Skip to main content

Is NO-eNOS a Target for C-Peptide Action and Its Protective Effects on Diabetic Nephropathy?

  • Chapter
  • First Online:
Diabetes & C-Peptide

Part of the book series: Contemporary Diabetes ((CDI))

  • 878 Accesses

Abstract

Numerous studies show protective effects of C-peptide on the development of the diabetic complications in type 1 diabetic patients and in its animal models. Recently, we have demonstrated that streptozotocin-induced diabetic rats with almost complete reduction of endogenous insulin and C-peptide increase expression of renal endothelial nitric oxide synthase (eNOS), and that replacement with C-peptide abrogates the increase of eNOS without affecting hyperglycemic state. Here, we first summarize current topics on nitric oxide (NO)-eNOS system in ­diabetic nephropathy and then we discuss the mechanisms underlying the ameliorating effects of C-peptide on diabetic nephropathy with focus on the NO-eNOS system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yach D, Stuckler D, Brownell KD. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med. 2006;12:62–6.

    Article  PubMed  CAS  Google Scholar 

  2. Nelson RG, Knowler WC, Pettitt DJ, Bennett PH. Kidney diseases in diabetes. In: Harris MI, Cowie CC, Stern MP, Boyko EJ, Reiber GE, Bennett PH, editors. Diabetes in America. 2nd ed. Washington: NIDDK; 1995. p. 349–400.

    Google Scholar 

  3. Mauer SM, Steffes MW, Ellis EN, et al. Structural-functional relationship in diabetic nephropathy. J Clin Invest. 1984;74:1143–55.

    Article  PubMed  CAS  Google Scholar 

  4. Krolewski A, Warram J, Christlieb A, Busick E, Kahn C. The changing natural history of nephropathy in type I diabetes. Am J Med. 1985;78:785–94.

    Article  PubMed  CAS  Google Scholar 

  5. Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.

    Article  PubMed  CAS  Google Scholar 

  6. Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 1999;56:393–405.

    Article  PubMed  CAS  Google Scholar 

  7. Goligorsky MS. Endothelial cell dysfunction and nitric oxide synthase. Kidney Int. 2000;58:1360–76.

    Article  PubMed  CAS  Google Scholar 

  8. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

    Article  PubMed  CAS  Google Scholar 

  9. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57:1446–54.

    Article  PubMed  CAS  Google Scholar 

  10. Komers R, Anderson S. Paradoxes of nitric oxide in the diabetic kidney. Am J Physiol Renal Physiol. 2003;284:F1121–37.

    PubMed  CAS  Google Scholar 

  11. Bank N, Aynedjian HS. Role of EDRF (nitric oxide) in diabetic renal hyperfiltration. Kidney Int. 1993;43:1306–12.

    Article  PubMed  CAS  Google Scholar 

  12. Komers R, Allen TJ, Cooper ME. Role of endothelium-derived nitric oxide in the pathogenesis of the renal hemodynamic changes of experimental diabetes. Diabetes. 1994;43:1190–7.

    Article  PubMed  CAS  Google Scholar 

  13. Sugimoto H, Shikata K, Matsuda M, et al. Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy. Diabetologia. 1998;41:1426–34.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao HJ, Wang S, Cheng H, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol. 2006;17:2664–9.

    Article  PubMed  CAS  Google Scholar 

  15. Nakagawa T, Sato W, Glushakova O, et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J Am Soc Nephrol. 2007;18:539–50.

    Article  PubMed  CAS  Google Scholar 

  16. Kanetsuna Y, Takahashi K, Nagata M, et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy resistant inbred mice. Am J Pathol. 2007;170:1473–84.

    Article  PubMed  CAS  Google Scholar 

  17. Breyer MD, Böttinger E, Brosius III FC, AMDCC, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol. 2005;16:27–45.

    Article  PubMed  Google Scholar 

  18. Zanchi A, Moczulski DK, Hanna LS, et al. Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism. Kidney Int. 2000;57:405–13.

    Article  PubMed  CAS  Google Scholar 

  19. Neugebauer S, Baba T, Watanabe T. Association of the nitric oxide synthase gene polymorphism with an increased risk for progression to diabetic nephropathy in type 2 diabetes. Diabetes. 2000;49:500–3.

    Article  PubMed  CAS  Google Scholar 

  20. Noiri E, Satoh H, Taguchi J, et al. Association of eNOS Glu298Asp polymorphism with end-stage renal disease. Hypertension. 2002;40:535–40.

    Article  PubMed  CAS  Google Scholar 

  21. Persu A, Stoenoiu MS, Messiaen T, et al. Modifier effect of ENOS in autosomal dominant polycystic kidney disease. Hum Mol Genet. 2002;11:229–41.

    Article  PubMed  CAS  Google Scholar 

  22. Hohenstein B, Hugo CP, Hausknecht B, et al. Analysis of NO-synthase expression and clinical risk factors in human diabetic nephropathy. Nephrol Dial Transplant. 2008;23:1346–54.

    Article  PubMed  CAS  Google Scholar 

  23. Fulton D, Gratton J-P, Sessa WC. Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther. 2001;299:818–24.

    PubMed  CAS  Google Scholar 

  24. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol. 2003;284:R1–12.

    CAS  Google Scholar 

  25. Alp NJ, Channon KM. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol. 2004;24:413–20.

    Article  PubMed  CAS  Google Scholar 

  26. Satoh M, Fujimoto S, Haruna Y, et al. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Renal Physiol. 2005;288:F1144–52.

    Article  PubMed  CAS  Google Scholar 

  27. Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992;339:572–5.

    Article  PubMed  CAS  Google Scholar 

  28. Tarnow L, Hovind P, Teerlink T, Stehouwer CD, Parving HH. Elevated plasma asymmetric dimethylarginine as a marker of cardiovascular morbidity in early diabetic nephropathy in type 1 diabetes. Diabetes Care. 2004;27:765–9.

    Article  PubMed  CAS  Google Scholar 

  29. Shibata R, Ueda S, Yamagishi S, et al. Involvement of asymmetric dimethylarginine (ADMA) in tubulointerstitial ischaemia in the early phase of diabetic nephropathy. Nephrol Dial Transplant. 2009;24:1162–9.

    Article  PubMed  CAS  Google Scholar 

  30. Lin KY, Ito A, Asagami T, et al. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation. 2002;106:987–92.

    Article  PubMed  CAS  Google Scholar 

  31. Shinozaki K, Kashiwagi A, Nishio Y, et al. Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2-imbalance in insulin-resistant rat aorta. Diabetes. 1999;48:2437–45.

    Article  PubMed  CAS  Google Scholar 

  32. Crabtree MJ, Smith CL, Lam G, Goligorsky MS, Gross SS. Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS. Am J Physiol Heart Circ Physiol. 2008;294:H1530–40.

    Article  PubMed  CAS  Google Scholar 

  33. Crabtree MJ, Tatham AL, Al-Wakeel Y, et al. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status. J Biol Chem. 2009;284:1136–44.

    Article  PubMed  CAS  Google Scholar 

  34. Crabtree MJ, Tatham AL, Hale AB, Alp NJ, Channon KM. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. J Biol Chem. 2009;284:28128–36.

    Article  PubMed  CAS  Google Scholar 

  35. Sugiyama T, Levy BD, Michel T. Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells. J Biol Chem. 2009;284:12691–700.

    Article  PubMed  CAS  Google Scholar 

  36. Ceriello A, Morocutti A, Mercuri F, et al. Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes. 2000;49:2170–7.

    Article  PubMed  CAS  Google Scholar 

  37. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.

    Article  PubMed  CAS  Google Scholar 

  38. Kaiser N, Sasson S, Feener EP, et al. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993;42:80–9.

    Article  PubMed  CAS  Google Scholar 

  39. Cohem G, Riahi Y, Alpert E, Gruzman A, Sasson S. The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes. Arch Physiol Biochem. 2007;113:259–67.

    Article  Google Scholar 

  40. Presley T, Vedam K, Druhan LJ, Ilangovan G. Hyperthermia-induced Hsp90/eNOS preserves mitochondrial respiration in hyperglycemic endothelial cells by down-regulating Glut-1 and up-regulating G6PD activity. J Biol Chem. 2010;285:38194–203.

    Google Scholar 

  41. Heilig CW, Concepcion LA, Riser BL, et al. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest. 1995;96:1802–14.

    Article  PubMed  CAS  Google Scholar 

  42. Palm F, Friederich M, Carlsson P-O, et al. Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability. Am J Physiol Renal Physiol. 2008;294:F30–7.

    Article  PubMed  CAS  Google Scholar 

  43. Govers R, Rabelink TJ. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol. 2001;280:F193–206.

    CAS  Google Scholar 

  44. Makondo K, Kimura K, Kitamura T, et al. Hepatocyte growth factor activates endothelial nitric oxide ­synthase by Ca2+- and phosphoinositide 3-kinase/Akt-dependent phosphorylation in aortic endothelial cells. Biochem J. 2003;374:63–9.

    Article  PubMed  CAS  Google Scholar 

  45. Kolluru GK, Siamwala JH, Chatterjee S. eNOS phosphorylation in health and disease. Biochimie. 2010;92:1186–98.

    Article  PubMed  CAS  Google Scholar 

  46. Du XL, Edelstein D, Dimmeler S, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest. 2001;108:1341–8.

    PubMed  CAS  Google Scholar 

  47. Federici M, Menghini R, Mauriello A, et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation. 2002;106:466–72.

    Article  PubMed  CAS  Google Scholar 

  48. Musicki B, Kramer MF, Becker RE, Burnett AL. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci U S A. 2005;102:11870–5.

    Article  PubMed  CAS  Google Scholar 

  49. Wahren J. C-peptide: new findings and therapeutic implications in diabetes. Clin Physiol Funct Imaging. 2004;24:180–9.

    Article  PubMed  CAS  Google Scholar 

  50. Sima AAF, Kamiya H, Li ZG. Insulin, C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol. 2004;490:187–97.

    Article  PubMed  CAS  Google Scholar 

  51. Johansson BL, Sjoberg S, Wahren J. The influence of human C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. Diabetologia. 1992;35:121–8.

    Article  PubMed  CAS  Google Scholar 

  52. Johansson BL, Kernell A, Sjoberg S, Wahren J. Influence of combined C-peptide and insulin administration on renal function and metabolic control in diabetes type 1. J Clin Endocrinol Metab. 1993;77:976–81.

    Article  PubMed  CAS  Google Scholar 

  53. Johansson BL, Borg K, Fernqvist-Forbes E, et al. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type 1 diabetes mellitus. Diabet Med. 2000;17:181–9.

    Article  PubMed  CAS  Google Scholar 

  54. Sjoquist M, Huang W, Johansson BL. Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int. 1998;54:758–64.

    Article  PubMed  CAS  Google Scholar 

  55. Samnegard B, Jacobson SH, Jaremko G, Johansson BL, Sjoquist M. Effects of C-peptide on glomerular and renal size and renal function in diabetic rats. Kidney Int. 2001;60:1258–65.

    Article  PubMed  CAS  Google Scholar 

  56. Huang D-Y, Richter K, Breidenbach A, Vallon V. Human C-peptide acutely lowers glomerular hyperfiltration and proteinuria in diabetic rats: a dose-response study. Naunyn Schmiedebergs Arch Pharmacol. 2002;365:67–73.

    Article  PubMed  CAS  Google Scholar 

  57. Samnegard B, Jacobson SH, Johansson BL, et al. C-peptide and captopril are equally effective in lowering glomerular hyperfiltration in diabetic rats. Nephrol Dial Transplant. 2004;19:1385–91.

    Article  PubMed  CAS  Google Scholar 

  58. Samnegard B, Jacobson SH, Jaremko G, et al. C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant. 2005;20:532–8.

    Article  PubMed  CAS  Google Scholar 

  59. Rebsomen L, Pitel S, Boubred F, et al. C-peptide replacement improves weight gain and renal function in diabetic rats. Diabetes Metab. 2006;32:223–8.

    Article  PubMed  CAS  Google Scholar 

  60. Kamikawa A, Ishii T, Shimada K, et al. Proinsulin C-peptide abrogates type-1 diabetes-induced increase of renal endothelial nitric oxide synthase in rats. Diabetes Metab Res Rev. 2008;24:331–8.

    Article  PubMed  CAS  Google Scholar 

  61. Johansson BL, Linde B, Wahren J. Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of type 1 (insulin-dependent) diabetic patients. Diabetologia. 1992;35:1151–8.

    Article  PubMed  CAS  Google Scholar 

  62. Fernqvist-Forbes E, Johansson BL, Erikson MJ. Effects of C-peptide on forearm blood flow and brachial artery dilatation in patients with type 1 diabetes mellitus. Acta Physiol Scand. 2001;172:159–65.

    Article  PubMed  CAS  Google Scholar 

  63. Johansson BL, Wahren J, Pernow J. C-peptide increases forearm blood flow in patients with type 1 diabetes via a nitric oxide-dependent mechanism. Am J Physiol Endocrinol Metab. 2003;285:E864–70.

    PubMed  CAS  Google Scholar 

  64. Forst T, Kunt T, Pohlmann T, et al. Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. J Clin Invest. 1998;101:2036–41.

    Article  PubMed  CAS  Google Scholar 

  65. Forst T, De La Tour DD, Kunt T, et al. Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+, K+-ATPase activity in diabetes mellitus type I. Clin Sci. 2000;98:283–90.

    Article  PubMed  CAS  Google Scholar 

  66. Nakamoto H, Sakane N, Kimura K, et al. Synergistic effects of C-peptide and insulin on coronary flow in early diabetic rats. Metabolism. 2004;53:335–9.

    Article  PubMed  CAS  Google Scholar 

  67. Wallerath T, Kunt T, Forst T, et al. Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide. 2003;9:95–102.

    Article  PubMed  CAS  Google Scholar 

  68. Scalia R, Coyle KM, Levine BJ, Booth G, Leffer AM. C-peptide inhibits leukocyte-endothelium interaction in the microcirculation during acute endothelial dysfunction. FASEB J. 2000;14:2357–64.

    Article  PubMed  CAS  Google Scholar 

  69. Young LH, Ikeda Y, Scalia R, Lefer AM. C-peptide exerts cardioprotective effects in myocardial ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2000;279:H1453–9.

    PubMed  CAS  Google Scholar 

  70. Cotter MA, Ekberg K, Wahren J, Cameron NE. Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition. Diabetes. 2003;52:1812–7.

    Article  PubMed  CAS  Google Scholar 

  71. Stevens MJ, Zhang W, Li F, Sima AA. C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab. 2004;287:E497–505.

    Article  PubMed  CAS  Google Scholar 

  72. Kitamura T, Kimura K, Makondo K, et al. Proinsulin C-peptide increases nitric oxide production through mitogen-activated protein kinase-dependent transcriptional enhancement of endothelial nitric oxide synthase in rat aortic endothelial cells. Diabetologia. 2003;46:1698–705.

    Article  PubMed  CAS  Google Scholar 

  73. van Faassen EE, Bahrami S, Feelisch M, et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev. 2009;29:683–741.

    Article  PubMed  Google Scholar 

  74. Bryan NS, Calvert JW, Gundewar S, Lefer DJ. Dietary nitrite restores NO homeostasis and is cardioprotective in eNOS deficient mice. Free Radic Biol Med. 2008;45:468–74.

    Article  PubMed  CAS  Google Scholar 

  75. Kapil V, Webb AJ, Ahluwalia A. Inorganic nitrate and the cardiovascular system. Heart. 2010;96:1703–9.

    Article  PubMed  CAS  Google Scholar 

  76. Zhong Z, Kotova O, Davidescu A, et al. C-peptide stimulates Na+/K+-ATPase via activation of ERK1/2 MAP kinases in human renal tubular cells. Cell Mol Life Sci. 2004;61:2782–90.

    Article  PubMed  CAS  Google Scholar 

  77. Tsimaratos M, Roger F, Chabardès D, et al. C-peptide stimulates Na+/K+-ATPase activity via PKC alpha in rat medullary thick ascending limb. Diabetologia. 2003;46:124–31.

    PubMed  CAS  Google Scholar 

  78. Ohtomo Y, Aperia A, Sahlgren B, Johansson BL, Wahren J. C-peptide stimulates rat renal tubular Na+/K+-ATPase activity in synergism with neuropeptide Y. Diabetologia. 1996;39:199–205.

    Article  PubMed  CAS  Google Scholar 

  79. Ohtomo Y, Bergman T, Johansson BL, Jornvall H, Wahren J. Differential effects of proinsulin C-peptide fragments on Na+/K+-ATPase activity of renal tubule segments. Diabetologia. 1998;41:287–91.

    Article  PubMed  CAS  Google Scholar 

  80. White CN, Hamilton EJ, Garcia A, et al. Opposing effects of coupled and uncoupled NOS activity on the Na+-K+ pump in cardiac myocytes. Am J Physiol Cell Physiol. 2008;294:C572–8.

    Article  PubMed  CAS  Google Scholar 

  81. Kone BC, Higham S. Nitric oxide inhibits transcription of the Na+/K+-ATPase α1-subunit gene in an MTAL cell line. Am J Physiol. 1999;276:F614–21.

    PubMed  CAS  Google Scholar 

  82. Reifenberger MS, Arnett KL, Gatto C, Milanick MA. The reactive nitrogen species peroxynitrite is a potent inhibitor of renal Na-K-ATPase activity. Am J Physiol Renal Physiol. 2008;295:F1191–8.

    Article  PubMed  CAS  Google Scholar 

  83. Ido Y, Vindigni A, Chang K, et al. Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science. 1997;277:563–6.

    Article  PubMed  CAS  Google Scholar 

  84. Sima AA, Zhang W, Sugimoto K, et al. C-peptide prevents and improves chronic type 1 diabetic polyneuropathy in the BB/Wor rat. Diabetologia. 2001;44:889–97.

    Article  PubMed  CAS  Google Scholar 

  85. Raccah D, Lamotte-Jannot MF, Issautier T, Vague P. Effect of experimental diabetes on Na+/K+-ATPase activity in red blood cells, peripheral nerve and kidney. Diabete Metab. 1994;20:271–4.

    PubMed  CAS  Google Scholar 

  86. Tsimaratos M, Coste TC, Djemli-Shipkolye A, et al. Gamma-linolenic acid restores renal medullary thick ascending limb Na+, K+-ATPase activity in diabetic rats. J Nutr. 2001;131:3160–5.

    PubMed  CAS  Google Scholar 

  87. Comellas AP, Dada LA, Lecuona E, et al. Hypoxia-mediated degradation of Na, K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system. Circ Res. 2006;98:1314–22.

    Article  PubMed  CAS  Google Scholar 

  88. Nordquist L, Shimada K, Ishii T, et al. Proinsulin C-peptide prevents type-1 diabetes-induced decrease of renal Na+, K+-ATPase α1-subunit in rats. Diabetes Metab Res Rev. 2010;26:193–9.

    Article  PubMed  CAS  Google Scholar 

  89. Kitamura T, Kimura K, Jung BD, et al. Proinsulin C-peptide rapidly stimulates mitogen-activated protein kinases in Swiss 3T3 fibroblasts: requirement of protein kinase C, phosphoinositide 3-kinase and pertussis ­toxin-sensitive G protein. Biochem J. 2001;355:123–9.

    Article  PubMed  CAS  Google Scholar 

  90. Kitamura T, Kimura K, Jung BD, et al. Proinsulin C-peptide activates CRE binding proteins through the p38 MAP kinase pathway in mouse lung capillary endothelial cells. Biochem J. 2002;366:737–44.

    PubMed  CAS  Google Scholar 

  91. Albrecht EW, Stegeman CA, Heeringa P, Henning RH, van Goor H. Protective role of endothelial nitric oxide synthase. J Pathol. 2003;199:8–17.

    Article  PubMed  Google Scholar 

  92. Cifarelli V, Luppi P, Tse HM, He J, Piganelli J, Trucco M. Human proinsulin C-peptide reduces high glucose-induced proliferation and NF-kappaB activation in vascular smooth muscle cells. Atherosclerosis. 2008;201:248–57.

    Article  PubMed  CAS  Google Scholar 

  93. Kobayashi Y, Naruse K, Hamada Y, et al. Human proinsulin C-peptide prevents proliferation of rat aortic smooth muscle cells cultured in high-glucose conditions. Diabetologia. 2005;48:2396–401.

    Article  PubMed  CAS  Google Scholar 

  94. Sima AAF, Zhang W, Muzik O, et al. Sequential abnormalities in type 1 diabetic encephalopathy and the effects of C-peptide. Rev Diabet Stud. 2009;6:211–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kimura, K., Kamikawa, A. (2012). Is NO-eNOS a Target for C-Peptide Action and Its Protective Effects on Diabetic Nephropathy?. In: Sima, A. (eds) Diabetes & C-Peptide. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-61779-391-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-391-2_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-390-5

  • Online ISBN: 978-1-61779-391-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics