Advertisement

Genetic Basis of Gestational Trophoblastic Disease

Chapter
Part of the Current Clinical Pathology book series (CCPATH)

Abstract

Related to various trophoblastic cells within the placenta, gestational trophoblastic disease (GTD) consists of a distinct group of proliferative disorders that have unique clinical settings, genetic compositions, and varying biological behaviors. Recent laboratory investigations of biomarker expressions have delineated the cellular pathways of differentiation related to each of the entities of GTDs (Int J Gynecol Pathol 20(1):31–47, 2001). The most common hydatidiform moles are proliferative lesions of cells recapitulating chorionic villous trophoblasts. The most virulent gestational choriocarcinoma is a fully malignant tumor with proliferating cells recapitulating previllous trophoblasts of the developing placenta. The lesional cells of placental site trophoblastic tumor (PSTT) and exaggerated placental site reaction have cytological features resembling intermediate trophoblasts at the implantation site, whereas epithelioid trophoblastic tumor (ETT) and placental site nodule have proliferating cells resembling intermediate trophoblasts at the chorionic laeve. Biologically, the androgenetic nature of hydatidiform moles clearly indicates that an excessive paternal genome plays an important role in the development of these conditions, likely through an altered genomic imprinting. Recent linkage studies identified mutations of NALP7 on 19q13.4 as causal events in the development of familial biparental complete hydatidiform. Follow-up investigations into the biological aspects of NALP7 gene alterations may hold the key to unlock the mystery as how altered genomic imprinting and related gene expression result in the phenotype of diandric hydatidiform mole in general. Recent findings of the preferential requirement of a paternal X chromosome by several trophoblastic tumors suggest a unique genetic factor that may render a growth advantage to trophoblast in these tumors.

Keywords

Genetic basis of GTD Genomic imprinting of GTD 

References

  1. 1.
    Shih IM, Kurman RJ. The pathology of intermediate trophoblastic tumors and tumor-like lesions. Int J Gynecol Pathol. 2001;20(1):31–47.PubMedGoogle Scholar
  2. 2.
    Kajii T, Ohama K. Androgenetic origin of hydatidiform mole. Nature. 1977;268(5621):633–4.PubMedGoogle Scholar
  3. 3.
    Szulman AE. Syndromes of hydatidiform moles. Partial vs. complete. J Reprod Med. 1984;29(11):788–91.PubMedGoogle Scholar
  4. 4.
    Vassilakos P, Riotton G, Kajii T. Hydatidiform mole: two entities. A morphologic and cytogenetic study with some clinical consideration. Am J Obstet Gynecol. 1977;127(2):167–70.PubMedGoogle Scholar
  5. 5.
    Kajii T. The road to diploid androgenesis (the Japan Society of Human Genetics award lecture). Jinrui Idengaku Zasshi. 1986;31(2):61–71.PubMedGoogle Scholar
  6. 6.
    Yamashita K, Wake N, Araki T, Ichinoe K, Makoto K. Human lymphocyte antigen expression in hydatidiform mole: androgenesis following fertilization by a haploid sperm. Am J Obstet Gynecol. 1979;135(5):597–600.PubMedGoogle Scholar
  7. 7.
    Jacobs PA, Wilson CM, Sprenkle JA, Rosenshein NB, Migeon BR. Mechanism of origin of complete hydatidiform moles. Nature. 1980;286(5774):714–6.PubMedGoogle Scholar
  8. 8.
    Lawler SD, Povey S, Fisher RA, Pickthall VJ. Genetic studies on hydatidiform moles. II. The origin of complete moles. Ann Hum Genet. 1982;46(Pt 3):209–22.PubMedGoogle Scholar
  9. 9.
    Hoshina M, Boothby MR, Hussa RD, Pattillo RA, Camel HM, Boime I. Segregation patterns of polymorphic restriction sites of the gene encoding the alpha subunit of human chorionic gonadotropin in trophoblastic disease. Proc Natl Acad Sci USA. 1984;81(8):2504–7.PubMedGoogle Scholar
  10. 10.
    Wallace DC, Surti U, Adams CW, Szulman AE. Complete moles have paternal chromosomes but maternal mitochondrial DNA. Hum Genet. 1982;61(2):145–7.PubMedGoogle Scholar
  11. 11.
    Edwards YH, Jeremiah SJ, McMillan SL, Povey S, Fisher RA, Lawler SD. Complete hydatidiform moles combine maternal mitochondria with a paternal nuclear genome. Ann Hum Genet. 1984;48(Pt 2):119–27.PubMedGoogle Scholar
  12. 12.
    Azuma C, Saji F, Tokugawa Y, Kimura T, Nobunaga T, Takemura M, et al. Application of gene amplification by polymerase chain reaction to genetic analysis of molar mitochondrial DNA: the detection of anuclear empty ovum as the cause of complete mole. Gynecol Oncol. 1991;40(1):29–33.PubMedGoogle Scholar
  13. 13.
    Ohama K, Okamoto E, Nomura K, Fujiwara A, Fukuda Y. Genetic studies of hydatidiform mole with 46, XY karyotype (author’s transl). Nippon Sanka Fujinka Gakkai Zasshi. 1981;33(10):1664–8.PubMedGoogle Scholar
  14. 14.
    Lipata F, Parkash V, Talmor M, Bell S, Chen S, Maric V, et al. Precise DNA genotyping diagnosis of hydatidiform mole. Obstet Gynecol. 2010;115(4):784–94.PubMedGoogle Scholar
  15. 15.
    Wake N, Takagi N, Sasaki M. Androgenesis as a cause of hydatidiform mole. J Natl Cancer Inst. 1978;60(1):51–7.PubMedGoogle Scholar
  16. 16.
    Sebire NJ, Fisher RA, Rees HC. Histopathological diagnosis of partial and complete hydatidiform mole in the first trimester of pregnancy. Pediatr Dev Pathol. 2003;6(1):69–77.PubMedGoogle Scholar
  17. 17.
    Lawler SD, Fisher RA, Pickthall VJ, Povey S, Evans MW. Genetic studies on hydatidiform moles. I. The origin of partial moles. Cancer Genet Cytogenet. 1982;5(4):309–20.PubMedGoogle Scholar
  18. 18.
    Jacobs PA, Szulman AE, Funkhouser J, Matsuura JS, Wilson CC. Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann Hum Genet. 1982;46(Pt 3):223–31.PubMedGoogle Scholar
  19. 19.
    Surti U, Szulman AE, Wagner K, Leppert M, O’Brien SJ. Tetraploid partial hydatidiform moles: two cases with a triple paternal contribution and a 92, XXXY karyotype. Hum Genet. 1986;72(1):15–21.PubMedGoogle Scholar
  20. 20.
    Sheppard DM, Fisher RA, Lawler SD, Povey S. Tetraploid conceptus with three paternal contributions. Hum Genet. 1982;62(4):371–4.PubMedGoogle Scholar
  21. 21.
    Genest DR, Ruiz RE, Weremowicz S, Berkowitz RS, Goldstein DP, Dorfman DM. Do nontriploid partial hydatidiform moles exist? A histologic and flow cytometric reevaluation of nontriploid specimens. J Reprod Med. 2002;47(5):363–8.PubMedGoogle Scholar
  22. 22.
    Paradinas FJ, Fisher RA, Browne P, Newlands ES. Diploid hydatidiform moles with fetal red blood cells in molar villi. 1–Pathology, incidence, and prognosis. J Pathol. 1997;181(2):183–8.PubMedGoogle Scholar
  23. 23.
    Fisher RA, Paradinas FJ, Soteriou BA, Foskett M, Newlands ES. Diploid hydatidiform moles with fetal red blood cells in molar villi. 2–Genetics. J Pathol. 1997;181(2):189–95.PubMedGoogle Scholar
  24. 24.
    Surani MA, Barton SC. Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science. 1983;222(4627):1034–6.PubMedGoogle Scholar
  25. 25.
    McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37(1):179–83.PubMedGoogle Scholar
  26. 26.
    Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development. Nature. 1984;311(5984):374–6.PubMedGoogle Scholar
  27. 27.
    Ohlsson R, Nystrom A, Pfeifer-Ohlsson S, Tohonen V, Hedborg F, Schofield P, et al. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nat Genet. 1993;4(1):94–7.PubMedGoogle Scholar
  28. 28.
    Giannoukakis N, Deal C, Paquette J, Goodyer CG, Polychronakos C. Parental genomic imprinting of the human IGF2 gene. Nat Genet. 1993;4(1):98–101.PubMedGoogle Scholar
  29. 29.
    Rachmilewitz J, Gileadi O, Eldar-Geva T, Schneider T, de Groot N, Hochberg A. Transcription of the H19 gene in differentiating cytotrophoblasts from human placenta. Mol Reprod Dev. 1992;32(3):196–202.PubMedGoogle Scholar
  30. 30.
    Zhang Y, Shields T, Crenshaw T, Hao Y, Moulton T, Tycko B. Imprinting of human H19: allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching. Am J Hum Genet. 1993;53(1):113–24.PubMedGoogle Scholar
  31. 31.
    Ferguson-Smith AC, Sasaki H, Cattanach BM, Surani MA. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature. 1993;362(6422):751–5.PubMedGoogle Scholar
  32. 32.
    Mutter GL, Stewart CL, Chaponot ML, Pomponio RJ. Oppositely imprinted genes H19 and insulin-like growth factor 2 are coexpressed in human androgenetic trophoblast. Am J Hum Genet. 1993;53(5):1096–102.PubMedGoogle Scholar
  33. 33.
    Wake N, Arima T, Matsuda T. Involvement of IGF2 and H19 imprinting in choriocarcinoma development. Int J Gynaecol Obstet. 1998;60 Suppl 1:S1–8.PubMedGoogle Scholar
  34. 34.
    Ariel I, de Groot N, Hochberg A. Imprinted H19 gene expression in embryogenesis and human cancer: the oncofetal connection. Am J Med Genet. 2000;91(1):46–50.PubMedGoogle Scholar
  35. 35.
    Arima T, Matsuda T, Takagi N, Wake N. Association of IGF2 and H19 imprinting with choriocarcinoma development. Cancer Genet Cytogenet. 1997;93(1):39–47.PubMedGoogle Scholar
  36. 36.
    Fukunaga M. Immunohistochemical characterization of p57(KIP2) expression in early hydatidiform moles. Hum Pathol. 2002;33(12):1188–92.PubMedGoogle Scholar
  37. 37.
    Castrillon DH, Sun D, Weremowicz S, Fisher RA, Crum CP, Genest DR. Discrimination of complete hydatidiform mole from its mimics by immunohistochemistry of the paternally imprinted gene product p57KIP2. Am J Surg Pathol. 2001;25(10):1225–30.PubMedGoogle Scholar
  38. 38.
    Mann MR, Lee SS, Doherty AS, Verona RI, Nolen LD, Schultz RM, et al. Selective loss of imprinting in the placenta following preimplantation development in culture. Development. 2004;131(15):3727–35.PubMedGoogle Scholar
  39. 39.
    Hashimoto K, Azuma C, Koyama M, Ohashi K, Kamiura S, Nobunaga T, et al. Loss of imprinting in choriocarcinoma. Nat Genet. 1995;9(2):109–10.PubMedGoogle Scholar
  40. 40.
    He L, Cui H, Walsh C, Mattsson R, Lin W, Anneren G, et al. Hypervariable allelic expression patterns of the imprinted IGF2 gene in tumor cells. Oncogene. 1998;16(1):113–9.PubMedGoogle Scholar
  41. 41.
    Slim R, Mehio A. The genetics of hydatidiform moles: new lights on an ancient disease. Clin Genet. 2007;71(1):25–34.PubMedGoogle Scholar
  42. 42.
    Parazzini F, La Vecchia C, Franceschi S, Mangili G. Familial trophoblastic disease: case report. Am J Obstet Gynecol. 1984;149(4):382–3.PubMedGoogle Scholar
  43. 43.
    Sand PK, Lurain JR, Brewer JI. Repeat gestational trophoblastic disease. Obstet Gynecol. 1984;63(2):140–4.PubMedGoogle Scholar
  44. 44.
    Ambani LM, Vaidya RA, Rao CS, Daftary SD, Motashaw ND. Familial occurrence of trophoblastic disease - report of recurrent molar pregnancies in ­sisters in three families. Clin Genet. 1980;18(1):27–9.PubMedGoogle Scholar
  45. 45.
    Sunde L, Vejerslev LO, Jensen MP, Pedersen S, Hertz JM, Bolund L. Genetic analysis of repeated, biparental, diploid, hydatidiform moles. Cancer Genet Cytogenet. 1993;66(1):16–22.PubMedGoogle Scholar
  46. 46.
    Seoud M, Khalil A, Frangieh A, Zahed L, Azar G, Nuwayri-Salti N. Recurrent molar pregnancies in a family with extensive intermarriage: report of a family and review of the literature. Obstet Gynecol. 1995;86(4 Pt 2):692–5.PubMedGoogle Scholar
  47. 47.
    Helwani MN, Seoud M, Zahed L, Zaatari G, Khalil A, Slim R. A familial case of recurrent hydatidiform molar pregnancies with biparental genomic contribution. Hum Genet. 1999;105(1–2):112–5.PubMedGoogle Scholar
  48. 48.
    Fisher RA, Khatoon R, Paradinas FJ, Roberts AP, Newlands ES. Repetitive complete hydatidiform mole can be biparental in origin and either male or female. Hum Reprod. 2000;15(3):594–8.PubMedGoogle Scholar
  49. 49.
    Williams D, Hodgetts V, Gupta J. Recurrent hydatidiform moles. Eur J Obstet Gynecol Reprod Biol. 2010;150(1):3–7.PubMedGoogle Scholar
  50. 50.
    Fisher RA, Hodges MD, Newlands ES. Familial recurrent hydatidiform mole: a review. J Reprod Med. 2004;49(8):595–601.PubMedGoogle Scholar
  51. 51.
    Fisher RA, Hodges MD, Rees HC, Sebire NJ, Seckl MJ, Newlands ES, et al. The maternally transcribed gene p57(KIP2) (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles. Hum Mol Genet. 2002;11(26):3267–72.PubMedGoogle Scholar
  52. 52.
    El-Maarri O, Seoud M, Coullin P, Herbiniaux U, Oldenburg J, Rouleau G, et al. Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum Mol Genet. 2003;12(12):1405–13.PubMedGoogle Scholar
  53. 53.
    El-Maarri O, Seoud M, Riviere JB, Oldenburg J, Walter J, Rouleau G, et al. Patients with familial biparental hydatidiform moles have normal methylation at imprinted genes. Eur J Hum Genet. 2005;13(4):486–90.PubMedGoogle Scholar
  54. 54.
    Kou YC, Shao L, Peng HH, Rosetta R, del Gaudio D, Wagner AF, et al. A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod. 2008;14(1):33–40.PubMedGoogle Scholar
  55. 55.
    Slim R, Fallahian M, Riviere JB, Zali MR. Evidence of a genetic heterogeneity of familial hydatidiform moles. Placenta. 2005;26(1):5–9.PubMedGoogle Scholar
  56. 56.
    Hayward BE, De Vos M, Talati N, Abdollahi MR, Taylor GR, Meyer E, et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum Mutat. 2009;30(5):E629–39.PubMedGoogle Scholar
  57. 57.
    Moglabey YB, Kircheisen R, Seoud M, El Mogharbel N, Van den Veyver I, Slim R. Genetic mapping of a maternal locus responsible for familial hydatidiform moles. Hum Mol Genet. 1999;8(4):667–71.PubMedGoogle Scholar
  58. 58.
    Sensi A, Gualandi F, Pittalis MC, Calabrese O, Falciano F, Maestri I, et al. Mole maker phenotype: possible narrowing of the candidate region. Eur J Hum Genet. 2000;8(8):641–4.PubMedGoogle Scholar
  59. 59.
    Hodges MD, Rees HC, Seckl MJ, Newlands ES, Fisher RA. Genetic refinement and physical mapping of a biparental complete hydatidiform mole locus on chromosome 19q13.4. J Med Genet. 2003;40(8):e95.PubMedGoogle Scholar
  60. 60.
    Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I, et al. BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci USA. 2002;99(10):6806–11.PubMedGoogle Scholar
  61. 61.
    Wolffe AP. Transcriptional control: imprinting insulation. Curr Biol. 2000;10(12):R463–5.PubMedGoogle Scholar
  62. 62.
    Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38(3):300–2.PubMedGoogle Scholar
  63. 63.
    Qian J, Deveault C, Bagga R, Xie X, Slim R. Women heterozygous for NALP7/NLRP7 mutations are at risk for reproductive wastage: report of two novel mutations. Hum Mutat. 2007;28(7):741.PubMedGoogle Scholar
  64. 64.
    Wang CM, Dixon PH, Decordova S, Hodges MD, Sebire NJ, Ozalp S, et al. Identification of 13 novel NLRP7 mutations in 20 families with recurrent hydatidiform mole; missense mutations cluster in the leucine-rich region. J Med Genet. 2009;46(8):569–75.PubMedGoogle Scholar
  65. 65.
    Berkowitz RS, Goldstein DP. Current management of gestational trophoblastic diseases. Gynecol Oncol. 2009;112(3):654–62.PubMedGoogle Scholar
  66. 66.
    Shih IM, Kurman RJ. Placental site trophoblastic tumor–past as prologue. Gynecol Oncol. 2001;82(3):413–4.PubMedGoogle Scholar
  67. 67.
    Shih IM, Kurman RJ. Epithelioid trophoblastic tumor: a neoplasm distinct from choriocarcinoma and placental site trophoblastic tumor simulating carcinoma. Am J Surg Pathol. 1998;22(11):1393–403.PubMedGoogle Scholar
  68. 68.
    Kotylo PK, Michael H, Davis TE, Sutton GP, Mark PR, Roth LM. Flow cytometric DNA analysis of placental-site trophoblastic tumors. Int J Gynecol Pathol. 1992;11(4):245–52.PubMedGoogle Scholar
  69. 69.
    Fukunaga M, Ushigome S. Metastasizing placental site trophoblastic tumor. An immunohistochemical and flow cytometric study of two cases. Am J Surg Pathol. 1993;17(10):1003–10.PubMedGoogle Scholar
  70. 70.
    Fukunaga M, Ushigome S. Malignant trophoblastic tumors: immunohistochemical and flow cytometric comparison of choriocarcinoma and placental site trophoblastic tumors. Hum Pathol. 1993;24(10):1098–106.PubMedGoogle Scholar
  71. 71.
    Xue WC, Guan XY, Ngan HY, Shen DH, Khoo US, Cheung AN. Malignant placental site trophoblastic tumor: a cytogenetic study using comparative genomic hybridization and chromosome in situ hybridization. Cancer. 2002;94(8):2288–94.PubMedGoogle Scholar
  72. 72.
    Hui P, Riba A, Pejovic T, Johnson T, Baergen RN, Ward D. Comparative genomic hybridization study of placental site trophoblastic tumour: a report of four cases. Mod Pathol. 2004;17(2):248–51.PubMedGoogle Scholar
  73. 73.
    Xu ML, Yang B, Carcangiu ML, Hui P. Epithelioid trophoblastic tumor: comparative genomic hybridization and diagnostic DNA genotyping. Mod Pathol. 2009;22(2):232–8.PubMedGoogle Scholar
  74. 74.
    Ahmed MN, Kim K, Haddad B, Berchuck A, Qumsiyeh MB. Comparative genomic hybridization studies in hydatidiform moles and choriocarcinoma: amplification of 7q21-q31 and loss of 8p12-p21 in choriocarcinoma. Cancer Genet Cytogenet. 2000;116(1):10–5.PubMedGoogle Scholar
  75. 75.
    Hui P, Parkash V, Perkins AS, Carcangiu ML. Pathogenesis of placental site trophoblastic tumor may require the presence of a paternally derived X chromosome. Lab Invest. 2000;80(6):965–72.PubMedGoogle Scholar
  76. 76.
    Fisher RA, Paradinas FJ, Newlands ES, Boxer GM. Genetic evidence that placental site trophoblastic tumours can originate from a hydatidiform mole or a normal conceptus. Br J Cancer. 1992;65(3):355–8.PubMedGoogle Scholar
  77. 77.
    Kodama S, Kase H, Aoki Y, Yahata T, Tanaka K, Motoyama T, et al. Recurrent placental site trophoblastic tumor of the uterus: clinical, pathologic, ultrastructural, and DNA fingerprint study. Gynecol Oncol. 1996;60(1):89–93.PubMedGoogle Scholar
  78. 78.
    Dessau R, Rustin GJ, Dent J, Paradinas FJ, Bagshawe KD. Surgery and chemotherapy in the management of placental site tumor. Gynecol Oncol. 1990;39(1):56–9.PubMedGoogle Scholar
  79. 79.
    Hoffman JS, Silverman AD, Gelber J, Cartun R. Placental site trophoblastic tumor: a report of radiologic, surgical, and pathologic methods of evaluating the extent of disease. Gynecol Oncol. 1993;50(1):110–4.PubMedGoogle Scholar
  80. 80.
    Arima T, Imamura T, Amada S, Tsuneyoshi M, Wake N. Genetic origin of malignant trophoblastic neoplasms. Cancer Genet Cytogenet. 1994;73(2):95–102.PubMedGoogle Scholar
  81. 81.
    Lathrop JC, Lauchlan S, Nayak R, Ambler M. Clinical characteristics of placental site trophoblastic tumor (PSTT). Gynecol Oncol. 1988;31(1):32–42.PubMedGoogle Scholar
  82. 82.
    Hassadia A, Gillespie A, Tidy J, Everard RGNJ, Wells M, Coleman R, et al. Placental site trophoblastic tumour: clinical features and management. Gynecol Oncol. 2005;99(3):603–7.PubMedGoogle Scholar
  83. 83.
    Khan S, Dancey G, Lindsay I, Sebire NJ, Fisher RA, Seckl MJ, et al. Placental site trophoblastic tumour derived from an oocyte donation pregnancy. BJOG. 2006;113(3):344–6.PubMedGoogle Scholar
  84. 84.
    Kobel M, Pohl G, Schmitt WD, Hauptmann S, Wang TL, Shih Ie M. Activation of mitogen-activated protein kinase is required for migration and invasion of placental site trophoblastic tumor. Am J Pathol. 2005;167(3):879–85.PubMedGoogle Scholar
  85. 85.
    Oldt 3rd RJ, Kurman RJ, Shih Ie M. Molecular genetic analysis of placental site trophoblastic tumors and epithelioid trophoblastic tumors ­confirms their trophoblastic origin. Am J Pathol. 2002;161(3):1033–7.PubMedGoogle Scholar
  86. 86.
    Yap KL, Hafez MJ, Mao TL, Kurman RJ, Murphy KM, Shih Ie M. Lack of a y-chromosomal complement in the majority of gestational trophoblastic neoplasms. J Oncol. 2010;2010:364508.PubMedGoogle Scholar
  87. 87.
    Hui P, Wang HL, Chu P, Yang B, Huang J, Baergen RN, et al. Absence of Y chromosome in human placental site trophoblastic tumor. Mod Pathol. 2007;20(10):1055–60.PubMedGoogle Scholar
  88. 88.
    Baergen RN, Rutgers JL, Young RH, Osann K, Scully RE. Placental site trophoblastic tumor: a study of 55 cases and review of the literature emphasizing factors of prognostic significance. Gynecol Oncol. 2006;100(3):511–20.PubMedGoogle Scholar
  89. 89.
    Keep D, Zaragoza MV, Hassold T, Redline RW. Very early complete hydatidiform mole. Hum Pathol. 1996;27(7):708–13.PubMedGoogle Scholar
  90. 90.
    Buza N, Hui P. Gestational trophoblastic disease: histopathological diagnosis in the molecular era. Diagn Histopathol. 2010;16(11):526–37.Google Scholar
  91. 91.
    Sebire NJ. Histopathological diagnosis of hydatidiform mole: contemporary features and clinical implications. Fetal Pediatr Pathol. 2010;29(1):1–16.PubMedGoogle Scholar
  92. 92.
    Barlow DP. Gametic imprinting in mammals. Science. 1995;270(5242):1610–3.PubMedGoogle Scholar
  93. 93.
    Haig D, Westoby M. An earlier formulation of the genetic conflict hypothesis of genomic imprinting. Nat Genet. 2006;38(3):271.PubMedGoogle Scholar
  94. 94.
    Abu-Amero S, Monk D, Apostolidou S, Stanier P, Moore G. Imprinted genes and their role in human fetal growth. Cytogenet Genome Res. 2006;113(1–4):262–70.PubMedGoogle Scholar
  95. 95.
    Solter D. Imprinting. Int J Dev Biol. 1998;42(7):951–4.PubMedGoogle Scholar
  96. 96.
    Tilghman SM. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell. 1999;96(2):185–93.PubMedGoogle Scholar
  97. 97.
    Constancia M, Kelsey G, Reik W. Resourceful imprinting. Nature. 2004;432(7013):53–7.PubMedGoogle Scholar
  98. 98.
    Wagschal A, Feil R. Genomic imprinting in the placenta. Cytogenet Genome Res. 2006;113(1–4):90–8.PubMedGoogle Scholar
  99. 99.
    Hemberger M. Epigenetic landscape required for placental development. Cell Mol Life Sci. 2007;64(18):2422–36.PubMedGoogle Scholar
  100. 100.
    Li Y, Lemaire P, Behringer RR. Esx1, a novel X chromosome-linked homeobox gene expressed in mouse extraembryonic tissues and male germ cells. Dev Biol. 1997;188(1):85–95.PubMedGoogle Scholar
  101. 101.
    Lin TP, Labosky PA, Grabel LB, Kozak CA, Pitman JL, Kleeman J, et al. The Pem homeobox gene is X-linked and exclusively expressed in extraembryonic tissues during early murine development. Dev Biol. 1994;166(1):170–9.PubMedGoogle Scholar
  102. 102.
    Salido EC, Yen PH, Mohandas TK, Shapiro LJ. Expression of the X-inactivation-associated gene XIST during spermatogenesis. Nat Genet. 1992;2(3):196–9.PubMedGoogle Scholar
  103. 103.
    Sado T, Ferguson-Smith AC. Imprinted X inactivation and reprogramming in the preimplantation mouse embryo. Hum Mol Genet. 2005;14(Spec No 1):R59–64.PubMedGoogle Scholar
  104. 104.
    Huynh KD, Lee JT. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature. 2003;426(6968):857–62.PubMedGoogle Scholar
  105. 105.
    Cooper DW, VandeBerg JL, Sharman GB, Poole WE. Phosphoglycerate kinase polymorphism in kangaroos provides further evidence for paternal X inactivation. Nat New Biol. 1971;230(13):155–7.PubMedGoogle Scholar
  106. 106.
    Graves JA. Mammals that break the rules: genetics of marsupials and monotremes. Annu Rev Genet. 1996;30:233–60.PubMedGoogle Scholar
  107. 107.
    Reik W, Lewis A. Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet. 2005;6(5):403–10.PubMedGoogle Scholar
  108. 108.
    Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366(6453):362–5.PubMedGoogle Scholar
  109. 109.
    Takagi N, Sasaki M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature. 1975;256(5519):640–2.PubMedGoogle Scholar
  110. 110.
    Pulford DJ, Falls JG, Killian JK, Jirtle RL. Polymorphisms, genomic imprinting and cancer susceptibility. Mutat Res. 1999;436(1):59–67.PubMedGoogle Scholar
  111. 111.
    Redolfi E, Pizzuti A, Di Bacco A, Susani L, Labella T, Affer M, et al. Mapping of the MYCL2 processed gene to Xq22-23 and identification of an additional L MYC-related sequence in Xq27.2. FEBS Lett. 1999;446(2–3):273–7.PubMedGoogle Scholar
  112. 112.
    Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997;388(6639):300–4.PubMedGoogle Scholar
  113. 113.
    Barlow DP. Imprinting: a gamete’s point of view. Trends Genet. 1994;10(6):194–9.PubMedGoogle Scholar
  114. 114.
    Glassman ML, de Groot N, Hochberg A. Relaxation of imprinting in carcinogenesis. Cancer Genet Cytogenet. 1996;89(1):69–73.PubMedGoogle Scholar
  115. 115.
    Jinno Y, Ikeda Y, Yun K, Maw M, Masuzaki H, Fukuda H, et al. Establishment of functional imprinting of the H19 gene in human developing placentae. Nat Genet. 1995;10(3):318–24.PubMedGoogle Scholar
  116. 116.
    Ariel I, Lustig O, Oyer CE, Elkin M, Gonik B, Rachmilewitz J, et al. Relaxation of imprinting in trophoblastic disease. Gynecol Oncol. 1994;53(2):212–9.PubMedGoogle Scholar
  117. 117.
    Rachmilewitz J, Elkin M, Rosensaft J, Gelman-Kohan Z, Ariel I, Lustig O, et al. H19 expression and tumorigenicity of choriocarcinoma derived cell lines. Oncogene. 1995;11(5):863–70.PubMedGoogle Scholar
  118. 118.
    Walsh C, Miller SJ, Flam F, Fisher RA, Ohlsson R. Paternally derived H19 is differentially expressed in malignant and nonmalignant trophoblast. Cancer Res. 1995;55(5):1111–6.PubMedGoogle Scholar
  119. 119.
    Looijenga LH, Gillis AJ, Verkerk AJ, van Putten WL, Oosterhuis JW. Heterogeneous X inactivation in trophoblastic cells of human full-term female placentas. Am J Hum Genet. 1999;64(5):1445–52.PubMedGoogle Scholar
  120. 120.
    Migeon BR, Lee CH, Chowdhury AK, Carpenter H. Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. Am J Hum Genet. 2002;71(2):286–93.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PathologyYale University School of MedicineNew HavenUSA

Personalised recommendations