Kaiho 101:967–978

    Article  PubMed  CAS  Google Scholar 

  144. Werner M, Costa MJ, Mitchell LG, Nayar R (1995) Nephrotoxicity of xenobiotics. Clin Chim Acta 237:107–154

    Article  PubMed  CAS  Google Scholar 

  145. Schnellmann RG (2008) Toxic responses of the Kidney. In: Casarett and Doull’s Toxicology. The basic science of poisons, Klaassen CD, (ed) 7th edn, pp 583–608. McGraw-Hill, New York, NY

    PubMed  CAS  Google Scholar 

  146. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kedney Int 73:994–1007

    Article  PubMed  CAS  Google Scholar 

  147. Miyazaki J, Kawai k, Hayashi H, Onozawa M, Tsukamoto S, Miyanaga N, Hinotsu S, Shimazui T, Akaza H (2003) The limited efficacy of methotrexate, actinomycin D and cisplatin (MAP) for patients with advanced testicular cancer. Jpn J Clin Oncol 33:391–395

    Article  PubMed  CAS  Google Scholar 

  148. Park SA, Park HJ, Lee BL, Ahn YH, Kim SU, Choi KS (2001) Bcl-2 blocks cisplatin-induced apoptosis by suppression of ERK-mediated p53 accumulation in B104 cells. Brain Res Mol Brain Res 93:18–26

    Article  PubMed  CAS  Google Scholar 

  149. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J physiol 552:335–344

    Article  PubMed  CAS  Google Scholar 

  150. Hoffmann B, Stockl A, Schlame M, Beyer K, Klingenberg M (1994) The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. J Biol Chen 269:1940–1944

    Article  PubMed  Google Scholar 

  151. Sharma H, Sen S, Singh N (2005) Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol Ther 4:949–955

    Article  PubMed  CAS  Google Scholar 

  152. Saillenfait AM, Sabate JP, Langonne I, de Ceaurriz J (1991) Difference in the developmental toxicity of ethylenethiourea and three N. N′-substituted thiourea derivatives in rats. Fundam Appl Toxicol 17:399–408

    Article  PubMed  CAS  Google Scholar 

  153. Cameron NE, Tuck Z, McCabe L, Cotter MA (2001) Effect of the hydroxyl radical scavenger, dimethylthiourea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes. Diabetologia 44:1161–1169

    Article  PubMed  CAS  Google Scholar 

  154. Leitao DJ, Blakley BW (2003) Quantification of sodium thiosulphate protection on cisplatin-induced toxicities. J Otolaryngol 32:146–150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cardozo dos Santos PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

dos Santos, N.A.G., dos Santos, A.C. (2012). Antioxidants and Inhibition of Cisplatin-Induced Kidney Injury: Role of Mitochondria. In: Spitz, D., Dornfeld, K., Krishnan, K., Gius, D. (eds) Oxidative Stress in Cancer Biology and Therapy. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-397-4_20

Download citation

Publish with us

Policies and ethics