Advertisement

Myocardial Repair and Restoration

  • Sharon S. Y. Wong
  • Harold S. BernsteinEmail author
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Over 19 million people in the USA and Europe alone suffer with heart failure, causing 230,000 deaths each year incurring tremendous costs. Heart transplantation remains the definitive treatment for end-stage heart failure, but this therapy is invasive, costly, and excludes some patients who are not candidates for transplantation and others for whom an organ is not available. New therapies are needed to treat the millions of patients with debilitating heart failure worldwide. Myocardial engineering represents a realistic strategy for reversing the deleterious effects of what has until now been considered terminal damage to the heart. This chapter reviews potential sources of cardiac-specific stem cells, efforts to enhance their engraftment and survival in damaged tissues, their incorporation into tissue patches, and recent progress made in developing methods to assess functional improvement in engineered myocardium.

Keywords

Optical Mapping hESC Line Cardiac Differentiation Cardiac Stem Cell MES1 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ABCG2

ATP-binding cassette subfamily G member 2

αMHC

α-Myosin heavy chain

ANF

Atrial natriuretic factor

BMP4

Bone morphogenetic protein 4

bFGF

Basic fibroblast growth factor

CM

Cardiomyocyte

cTnI

Cardiac Troponin I

cTnT

Cardiac Troponin T

DKK1

Dickkopf homolog 1

ECM

Extracellular matrix

FRET

Fluorescence resonance energy transfer

GFP

Green fluorescent protein

hEB

Human embryoid body

hESC

Human embryonic stem cell

HTK/GCV

Herpes thymidine kinase/ganciclovir

iPSC

Induced pluripotent stem cell

KDR

Kinase insert domain receptor (VEGF receptor 2)

MDR1

Multidrug resistance-like protein 1

MEA

Multielectrode array

MEF2

Myocyte enhancer factor-2

MHC

Major histocompatibility complex

MI

Myocardial infarction

miRNA

microRNA

MLC2a

Atrial myosin light chain 2

MLC2v

Ventricular myosin light chain 2

MSC

Mesenchymal stem/stromal cell

PGI2

Prostaglandin I2

RFP

Red fluorescent protein

Sca-1

Stem cell antigen-1

SP

Side population

TMRM

Tetramethylrhodamine methyl ester perchlorate

VEGF

Vascular endothelial growth factor

Notes

Acknowledgments

The authors thank members of the Bernstein Laboratory for helpful discussion. H.S.B. is supported by grants from the National Institutes of Health, the California Institute for Regenerative Medicine, and the Muscular Dystrophy Association. S.S.Y.W. was supported by a fellowship from the National Institutes of Health.

References

  1. 1.
    Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O’Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y (2009) Heart disease and stroke statistics–2009 update: a report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation 119(3):480–486PubMedCrossRefGoogle Scholar
  2. 2.
    Hogg K, Swedberg K, McMurray J (2004) Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J Am Coll Cardiol 43(3):317–327PubMedCrossRefGoogle Scholar
  3. 3.
    Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900PubMedCrossRefGoogle Scholar
  4. 4.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49PubMedCrossRefGoogle Scholar
  5. 5.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  6. 6.
    Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705PubMedCrossRefGoogle Scholar
  7. 7.
    Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(19 Suppl):II247–II256PubMedGoogle Scholar
  8. 8.
    Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G, Lehrke S, Baumgartner WW, Martin BJ, Heldman AW, Hare JM (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102(32):11474–11479PubMedCrossRefGoogle Scholar
  9. 9.
    Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, Morine KJ, Gardner TJ, Discher DE, Sweeney HL (2006) Mesenchymal stem cell injection after myocardial ­infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290(6):H2196–H2203PubMedCrossRefGoogle Scholar
  10. 10.
    Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE, Kloner RA (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112(2):214–223PubMedCrossRefGoogle Scholar
  11. 11.
    Grauss RW, van Tuyn J, Steendijk P, Winter EM, Pijnappels DA, Hogers B, Gittenberger-De Groot AC, van der Geest R, van der Laarse A, de Vries AA, Schalij MJ, Atsma DE (2008) Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts. Stem Cells 26(4):1083–1093PubMedCrossRefGoogle Scholar
  12. 12.
    Kudo M, Wang Y, Wani MA, Xu M, Ayub A, Ashraf M (2003) Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart. J Mol Cell Cardiol 35(9):1113–1119PubMedCrossRefGoogle Scholar
  13. 13.
    Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465PubMedCrossRefGoogle Scholar
  14. 14.
    Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, Yamagishi M, Mori H, Kangawa K, Kitamura S (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 287(6):H2670–H2676PubMedCrossRefGoogle Scholar
  15. 15.
    Perin EC, Silva GV, Assad JA, Vela D, Buja LM, Sousa AL, Litovsky S, Lin J, Vaughn WK, Coulter S, Fernandes MR, Willerson JT (2008) Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol 44(3):486–495PubMedCrossRefGoogle Scholar
  16. 16.
    Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, Pittenger MF, Martin BJ (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73(6):1919–1925, discussion 1926PubMedCrossRefGoogle Scholar
  17. 17.
    Shiota M, Heike T, Haruyama M, Baba S, Tsuchiya A, Fujino H, Kobayashi H, Kato T, Umeda K, Yoshimoto M, Nakahata T (2007) Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Exp Cell Res 313(5):1008–1023PubMedCrossRefGoogle Scholar
  18. 18.
    Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111(2):150–156PubMedCrossRefGoogle Scholar
  19. 19.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98PubMedCrossRefGoogle Scholar
  20. 20.
    Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20(6):530–541PubMedCrossRefGoogle Scholar
  21. 21.
    Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9):1827–1835PubMedCrossRefGoogle Scholar
  22. 22.
    Alhadlaq A, Mao JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13(4):436–448PubMedCrossRefGoogle Scholar
  23. 23.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822PubMedCrossRefGoogle Scholar
  24. 24.
    Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42–48PubMedCrossRefGoogle Scholar
  25. 25.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843PubMedCrossRefGoogle Scholar
  26. 26.
    Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31(10):890–896PubMedCrossRefGoogle Scholar
  27. 27.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11–20PubMedCrossRefGoogle Scholar
  28. 28.
    Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR, Mosca JD (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10(2):228–241PubMedCrossRefGoogle Scholar
  29. 29.
    Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75(3):389–397PubMedCrossRefGoogle Scholar
  30. 30.
    Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94(1):92–95PubMedCrossRefGoogle Scholar
  31. 31.
    Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, Hermiller JB Jr, Reisman MA, Schaer GL, Sherman W (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286PubMedCrossRefGoogle Scholar
  32. 32.
    Clinicaltrials.gov (2011) Caduceus trial. http://clinicaltrials.gov/ct2/results?term=CADUCEUS. Accessed 6 Aug 2011
  33. 33.
    Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110(4):1362–1369PubMedCrossRefGoogle Scholar
  34. 34.
    Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109(25):3154–3157PubMedCrossRefGoogle Scholar
  35. 35.
    Pak HN, Qayyum M, Kim DT, Hamabe A, Miyauchi Y, Lill MC, Frantzen M, Takizawa K, Chen LS, Fishbein MC, Sharifi BG, Chen PS, Makkar R (2003) Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a swine model of myocardial infarction. J Cardiovasc Electrophysiol 14(8):841–848PubMedCrossRefGoogle Scholar
  36. 36.
    Price MJ, Chou CC, Frantzen M, Miyamoto T, Kar S, Lee S, Shah PK, Martin BJ, Lill M, Forrester JS, Chen PS, Makkar RR (2006) Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol 111(2):231–239PubMedCrossRefGoogle Scholar
  37. 37.
    Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, Marban E, Abraham MR (2006) Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 113(15):1832–1841PubMedCrossRefGoogle Scholar
  38. 38.
    Clubb FJ Jr, Bishop SP (1984) Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy. Lab Investig 50(5):571–577PubMedGoogle Scholar
  39. 39.
    Erokhina IL, Rumyantsev PP (1986) Ultrastructure of DNA-synthesizing and mitotically dividing myocytes in sinoatrial node of mouse embryonal heart. J Mol Cell Cardiol 18(12):1219–1231PubMedCrossRefGoogle Scholar
  40. 40.
    Erokhina IL, Rumyantsev PP (1988) Proliferation and biosynthetic activities of myocytes from conductive system and working myocardium of the developing mouse heart. Light microscopic autoradiographic study. Acta Histochem 84(1):51–66PubMedGoogle Scholar
  41. 41.
    Machida N, Brissie N, Sreenan C, Bishop SP (1997) Inhibition of cardiac myocyte division in c-myc transgenic mice. J Mol Cell Cardiol 29(7):1895–1902PubMedCrossRefGoogle Scholar
  42. 42.
    Marino TA, Cao W, Lee J, Courtney R (1996) Localization of proliferating cell nuclear antigen in the developing and mature rat heart cell. Anat Rec 245(4):677–684PubMedCrossRefGoogle Scholar
  43. 43.
    Marino TA, Haldar S, Williamson EC, Beaverson K, Walter RA, Marino DR, Beatty C, Lipson KE (1991) Proliferating cell nuclear antigen in developing and adult rat cardiac muscle cells. Circ Res 69(5):1353–1360PubMedGoogle Scholar
  44. 44.
    Nakagawa M, Hamaoka K, Hattori T, Sawada T (1988) Postnatal DNA synthesis in hearts of mice: autoradiographic and cytofluorometric investigations. Cardiovasc Res 22(8):575–583PubMedCrossRefGoogle Scholar
  45. 45.
    Rumyantsev PP, Borisov A (1987) DNA synthesis in myocytes from different myocardial compartments of young rats after experimental infarction and in vitro. Biomed Biochim Acta 46(8–9):S610–S615PubMedGoogle Scholar
  46. 46.
    Rumyantsev PP, Marakjan VO (1968) Reactive synthesis of DNA and mitotic division in atrial heart muscle cells following ventricle infarction. Experientia 24(12):1234–1235PubMedCrossRefGoogle Scholar
  47. 47.
    Sasaki R, Morishita T, Yamagata S (1970) Autoradiographic studies on heart muscle cells in normal rats. Tohoku J Exp Med 100(1):1–13PubMedCrossRefGoogle Scholar
  48. 48.
    Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271(5 Pt 2):H2183–H2189PubMedGoogle Scholar
  49. 49.
    Wachtlova M, Mares V, Ostadal B (1977) DNA synthesis in the ventricular myocardium of young rats exposed to intermittent high altitude (IHA) hypoxia. An autoradiographic study. Virchows Arch B Cell Pathol 24(4):335–342PubMedGoogle Scholar
  50. 50.
    Leri A, Barlucchi L, Limana F, Deptala A, Darzynkiewicz Z, Hintze TH, Kajstura J, Nadal-Ginard B, Anversa P (2001) Telomerase expression and activity are coupled with myocyte proliferation and preservation of telomeric length in the failing heart. Proc Natl Acad Sci USA 98(15):8626–8631PubMedCrossRefGoogle Scholar
  51. 51.
    Oh H, Chi X, Bradfute SB, Mishina Y, Pocius J, Michael LH, Behringer RR, Schwartz RJ, Entman ML, Schneider MD (2004) Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann N Y Acad Sci 1015:182–189PubMedCrossRefGoogle Scholar
  52. 52.
    Oh H, Wang SC, Prahash A, Sano M, Moravec CS, Taffet GE, Michael LH, Youker KA, Entman ML, Schneider MD (2003) Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA 100(9):5378–5383PubMedCrossRefGoogle Scholar
  53. 53.
    Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C, Nadal-Ginard B, Leri A, Kajstura J, Quaini E, Anversa P (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA 100(18):10440–10445PubMedCrossRefGoogle Scholar
  54. 54.
    Anversa P, Leri A, Kajstura J (2006) Cardiac regeneration. J Am Coll Cardiol 47(9):1769–1776PubMedCrossRefGoogle Scholar
  55. 55.
    Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13(8):970–974PubMedCrossRefGoogle Scholar
  56. 56.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080PubMedCrossRefGoogle Scholar
  57. 57.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102PubMedCrossRefGoogle Scholar
  58. 58.
    Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2002) Chimerism of the transplanted heart. N Engl J Med 346(1):5–15PubMedCrossRefGoogle Scholar
  59. 59.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776PubMedCrossRefGoogle Scholar
  60. 60.
    Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279(12):11384–11391PubMedCrossRefGoogle Scholar
  61. 61.
    Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100(21):12313–12318PubMedCrossRefGoogle Scholar
  62. 62.
    Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA 102(10):3766–3771PubMedCrossRefGoogle Scholar
  63. 63.
    Rota M, Padin-Iruegas ME, Misao Y, De Angelis A, Maestroni S, Ferreira-Martins J, Fiumana E, Rastaldo R, Arcarese ML, Mitchell TS, Boni A, Bolli R, Urbanek K, Hosoda T, Anversa P, Leri A, Kajstura J (2008) Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res 103(1):107–116PubMedCrossRefGoogle Scholar
  64. 64.
    Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104(35):14068–14073PubMedCrossRefGoogle Scholar
  65. 65.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806PubMedCrossRefGoogle Scholar
  66. 66.
    Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530(1–3):239–243PubMedCrossRefGoogle Scholar
  67. 67.
    Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, Gallardo TD, Garry DJ (2004) Persistent expression of the ATP-binding cassette transporter, ABCG2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275PubMedCrossRefGoogle Scholar
  68. 68.
    Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K, Takahashi T, Goto M, Mikami Y, Yasuda N, Akazawa H, Uezumi A, Takeda S, Komuro I (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176(3):329–341PubMedCrossRefGoogle Scholar
  69. 69.
    Pfister O, Oikonomopoulos A, Sereti KI, Sohn RL, Cullen D, Fine GC, Mouquet F, Westerman K, Liao R (2008) Role of the ATP-binding cassette transporter ABCG2 in the phenotype and function of cardiac side population cells. Circ Res 103(8):825–835PubMedCrossRefGoogle Scholar
  70. 70.
    Alfakir M, Dawe N, Eyre R, Tyson-Capper A, Britton K, Robson SC, Meeson AP (2010) The temporal and spatial expression patterns of ABCG2 in the developing human heart. Int J Cardiol 3(5):494–508 doi:10.1016/j.ijcard.2010.10.025 [Epub ahead of print 15 Dec 2010]Google Scholar
  71. 71.
    Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31− but not CD31+ cardiac side population cells exhibit functional cardiomyogenic ­differentiation. Circ Res 97(1):52–61PubMedCrossRefGoogle Scholar
  72. 72.
    Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, Zhang J (2006) The role of the Sca-1+/CD31− cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24(7):1779–1788PubMedCrossRefGoogle Scholar
  73. 73.
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921PubMedCrossRefGoogle Scholar
  74. 74.
    Ye J, Boyle A, Shih H, Sievers RE, Zhang Y, Prasad M, Su H, Zhou Y, Grossman W, Bernstein HS, Yeghiazarians Y (2011) Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury. PLoS One In pressGoogle Scholar
  75. 75.
    Tomita Y, Matsumura K, Wakamatsu Y, Matsuzaki Y, Shibuya I, Kawaguchi H, Ieda M, Kanakubo S, Shimazaki T, Ogawa S, Osumi N, Okano H, Fukuda K (2005) Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J Cell Biol 170(7):1135–1146PubMedCrossRefGoogle Scholar
  76. 76.
    Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marban E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908PubMedCrossRefGoogle Scholar
  77. 77.
    Bartosh TJ, Wang Z, Rosales AA, Dimitrijevich SD, Roque RS (2008) 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J Cell Biochem 105(2):612–623PubMedCrossRefGoogle Scholar
  78. 78.
    Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H, Ueyama T, Takahashi T, Takamatsu T, Fukushima M, Komeda M, Yamagishi M, Yaku H, Tabata Y, Matsubara H, Oh H (2008) Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol 52(23):1858–1865PubMedCrossRefGoogle Scholar
  79. 79.
    Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, Lardo AC, Lai S, Steenbergen C, Gerstenblith G, Lange R, Marban E (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120(12):1075–1083, 1077 p following 1083PubMedCrossRefGoogle Scholar
  80. 80.
    Lee ST, White AJ, Matsushita S, Malliaras K, Steenbergen C, Zhang Y, Li TS, Terrovitis J, Yee K, Simsir S, Makkar R, Marban E (2011) Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol 57(4):455–465PubMedCrossRefGoogle Scholar
  81. 81.
    Pouly J, Bruneval P, Mandet C, Proksch S, Peyrard S, Amrein C, Bousseaux V, Guillemain R, Deloche A, Fabiani JN, Menasche P (2008) Cardiac stem cells in the real world. J Thorac Cardiovasc Surg 135(3):673–678PubMedCrossRefGoogle Scholar
  82. 82.
    Holmes C, Stanford WL (2007) Stem cell antigen-1: expression, function, and enigma. Stem Cells 25(6):1339–1347PubMedCrossRefGoogle Scholar
  83. 83.
    Shenje LT, Field LJ, Pritchard CA, Guerin CJ, Rubart M, Soonpaa MH, Ang KL, Galinanes M (2008) Lineage tracing of cardiac explant derived cells. PLoS One 3(4):e1929PubMedCrossRefGoogle Scholar
  84. 84.
    Li Z, Lee A, Huang M, Chun H, Chung J, Chu P, Hoyt G, Yang P, Rosenberg J, Robbins RC, Wu JC (2009) Imaging survival and function of transplanted cardiac resident stem cells. J Am Coll Cardiol 53(14):1229–1240PubMedCrossRefGoogle Scholar
  85. 85.
    Andersen DC, Andersen P, Schneider M, Jensen HB, Sheikh SP (2009) Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential. Stem Cells 27(7):1571–1581PubMedCrossRefGoogle Scholar
  86. 86.
    Davis DR, Zhang Y, Smith RR, Cheng K, Terrovitis J, Malliaras K, Li TS, White A, Makkar R, Marban E (2009) Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One 4(9):e7195PubMedCrossRefGoogle Scholar
  87. 87.
    Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108(3):407–414PubMedGoogle Scholar
  88. 88.
    Xu C, Police S, Rao N, Carpenter MK (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91(6):501–508PubMedCrossRefGoogle Scholar
  89. 89.
    Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6(2):88–95PubMedGoogle Scholar
  90. 90.
    He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93(1):32–39PubMedCrossRefGoogle Scholar
  91. 91.
    Wong SS, Bernstein HS (2010) Cardiac regeneration using human embryonic stem cells: producing cells for future therapy. Regen Med 5(5):763–775PubMedCrossRefGoogle Scholar
  92. 92.
    Graichen R, Xu X, Braam SR, Balakrishnan T, Norfiza S, Sieh S, Soo SY, Tham SC, Mummery C, Colman A, Zweigerdt R, Davidson BP (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38MAPK. Differentiation 76(4):357–370PubMedCrossRefGoogle Scholar
  93. 93.
    Gaur M, Ritner C, Sievers R, Pedersen A, Prasad M, Bernstein HS, Yeghiazarians Y (2010) Timed inhibition of p38MAPK directs accelerated differentiation of human embryonic stem cells into cardiomyocytes. Cytotherapy 12(6):807–817PubMedCrossRefGoogle Scholar
  94. 94.
    Mummery CL, van Achterberg TA, van den Eijnden-van Raaij AJ, van Haaster L, Willemse A, de Laat SW, Piersma AH (1991) Visceral-endoderm-like cell lines induce differentiation of murine P19 embryonal carcinoma cells. Differentiation 46(1):51–60PubMedCrossRefGoogle Scholar
  95. 95.
    Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107(21):2733–2740PubMedCrossRefGoogle Scholar
  96. 96.
    Xu XQ, Graichen R, Soo SY, Balakrishnan T, Rahmat SN, Sieh S, Tham SC, Freund C, Moore J, Mummery C, Colman A, Zweigerdt R, Davidson BP (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76(9):958–970PubMedGoogle Scholar
  97. 97.
    Mummery CL, Feijen A, Moolenaar WH, van den Brink CE, de Laat SW (1986) Establishment of a differentiated mesodermal line from P19 EC cells expressing functional PDGF and EGF receptors. Exp Cell Res 165(1):229–242PubMedCrossRefGoogle Scholar
  98. 98.
    Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024PubMedCrossRefGoogle Scholar
  99. 99.
    Sugi Y, Lough J (1995) Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol 168(2):567–574PubMedCrossRefGoogle Scholar
  100. 100.
    Smith JC, Price BM, Van Nimmen K, Huylebroeck D (1990) Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345(6277):729–731PubMedCrossRefGoogle Scholar
  101. 101.
    Nakajima Y, Yamagishi T, Ando K, Nakamura H (2002) Significance of bone morphogenetic protein-4 function in the initial myofibrillogenesis of chick cardiogenesis. Dev Biol 245(2):291–303PubMedCrossRefGoogle Scholar
  102. 102.
    Lough J, Barron M, Brogley M, Sugi Y, Bolender DL, Zhu X (1996) Combined BMP-2 and FGF-4, but neither factor alone, induces cardiogenesis in non-precardiac embryonic mesoderm. Dev Biol 178(1):198–202PubMedCrossRefGoogle Scholar
  103. 103.
    Ladd AN, Yatskievych TA, Antin PB (1998) Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins. Dev Biol 204(2):407–419Google Scholar
  104. 104.
    Barron M, Gao M, Lough J (2000) Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Dev Dyn 218(2):383–393PubMedCrossRefGoogle Scholar
  105. 105.
    Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103(18):6907–6912PubMedCrossRefGoogle Scholar
  106. 106.
    Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR  +  embryonic-stem-cell-derived population. Nature 453(7194):524–528PubMedCrossRefGoogle Scholar
  107. 107.
    Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15(3):304–315PubMedCrossRefGoogle Scholar
  108. 108.
    Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15(3):316–327Google Scholar
  109. 109.
    Sargent CY, Berguig GY, McDevitt TC (2009) Cardiomyogenic differentiation of embryoid bodies is promoted by rotary orbital suspension culture. Tissue Eng Part A 15(2):331–342PubMedCrossRefGoogle Scholar
  110. 110.
    Sargent CY, Berguig GY, Kinney MA, Hiatt LA, Carpenedo RL, Berson RE, McDevitt TC (2010) Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture. Biotechnol Bioeng 105(3):611–626PubMedCrossRefGoogle Scholar
  111. 111.
    Domian IJ, Chiravuri M, van der Meer P, Feinberg AW, Shi X, Shao Y, Wu SM, Parker KK, Chien KR (2009) Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326(5951):426–429PubMedCrossRefGoogle Scholar
  112. 112.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some micrornas downregulate large numbers of target mRNAs. Nature 433(7027):769–773PubMedCrossRefGoogle Scholar
  113. 113.
    Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39(3):380–385PubMedCrossRefGoogle Scholar
  114. 114.
    Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102(34):12135–12140PubMedCrossRefGoogle Scholar
  115. 115.
    Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501PubMedCrossRefGoogle Scholar
  116. 116.
    Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35(3):215–217PubMedCrossRefGoogle Scholar
  117. 117.
    Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214–220PubMedCrossRefGoogle Scholar
  118. 118.
    Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2):303–317PubMedCrossRefGoogle Scholar
  119. 119.
    Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424PubMedCrossRefGoogle Scholar
  120. 120.
    Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) Microrna-133 controls cardiac hypertrophy. Nat Med 13(5):613–618PubMedCrossRefGoogle Scholar
  121. 121.
    Ivey KN, Muth A, Arnold J, King FW, Yeh RF, Fish JE, Hsiao EC, Schwartz RJ, Conklin BR, Bernstein HS, Srivastava D (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2(3):219–229PubMedCrossRefGoogle Scholar
  122. 122.
    Takeuchi JK, Bruneau BG (2009) Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459(7247):708–711PubMedCrossRefGoogle Scholar
  123. 123.
    Yeghiazarians Y, Gaur M, Zhang Y, Sievers RE, Ritner C, Prasad M, Boyle A, Bernstein HS (2011) Myocardial improvement with human embryonic stem cell derived cardiomyocytes enriched by p38MAPK inhibition. Cytotherapy In pressGoogle Scholar
  124. 124.
    Xu C, Police S, Hassanipour M, Gold JD (2006) Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells Dev 15(5):631–639PubMedCrossRefGoogle Scholar
  125. 125.
    Hattori F, Chen H, Yamashita H, Tohyama S, Satoh YS, Yuasa S, Li W, Yamakawa H, Tanaka T, Onitsuka T, Shimoji K, Ohno Y, Egashira T, Kaneda R, Murata M, Hidaka K, Morisaki T, Sasaki E, Suzuki T, Sano M, Makino S, Oikawa S, Fukuda K (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7(1):61–66PubMedCrossRefGoogle Scholar
  126. 126.
    Huber I, Itzhaki I, Caspi O, Arbel G, Tzukerman M, Gepstein A, Habib M, Yankelson L, Kehat I, Gepstein L (2007) Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J 21(10):2551–2563PubMedCrossRefGoogle Scholar
  127. 127.
    Xu XQ, Zweigerdt R, Soo SY, Ngoh ZX, Tham SC, Wang ST, Graichen R, Davidson B, Colman A, Sun W (2008) Highly enriched cardiomyocytes from human embryonic stem cells. Cytotherapy 10(4):376–389PubMedCrossRefGoogle Scholar
  128. 128.
    Kita-Matsuo H, Barcova M, Prigozhina N, Salomonis N, Wei K, Jacot JG, Nelson B, Spiering S, Haverslag R, Kim C, Talantova M, Bajpai R, Calzolari D, Terskikh A, McCulloch AD, Price JH, Conklin BR, Chen HS, Mercola M (2009) Lentiviral vectors and protocols for creation of stable HESC lines for fluorescent tracking and drug resistance selection of ­cardiomyocytes. PLoS One 4(4):e5046PubMedCrossRefGoogle Scholar
  129. 129.
    Ritner C, Wong SS, King FW, Mihardja SS, Liszewski W, Erle DJ, Lee RJ, Bernstein HS (2011) An engineered cardiac reporter cell line identifies human embryonic stem cell-derived myocardial precursors. PLoS One 6(1):e16004PubMedCrossRefGoogle Scholar
  130. 130.
    Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C (2007) Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 15(11):2027–2036PubMedCrossRefGoogle Scholar
  131. 131.
    King FW, Liszewski W, Ritner C, Bernstein HS (2011) High-throughput tracking of pluripotent human embryonic stem cells with dual fluorescence resonance energy transfer molecular beacons. Stem Cells Dev 20:475–484PubMedCrossRefGoogle Scholar
  132. 132.
    Santangelo P, Nitin N, Bao G (2006) Nanostructured probes for RNA detection in living cells. Ann Biomed Eng 34(1):39–50PubMedCrossRefGoogle Scholar
  133. 133.
    van Laake LW, Passier R, Monshouwer-Kloots J, Verkleij AJ, Lips DJ, Freund C, den Ouden K, Ward-van Oostwaard D, Korving J, Tertoolen LG, van Echteld CJ, Doevendans PA, Mummery CL (2007) Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res 1(1):9–24PubMedCrossRefGoogle Scholar
  134. 134.
    van Laake LW, Passier R, Monshouwer-Kloots J, Nederhoff MG, Ward-van Oostwaard D, Field LJ, van Echteld CJ, Doevendans PA, Mummery CL (2007) Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nat Protoc 2(10):2551–2567PubMedCrossRefGoogle Scholar
  135. 135.
    van Laake LW, Passier R, Doevendans PA, Mummery CL (2008) Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 102(9):1008–1010PubMedCrossRefGoogle Scholar
  136. 136.
    Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, Shachar M, Feinberg MS, Guetta E, Itskovitz-Eldor J (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93(10):1278–1284PubMedCrossRefGoogle Scholar
  137. 137.
    Kofidis T, Lebl DR, Swijnenburg RJ, Greeve JM, Klima U, Robbins RC (2006) Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte-enriched human embryonic stem cells and improve cardiac function following myocardial injury. Eur J Cardiothorac Surg 29(1):50–55PubMedCrossRefGoogle Scholar
  138. 138.
    Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50(19):1884–1893PubMedCrossRefGoogle Scholar
  139. 139.
    Su H, Yeghiazarians Y, Lee A, Huang Y, Arakawa-Hoyt J, Ye J, Orcino G, Grossman W, Kan YW (2008) AAV serotype 1 mediates more efficient gene transfer to pig myocardium than AAV serotype 2 and plasmid. J Gene Med 10(1):33–41PubMedCrossRefGoogle Scholar
  140. 140.
    Angeli FS, Shapiro M, Amabile N, Orcino G, Smith CS, Tacy T, Boyle AJ, Chatterjee K, Glantz SA, Grossman W, Yeghiazarians Y (2009) Left ventricular remodeling after myocardial infarction: characterization of a swine model on beta-blocker therapy. Comp Med 59(3):272–279PubMedGoogle Scholar
  141. 141.
    Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N (2006) Human embryonic stem cells and their ­differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24(2):221–229PubMedCrossRefGoogle Scholar
  142. 142.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  143. 143.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  144. 144.
    Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104(4):e30–e41PubMedCrossRefGoogle Scholar
  145. 145.
    Nakajima F, Tokunaga K, Nakatsuji N (2007) Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantation therapy. Stem Cells 25(4):983–985PubMedCrossRefGoogle Scholar
  146. 146.
    Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366(9502):2019–2025PubMedCrossRefGoogle Scholar
  147. 147.
    Yabut O, Bernstein HS (2011) The promise of human embryonic stem cells in aging-associated diseases. Aging (Albany NY) 3(5):494–508Google Scholar
  148. 148.
    Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67PubMedCrossRefGoogle Scholar
  149. 149.
    Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, Plath K, Lowry WE, Benvenisty N (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7(4):521–531PubMedCrossRefGoogle Scholar
  150. 150.
    Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384PubMedCrossRefGoogle Scholar
  151. 151.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476PubMedCrossRefGoogle Scholar
  152. 152.
    Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73PubMedCrossRefGoogle Scholar
  153. 153.
    Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386PubMedCrossRefGoogle Scholar
  154. 154.
    Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E, Police S, Muskheli V, Murry CE (2005) Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 167(3):663–671PubMedCrossRefGoogle Scholar
  155. 155.
    Wall ST, Yeh CC, Tu RYK, Mann MJ, Healy KE (2010) Biomimetic matrices for myocardial stabilization and stem cell transplantation. J Biomed Mater Res 95(4):1055–1066CrossRefGoogle Scholar
  156. 156.
    Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44(3):654–660PubMedCrossRefGoogle Scholar
  157. 157.
    Danoviz ME, Nakamuta JS, Marques FL, dos Santos L, Alvarenga EC, dos Santos AA, Antonio EL, Schettert IT, Tucci PJ, Krieger JE (2010) Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention. PLoS One 5(8):e12077PubMedCrossRefGoogle Scholar
  158. 158.
    Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC (2005) Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112(9 Suppl):I173–I177PubMedGoogle Scholar
  159. 159.
    Lu WN, Lu SH, Wang HB, Li DX, Duan CM, Liu ZQ, Hao T, He WJ, Xu B, Fu Q, Song YC, Xie XH, Wang CY (2009) Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Part A 15(6):1437–1447PubMedCrossRefGoogle Scholar
  160. 160.
    Nakamuta JS, Danoviz ME, Marques FL, dos Santos L, Becker C, Goncalves GA, Vassallo PF, Schettert IT, Tucci PJ, Krieger JE (2009) Cell therapy attenuates cardiac dysfunction post myocardial infarction: effect of timing, routes of injection and a fibrin scaffold. PLoS One 4(6):e6005PubMedCrossRefGoogle Scholar
  161. 161.
    Wang T, Jiang XJ, Tang QZ, Li XY, Lin T, Wu DQ, Zhang XZ, Okello E (2009) Bone marrow stem cells implantation with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomater 5(8):2939–2944PubMedCrossRefGoogle Scholar
  162. 162.
    Li XY, Wang T, Jiang XJ, Lin T, Wu DQ, Zhang XZ, Okello E, Xu HX, Yuan MJ (2010) Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology 115(3):194–199PubMedCrossRefGoogle Scholar
  163. 163.
    Dai W, Wold LE, Dow JS, Kloner RA (2005) Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J Am Coll Cardiol 46(4):714–719PubMedCrossRefGoogle Scholar
  164. 164.
    Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4):442–450PubMedCrossRefGoogle Scholar
  165. 165.
    Huang NF, Yu J, Sievers R, Li S, Lee RJ (2005) Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng 11(11–12):1860–1866PubMedCrossRefGoogle Scholar
  166. 166.
    Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ (2009) The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30(5):751–756PubMedCrossRefGoogle Scholar
  167. 167.
    Yu J, Christman KL, Chin E, Sievers RE, Saeed M, Lee RJ (2009) Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J Thorac Cardiovasc Surg 137(1):180–187PubMedCrossRefGoogle Scholar
  168. 168.
    Landa N, Miller L, Feinberg MS, Holbova R, Shachar M, Freeman I, Cohen S, Leor J (2008) Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11):1388–1396PubMedCrossRefGoogle Scholar
  169. 169.
    Wang T, Wu DQ, Jiang XJ, Zhang XZ, Li XY, Zhang JF, Zheng ZB, Zhuo R, Jiang H, Huang C (2009) Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur J Heart Fail 11(1):14–19PubMedCrossRefGoogle Scholar
  170. 170.
    Jiang XJ, Wang T, Li XY, Wu DQ, Zheng ZB, Zhang JF, Chen JL, Peng B, Jiang H, Huang C, Zhang XZ (2009) Injection of a novel synthetic hydrogel preserves left ventricle function after myocardial infarction. J Biomed Mater Res A 90(2):472–477PubMedGoogle Scholar
  171. 171.
    Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, Petnehazy O, Landa N, Feinberg MS, Konen E, Goitein O, Tsur-Gang O, Shaul M, Klapper L, Cohen S (2009) Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J Am Coll Cardiol 54(11):1014–1023PubMedCrossRefGoogle Scholar
  172. 172.
    Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH 3rd, Gorman RC, Burdick JA (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci USA 107(25):11507–11512PubMedCrossRefGoogle Scholar
  173. 173.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12PubMedCrossRefGoogle Scholar
  174. 174.
    Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12(4):452–458PubMedCrossRefGoogle Scholar
  175. 175.
    Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, Gepstein L, Levenberg S (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100(2):263–272PubMedCrossRefGoogle Scholar
  176. 176.
    Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, Gepstein L (2010) Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A 16(1):115–125PubMedCrossRefGoogle Scholar
  177. 177.
    Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8(2):175–188PubMedCrossRefGoogle Scholar
  178. 178.
    Radisic M, Yang L, Boublik J, Cohen RJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 286(2):H507–H516PubMedCrossRefGoogle Scholar
  179. 179.
    Dvir T, Benishti N, Shachar M, Cohen S (2006) A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng 12(10):2843–2852PubMedCrossRefGoogle Scholar
  180. 180.
    Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G (2008) Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 3(4):719–738PubMedCrossRefGoogle Scholar
  181. 181.
    Radisic M, Malda J, Epping E, Geng W, Langer R, Vunjak-Novakovic G (2006) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol Bioeng 93(2):332–343PubMedCrossRefGoogle Scholar
  182. 182.
    Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang Y, Dennis R, Langer R, Freed LE, Vunjak-Novakovic G (2006) Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng 12(8):2077–2091PubMedCrossRefGoogle Scholar
  183. 183.
    Dvir T, Levy O, Shachar M, Granot Y, Cohen S (2007) Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng 13(9):2185–2193PubMedCrossRefGoogle Scholar
  184. 184.
    Brown MA, Iyer RK, Radisic M (2008) Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol Prog 24(4):907–920PubMedCrossRefGoogle Scholar
  185. 185.
    Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 101(52):18129–18134PubMedCrossRefGoogle Scholar
  186. 186.
    Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, Radisic M, Vunjak-Novakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4(2):155–173PubMedCrossRefGoogle Scholar
  187. 187.
    Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N, Holbova R, Feinberg MS, Dror S, Etzion Y, Leor J, Cohen S (2009) Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci USA 106(35):14990–14995PubMedCrossRefGoogle Scholar
  188. 188.
    Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221PubMedCrossRefGoogle Scholar
  189. 189.
    Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90(3):e40PubMedCrossRefGoogle Scholar
  190. 190.
    Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T (2006) Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng 12(3):499–507PubMedCrossRefGoogle Scholar
  191. 191.
    Furuta A, Miyoshi S, Itabashi Y, Shimizu T, Kira S, Hayakawa K, Nishiyama N, Tanimoto K, Hagiwara Y, Satoh T, Fukuda K, Okano T, Ogawa S (2006) Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ Res 98(5):705–712PubMedCrossRefGoogle Scholar
  192. 192.
    Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T (2006) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20(6):708–710PubMedGoogle Scholar
  193. 193.
    Yeghiazarians Y, Zhang Y, Prasad M, Shih H, Saini SA, Takagawa J, Sievers RE, Wong ML, Kapasi NK, Mirsky R, Koskenvuo J, Minasi P, Ye J, Viswanathan MN, Angeli FS, Boyle AJ, Springer ML, Grossman W (2009) Injection of bone marrow cell extract into infarcted hearts results in functional improvement comparable to intact cell therapy. Mol Ther 17(7):1250–1256PubMedCrossRefGoogle Scholar
  194. 194.
    Amado LC, Schuleri KH, Saliaris AP, Boyle AJ, Helm R, Oskouei B, Centola M, Eneboe V, Young R, Lima JA, Lardo AC, Heldman AW, Hare JM (2006) Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. J Am Coll Cardiol 48(10):2116–2124PubMedCrossRefGoogle Scholar
  195. 195.
    Smits AM, van Laake LW, den Ouden K, Schreurs C, Szuhai K, van Echteld CJ, Mummery CL, Doevendans PA, Goumans MJ (2009) Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc Res 83(3):527–535PubMedCrossRefGoogle Scholar
  196. 196.
    Sebag IA, Handschumacher MD, Ichinose F, Morgan JG, Hataishi R, Rodrigues AC, Guerrero JL, Steudel W, Raher MJ, Halpern EF, Derumeaux G, Bloch KD, Picard MH, Scherrer-Crosbie M (2005) Quantitative assessment of regional myocardial function in mice by tissue doppler imaging: comparison with hemodynamics and sonomicrometry. Circulation 111(20):2611–2616PubMedCrossRefGoogle Scholar
  197. 197.
    Christoforou N, Oskouei BN, Esteso P, Hill CM, Zimmet JM, Bian W, Bursac N, Leong KW, Hare JM, Gearhart JD (2010) Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS One 5(7):e11536PubMedCrossRefGoogle Scholar
  198. 198.
    Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T, Li RA, OR B, Marban E (2005) Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 97(2):159–167PubMedCrossRefGoogle Scholar
  199. 199.
    Pekkanen-Mattila M, Chapman H, Kerkela E, Suuronen R, Skottman H, Koivisto AP, Aalto-Setala K (2010) Human embryonic stem cell-derived cardiomyocytes: demonstration of a portion of cardiac cells with fairly mature electrical phenotype. Exp Biol Med (Maywood) 235(4):522–530CrossRefGoogle Scholar
  200. 200.
    Satin J, Kehat I, Caspi O, Huber I, Arbel G, Itzhaki I, Magyar J, Schroder EA, Perlman I, Gepstein L (2004) Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J Physiol 559(Pt 2):479–496PubMedCrossRefGoogle Scholar
  201. 201.
    Verheule S, Wilson E, Banthia S, Everett THT, Shanbhag S, Sih HJ, Olgin J (2004) Direction-dependent conduction abnormalities in a canine model of atrial fibrillation due to chronic atrial dilatation. Am J Physiol Heart Circ Physiol 287(2):H634–H644PubMedCrossRefGoogle Scholar
  202. 202.
    Gepstein L, Ding C, Rehemedula D, Wilson EE, Yankelson L, Caspi O, Gepstein A, Huber I, Olgin JE (2010) In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells 28(12):2151–2161PubMedCrossRefGoogle Scholar
  203. 203.
    Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22(10):1282–1289PubMedCrossRefGoogle Scholar
  204. 204.
    Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marban E, Tomaselli GF, Li RA (2005) Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111(1):11–20PubMedCrossRefGoogle Scholar
  205. 205.
    Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, Roberts DJ, Huang PL, Domian IJ, Chien KR (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460(7251):113–117PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Cardiovascular Research InstituteUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Cardiovascular Research InstituteSan FranciscoUSA
  3. 3.Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoUSA
  4. 4.Department of PediatricsUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations