Skip to main content

Diagnostic, Prognostic, and Therapeutic Value of Gene Signatures in Non-Small Cell Lung Cancer

  • Chapter
  • First Online:
Diagnostic, Prognostic and Therapeutic Value of Gene Signatures

Abstract

Lung cancer is the primary cause of cancer mortality in developed countries. In the majority of cases, lung cancer is metastatic at the time of diagnosis. Although low-dose spiral computed tomography (CT) has proven to be effective in the early detection of lung cancer, providing higher resectability and higher long-term survival rates, the capacity of annual CT screening to reduce lung cancer mortality in heavy smokers has yet to be demonstrated. Numerous ongoing large-scale randomized trials are under way in high-risk individuals, with different study designs. The initial results should be available in the next 2 years. Biomarker research in CT screening trials, combining noninvasive genomic and proteomic analyses, could lead to a significant improvement in early detection, offering a potential contribution to diagnostic algorithms, assessment of individual risk, and management of CT-detected cancers. Surgical resection for early (stage I–II) non-small cell lung cancer (NSCLC) remains the only reliable treatment for cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pastorino U. Lung cancer screening. Br J Cancer. 2010;102(12):1681–6.

    Article  PubMed  CAS  Google Scholar 

  2. Cykert S, Dilworth-Anderson P, Monroe MH, et al. Factors associated with decisions to undergo surgery among patients with newly diagnosed early-stage lung cancer. JAMA. 2010;303(23):2368–76.

    Article  PubMed  CAS  Google Scholar 

  3. Pantel K, Izbicki J, Passlick B, et al. Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet. 1996;347(9002):649–53.

    Article  PubMed  CAS  Google Scholar 

  4. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8.

    Article  PubMed  CAS  Google Scholar 

  5. Hu Z, Chen X, Zhao Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 2010;28(10):1721–6.

    Article  PubMed  Google Scholar 

  6. Tanaka F, Yoneda K, Kondo N, et al. Circulating tumor cell as a diagnostic marker in primary lung cancer. Clin Cancer Res. 2009;15(22):6980–6.

    Article  PubMed  CAS  Google Scholar 

  7. Maheswaran S, Sequist LV, Nagrath S, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359(4):366–77.

    Article  PubMed  CAS  Google Scholar 

  8. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360(8):790–800.

    Article  PubMed  CAS  Google Scholar 

  9. Arriagada R, Auperin A, Burdett S, et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet. 2010;375(9722):1267–77.

    Article  PubMed  CAS  Google Scholar 

  10. Pisters KM, Vallieres E, Crowley JJ, et al. Surgery with or without preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer: Southwest Oncology Group Trial S9900, an intergroup, randomized, phase III trial. J Clin Oncol. 2010;28(11):1843–9.

    Article  PubMed  CAS  Google Scholar 

  11. Felip E, Rosell R, Maestre JA, et al. Preoperative chemotherapy plus surgery versus surgery plus adjuvant chemotherapy versus surgery alone in early-stage non-small-cell lung cancer. J Clin Oncol. 2010;28(19):3138–45.

    Article  PubMed  CAS  Google Scholar 

  12. Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436(7050):518–24.

    Article  PubMed  CAS  Google Scholar 

  13. Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.

    Article  PubMed  CAS  Google Scholar 

  14. Bos PD, Zhang XH, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459(7249):1005–9.

    Article  PubMed  CAS  Google Scholar 

  15. Leary RJ, Kinde I, Diehl F, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med. 2010. doi:10.1126/scitranslmed.3000702.

  16. Mostertz W, Stevenson M, Acharya C, et al. Age- and sex-specific genomic profiles in non-small cell lung cancer. JAMA. 2010;303(6):535–43.

    Article  PubMed  CAS  Google Scholar 

  17. Chang HY, Sneddon JB, Alizadeh AA, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2(2):E7.

    Article  PubMed  Google Scholar 

  18. Massague J. Sorting out breast-cancer gene signatures. N Engl J Med. 2007;356(3):294–7.

    Article  PubMed  CAS  Google Scholar 

  19. Liu R, Wang X, Chen GY, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med. 2007;356(3):217–26.

    Article  PubMed  CAS  Google Scholar 

  20. Strauss GM. Adjuvant chemotherapy of lung cancer: methodologic issues and therapeutic advances. Hematol Oncol Clin North Am. 2005;19(2):263–81, vi.

    Google Scholar 

  21. Pignon JP, Tribodet H, Scagliotti GV, et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008;26(21):3552–9.

    Article  PubMed  Google Scholar 

  22. Douillard JY, Rosell R, De Lena M, et al. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncol. 2006;7(9):719–27.

    Article  PubMed  CAS  Google Scholar 

  23. Felip E, Rosell R, Maestre J, et al. Preoperative chemotherapy plus surgery versus surgery plus adjuvant ­chemotherapy versus surgery alone in early-stage non-small cell lung cancer. J Clin Oncol. 2010. doi:10.1200/JCO.2009.27.6204.

  24. Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001;98(24):13790–5.

    Article  PubMed  CAS  Google Scholar 

  25. Garber ME, Troyanskaya OG, Schluens K, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 2001;98(24):13784–9.

    Article  PubMed  CAS  Google Scholar 

  26. Beer DG, Kardia SL, Huang CC, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med. 2002;8(8):816–24.

    PubMed  CAS  Google Scholar 

  27. Wigle DA, Jurisica I, Radulovich N, et al. Molecular profiling of non-small cell lung cancer and correlation with disease-free survival. Cancer Res. 2002;62(11):3005–8.

    PubMed  CAS  Google Scholar 

  28. Raponi M, Zhang Y, Yu J, et al. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 2006;66(15):7466–72.

    Article  PubMed  CAS  Google Scholar 

  29. Lu Y, Lemon W, Liu PY, et al. A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med. 2006;3(12):e467.

    Article  PubMed  Google Scholar 

  30. Potti A, Mukherjee S, Petersen R, et al. A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med. 2006;355(6):570–80.

    Article  PubMed  CAS  Google Scholar 

  31. Borczuk AC, Shah L, Pearson GD, et al. Molecular signatures in biopsy specimens of lung cancer. Am J Respir Crit Care Med. 2004;170(2):167–74.

    Article  PubMed  Google Scholar 

  32. Bild AH, Yao G, Chang JT, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439(7074):353–7.

    Article  PubMed  CAS  Google Scholar 

  33. Hsu DS, Acharya CR, Balakumaran BS, et al. Characterizing the developmental pathways TTF-1, NKX2-8, and PAX9 in lung cancer. Proc Natl Acad Sci USA. 2009;106(13):5312–7.

    Article  PubMed  CAS  Google Scholar 

  34. Endoh H, Tomida S, Yatabe Y, et al. Prognostic model of pulmonary adenocarcinoma by expression profiling of eight genes as determined by quantitative real-time reverse transcriptase polymerase chain reaction. J Clin Oncol. 2004;22(5):811–9.

    Article  PubMed  CAS  Google Scholar 

  35. Skrzypski M, Jassem E, Taron M, et al. Three-gene expression signature predicts survival in early-stage squamous cell carcinoma of the lung. Clin Cancer Res. 2008;14(15):4794–9.

    Article  PubMed  CAS  Google Scholar 

  36. Raz DJ, Ray MR, Kim JY, et al. A multigene assay is prognostic of survival in patients with early-stage lung adenocarcinoma. Clin Cancer Res. 2008;14(17):5565–70.

    Article  PubMed  CAS  Google Scholar 

  37. Chen HY, Yu SL, Chen CH, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med. 2007;356(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  38. Yu SL, Chen HY, Chang GC, et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell. 2008;13(1):48–57.

    Article  PubMed  CAS  Google Scholar 

  39. Lau SK, Boutros PC, Pintilie M, et al. Three-gene prognostic classifier for early-stage non small-cell lung ­cancer. J Clin Oncol. 2007;25(35):5562–9.

    Article  PubMed  Google Scholar 

  40. Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet. 2003;34(1):42–51.

    Article  PubMed  CAS  Google Scholar 

  41. Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature. 2008;452(7184):187–93.

    Article  PubMed  CAS  Google Scholar 

  42. Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T. SATB1 targets chromatin remodelling to ­regulate genes over long distances. Nature. 2002;419(6907):641–5.

    Article  PubMed  CAS  Google Scholar 

  43. Lossos IS, Czerwinski DK, Alizadeh AA, et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med. 2004;350(18):1828–37.

    Article  PubMed  CAS  Google Scholar 

  44. Han S, Ritzenthaler JD, Sitaraman SV, Roman J. Fibronectin increases matrix metalloproteinase 9 expression through activation of c-Fos via extracellular-regulated kinase and phosphatidylinositol 3-kinase pathways in human lung carcinoma cells. J Biol Chem. 2006;281(40):29614–24.

    Article  PubMed  CAS  Google Scholar 

  45. Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer ­metastasis. Nature. 2008;451(7175):147–52.

    Article  PubMed  CAS  Google Scholar 

  46. Adler AS, Lin M, Horlings H, Nuyten DS, van de Vijver MJ, Chang HY. Genetic regulators of large-scale ­transcriptional signatures in cancer. Nat Genet. 2006;38(4):421–30.

    Article  PubMed  CAS  Google Scholar 

  47. Wong DJ, Nuyten DS, Regev A, et al. Revealing targeted therapy for human cancer by gene module maps. Cancer Res. 2008;68(2):369–78.

    Article  PubMed  CAS  Google Scholar 

  48. Adler AS, Littlepage LE, Lin M, et al. CSN5 isopeptidase activity links COP9 signalosome activation to breast cancer progression. Cancer Res. 2008;68(2):506–15.

    Article  PubMed  CAS  Google Scholar 

  49. Akhoondi S, Sun D, von der Lehr N, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 2007;67(19):9006–12.

    Article  PubMed  CAS  Google Scholar 

  50. Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008;8(2):83–93.

    Article  PubMed  CAS  Google Scholar 

  51. Deeb KK, Michalowska AM, Yoon CY, et al. Identification of an integrated SV40 T/t-antigen cancer signature in aggressive human breast, prostate, and lung carcinomas with poor prognosis. Cancer Res. 2007;67(17):8065–80.

    Article  PubMed  CAS  Google Scholar 

  52. Rosell R, Scagliotti G, Danenberg KD, et al. Transcripts in pretreatment biopsies from a three-arm randomized trial in metastatic non-small-cell lung cancer. Oncogene. 2003;22(23):3548–53.

    Article  PubMed  CAS  Google Scholar 

  53. Rosell R, Danenberg KD, Alberola V, et al. Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res. 2004;10(4):1318–25.

    Article  PubMed  CAS  Google Scholar 

  54. Souglakos J, Boukovinas I, Taron M, et al. Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine. Br J Cancer. 2008;98(10):1710–5.

    Article  PubMed  CAS  Google Scholar 

  55. Johnson CD, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007;67(16):7713–22.

    Article  PubMed  CAS  Google Scholar 

  56. Rosell R, Skrzypski M, Jassem E, et al. BRCA1: a novel prognostic factor in resected non-small-cell lung ­cancer. PLoS ONE. 2007;2(11):e1129.

    Article  PubMed  Google Scholar 

  57. Quinn JE, Kennedy RD, Mullan PB, et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res. 2003;63(19):6221–8.

    PubMed  CAS  Google Scholar 

  58. Quinn JE, James CR, Stewart GE, et al. BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy. Clin Cancer Res. 2007;13(24):7413–20.

    Article  PubMed  CAS  Google Scholar 

  59. Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med. 2006;355(10):983–91.

    Article  PubMed  CAS  Google Scholar 

  60. Zheng Z, Chen T, Li X, Haura E, Sharma A, Bepler G. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med. 2007;356(8):800–8.

    Article  PubMed  CAS  Google Scholar 

  61. Saviozzi S, Ceppi P, Novello S, et al. Non-small cell lung cancer exhibits transcript overexpression of genes associated with homologous recombination and DNA replication pathways. Cancer Res. 2009;69(8):3390–6.

    Article  PubMed  CAS  Google Scholar 

  62. Su TT. Cellular responses to DNA damage: one signal, multiple choices. Annu Rev Genet. 2006;40:187–208.

    Article  PubMed  CAS  Google Scholar 

  63. Bristow RG, Hill RP. Hypoxia and metabolism, Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008;8(3):180–92.

    Article  PubMed  CAS  Google Scholar 

  64. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319(5868):1352–5.

    Article  PubMed  CAS  Google Scholar 

  65. Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434(7035):907–13.

    Article  PubMed  CAS  Google Scholar 

  66. DiTullio Jr RA, Mochan TA, Venere M, et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol. 2002;4(12):998–1002.

    Article  PubMed  CAS  Google Scholar 

  67. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.

    Article  PubMed  CAS  Google Scholar 

  68. Wang B, Matsuoka S, Ballif BA, et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science. 2007;316(5828):1194–8.

    Article  PubMed  CAS  Google Scholar 

  69. Sobhian B, Shao G, Lilli DR, et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science. 2007;316(5828):1198–202.

    Article  PubMed  CAS  Google Scholar 

  70. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273(10):5858–68.

    Article  PubMed  CAS  Google Scholar 

  71. Wang B, Elledge SJ. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci USA. 2007;104(52):20759–63.

    Article  PubMed  CAS  Google Scholar 

  72. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28(5):739–45.

    Article  PubMed  CAS  Google Scholar 

  73. Chen X, Arciero CA, Wang C, Broccoli D, Godwin AK. BRCC36 is essential for ionizing radiation-induced BRCA1 phosphorylation and nuclear foci formation. Cancer Res. 2006;66(10):5039–46.

    Article  PubMed  CAS  Google Scholar 

  74. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 2003;421(6926):961–6.

    Article  PubMed  CAS  Google Scholar 

  75. Fossella F, Pereira JR, von Pawel J, et al. Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 study group. J Clin Oncol. 2003;21(16):3016–24.

    Article  PubMed  CAS  Google Scholar 

  76. Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–51.

    Article  PubMed  CAS  Google Scholar 

  77. Cobo M, Isla D, Massuti B, et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol. 2007;25(19):2747–54.

    Article  PubMed  CAS  Google Scholar 

  78. Kim H, Chen J, Yu X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science. 2007;316(5828):1202–5.

    Article  PubMed  CAS  Google Scholar 

  79. Yan J, Kim YS, Yang XP, et al. The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. Cancer Res. 2007;67(14):6647–56.

    Article  PubMed  CAS  Google Scholar 

  80. Yan J, Kim YS, Yang XP, Albers M, Koegl M, Jetten AM. Ubiquitin-interaction motifs of RAP80 are critical in its regulation of estrogen receptor alpha. Nucleic Acids Res. 2007;35(5):1673–86.

    Article  PubMed  CAS  Google Scholar 

  81. Eelen G, Vanden Bempt I, Verlinden L, et al. Expression of the BRCA1-interacting protein Brip1/BACH1/FANCJ is driven by E2F and correlates with human breast cancer malignancy. Oncogene. 2008;27(30):4233–41.

    Article  PubMed  CAS  Google Scholar 

  82. Yan J, Jetten AM. RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites. Cancer Lett. 2008;271(2):179–90.

    Article  PubMed  CAS  Google Scholar 

  83. Huen MS, Grant R, Manke I, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell. 2007;131(5):901–14.

    Article  PubMed  CAS  Google Scholar 

  84. Mailand N, Bekker-Jensen S, Faustrup H, et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell. 2007;131(5):887–900.

    Article  PubMed  CAS  Google Scholar 

  85. Wu W, Koike A, Takeshita T, Ohta T. The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div. 2008;3:1.

    Article  PubMed  CAS  Google Scholar 

  86. Morris JR, Boutell C, Keppler M, et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature. 2009;462(7275):886–90.

    Article  PubMed  CAS  Google Scholar 

  87. Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature. 2009;462(7275):935–9.

    Article  PubMed  CAS  Google Scholar 

  88. Lafarge S, Sylvain V, Ferrara M, Bignon YJ. Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway. Oncogene. 2001;20(45):6597–606.

    Article  PubMed  CAS  Google Scholar 

  89. Husain A, He G, Venkatraman ES, Spriggs DR. BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res. 1998;58(6):1120–3.

    PubMed  CAS  Google Scholar 

  90. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem. 2000;275(31):23899–903.

    Article  PubMed  CAS  Google Scholar 

  91. Abbott DW, Thompson ME, Robinson-Benion C, Tomlinson G, Jensen RA, Holt JT. BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem. 1999;274(26):18808–12.

    Article  PubMed  CAS  Google Scholar 

  92. Mullan PB, Quinn JE, Gilmore PM, et al. BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene. 2001;20(43):6123–31.

    Article  PubMed  CAS  Google Scholar 

  93. Chabalier C, Lamare C, Racca C, Privat M, Valette A, Larminat F. BRCA1 downregulation leads to premature inactivation of spindle checkpoint and confers paclitaxel resistance. Cell Cycle. 2006;5(9):1001–7.

    Article  PubMed  CAS  Google Scholar 

  94. Wang L, Wei J, Qian X, et al. ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel. BMC Cancer. 2008;8:97.

    Article  PubMed  Google Scholar 

  95. Taron M, Rosell R, Felip E, et al. BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. Hum Mol Genet. 2004;13(20):2443–9.

    Article  PubMed  CAS  Google Scholar 

  96. Boukovinas I, Papadaki C, Mendez P, et al. Tumor BRCA1, RRM1 and RRM2 mRNA expression levels and clinical response to first-line gemcitabine plus docetaxel in non-small-cell lung cancer patients. PLoS ONE. 2008;3(11):e3695.

    Article  PubMed  Google Scholar 

  97. Weberpals J, Garbuio K, O’Brien A, et al. The DNA repair proteins BRCA1 and ERCC1 as predictive markers in sporadic ovarian cancer. Int J Cancer. 2009;124(4):806–15.

    Article  PubMed  CAS  Google Scholar 

  98. Font A, Taron M, Gago JL, et al. BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Ann Oncol. 2010;22(1):139–44.

    PubMed  Google Scholar 

  99. Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361(10):958–67.

    Article  PubMed  CAS  Google Scholar 

  100. Marks JL, Broderick S, Zhou Q, et al. Prognostic and therapeutic implications of EGFR and KRAS mutations in resected lung adenocarcinoma. J Thorac Oncol. 2008;3(2):111–6.

    Article  PubMed  Google Scholar 

  101. Potti A, Mukherjee S. Retraction: A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 2006;355:570–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Rosell PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rosell, R., Taron, M., Rolfo, C.D., Rodriguez-Abreu, D., Wei, J. (2012). Diagnostic, Prognostic, and Therapeutic Value of Gene Signatures in Non-Small Cell Lung Cancer. In: Russo, A., Iacobelli, S., Iovanna, J. (eds) Diagnostic, Prognostic and Therapeutic Value of Gene Signatures. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-61779-358-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-358-5_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-357-8

  • Online ISBN: 978-1-61779-358-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics