Directing Cell Fate Through Biomaterial Microenvironments

  • Kelly Clause
  • Jonathan Lam
  • Tatiana Segura
  • Thomas H. BarkerEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Biomaterials offer discrete advantages over standard ECM systems, like matrigel, in the context of both fundamental stem cell biology and control of stem cell fate/phenotype. In particular, one can specifically design features into the 3D microenvironment with high levels of control. The fundamental limitation to date is that we currently lack the design rules for eliciting specific cellular and/or multicellular behaviors that may lead to true regenerative medicine. As the matrix biology and stem cell biology fields mature, biomaterial scientists continually look to these fields for inspiration and understanding of what features should be considered in the design of the “optimal” material for their specific application. In this chapter, we outline the basic emerging biological concepts leading toward a first set of design rules; those include physical or mechanical signals, chemical and/or biochemical signals, spatial orientation and positioning of signals, and finally, time-resolved display of signals. We highlight current biological findings that support these design rules (physical, chemical, and x, y, z, and t) and outline current efforts to develop biomaterial systems that enable both the decoupling or integration of these design criteria for tissue engineering and regenerative medicine applications.


Stem Cell Differentiation Stem Cell Biology Integrin Cluster Growth Factor Delivery Regenerative Medicine Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Extracellular matrix


N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride


Epidermal growth factor


Mesenchymal stem cells


Platelet-derived growth factor


Polyethylene glycol




Poly(lactic-co-glycolic acid)


Arginine-glycine-aspartic acid


Sonic hedgehog




Vascular endothelial growth factor


  1. 1.
    Choquet D, Felsenfeld D, Sheetz M (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1):39–48PubMedCrossRefGoogle Scholar
  2. 2.
    Bea M (2004) Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochem Biophys Res Commun 313(3):758–764CrossRefGoogle Scholar
  3. 3.
    Hu S (2005) Prestress mediates force propatation into the nucleus. Biochem Biophys Res Commun 329(2):423–428PubMedCrossRefGoogle Scholar
  4. 4.
    Maniotis A, Chen C, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeltal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94(3):849–854PubMedCrossRefGoogle Scholar
  5. 5.
    Hu S et al (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285(5):C1082–C1090PubMedGoogle Scholar
  6. 6.
    Wang N et al (2001) Mechanocal behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci USA 98(14):7765–7770PubMedCrossRefGoogle Scholar
  7. 7.
    Dea R (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153(6):1175–1186CrossRefGoogle Scholar
  8. 8.
    Schwartz MA, Simone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20(5):551–556PubMedCrossRefGoogle Scholar
  9. 9.
    Tzima E, Irani-Tehrani M, Kiosses W, Dejana E, Schultz D, Engelhardt B et al (2005) Identification of a mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431PubMedCrossRefGoogle Scholar
  10. 10.
    Tzima E, Pozo M, Shattil S, Chien S, Schwartz MA (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20:4639–4647PubMedCrossRefGoogle Scholar
  11. 11.
    Keller R, Danilchik M (1988) Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103:193–209PubMedGoogle Scholar
  12. 12.
    Wozniak MA, Chen C (2009) Mechanotransuction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10:34–43PubMedCrossRefGoogle Scholar
  13. 13.
    Hirokawa N, Tanaka Y, Okada YST (2006) Nodal flow and the generation of left-right asymmetry. Cell 125(1):33–45PubMedCrossRefGoogle Scholar
  14. 14.
    Rutkowski J, Swartz MA (2007) A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol 17(1):44–50PubMedCrossRefGoogle Scholar
  15. 15.
    Dawson E, Mapili G, Erickson K, Taqvi S, Roy K (2008) Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 60:215–228PubMedCrossRefGoogle Scholar
  16. 16.
    Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Ann Rev Biomed Eng 6:41–75CrossRefGoogle Scholar
  17. 17.
    Nair P, Ratner BD, Vogel V, Nerem R (2002) Porous scaffolds containing amino acid networks as matrixes for tissue engineering. Annual Meeting Transactions, Society for Biomaterials, Tampa, FL, p 654Google Scholar
  18. 18.
    Zhang S (2002) Emerging biological materials through molecular self-assembly. Biotechnol Adv 20:321–339PubMedCrossRefGoogle Scholar
  19. 19.
    Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364PubMedCrossRefGoogle Scholar
  20. 20.
    Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8:15–23PubMedCrossRefGoogle Scholar
  21. 21.
    Sanders J, Bale S, Neumann T (2002) Tissue response to microfibers of different polymers: polyester, polyethylene, polylactic acid, and polyurethane. J Biomed Mater Res 62:222–227PubMedCrossRefGoogle Scholar
  22. 22.
    Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63PubMedCrossRefGoogle Scholar
  23. 23.
    Chen C, Alonso JEO, whitesides G, Ingber DE (2003) Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun 307:355–361PubMedCrossRefGoogle Scholar
  24. 24.
    Chen C, Mirksich M, Huang S, Whitesides G, Ingber DE (1998) Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 14:356–363PubMedCrossRefGoogle Scholar
  25. 25.
    McBeath R, Pirone D, Nelson C (2004) Cell shape, cytoskeletaln tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495PubMedCrossRefGoogle Scholar
  26. 26.
    Engler A, Sen S, Sweeney L, Disher D (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRefGoogle Scholar
  27. 27.
    Dalby M, Gadegaard N, Tare R, Andar A, Riehle M, Herzyk P et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003PubMedCrossRefGoogle Scholar
  28. 28.
    Gerecht S, Bettinger CJZZ, Borenstein J, Vunjak-Novakovic G, Langer R (2007) The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials 28:4068–4077PubMedCrossRefGoogle Scholar
  29. 29.
    Yim E, Pang S, Leong KP (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313:1820–1829PubMedCrossRefGoogle Scholar
  30. 30.
    Janes K, Lauffenburger DA (2006) A biological approach to computational models of proteomic networks. Curr Opin Chem Biol 10(1):73–80PubMedCrossRefGoogle Scholar
  31. 31.
    Hiemstra C, Zhong ZY, van Steenbergen MJ, Hennink WE, Feijen J (2007) Release of model proteins and basic fibroblast growth factor from in situ forming degradable dextran hydrogels. J Control Release 122(1):71–78PubMedCrossRefGoogle Scholar
  32. 32.
    Kushibiki T, Tomoshige R, Fukunaka Y, Kakemi M, Tabata Y (2003) In vivo release and gene expression of plasmid DNA by hydrogels of gelatin with different cationization extents. J Control Release 90(2):207–216PubMedCrossRefGoogle Scholar
  33. 33.
    Leonard M, De Boisseson AR, Hubert P, Dalencon F, Dellacherie E (2004) Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J Control Release 98(3):395–405PubMedCrossRefGoogle Scholar
  34. 34.
    Lutolf MP, Tirelli N, Cerritelli S, Cavalli L, Hubbell JA (2001) Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids. Bioconjug Chem 12(6):1051–1056PubMedCrossRefGoogle Scholar
  35. 35.
    Lutolf MR, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518PubMedCrossRefGoogle Scholar
  36. 36.
    Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N et al (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for vascularized tissue growth. FASEB J 17(13):2260–2262PubMedGoogle Scholar
  37. 37.
    Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39(2):266–276PubMedCrossRefGoogle Scholar
  38. 38.
    Fan VH, Au A, Tamama K, Littrell R, Richardson LB, Wright JW et al (2007) Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells 25(5):1241–1251PubMedCrossRefGoogle Scholar
  39. 39.
    Shen YH, Shoichet MS, Radisic M (2008) Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater 4(3):477–489PubMedCrossRefGoogle Scholar
  40. 40.
    Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D (2004) Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A 71A(3):528–537CrossRefGoogle Scholar
  41. 41.
    Chen GP, Ito Y, Imanishi Y (1997) Photo-immobilization of epidermal growth factor enhances its mitogenic effect by artificial juxtacrine signaling. Bba-Mol Cell Res 1358(2):200–208Google Scholar
  42. 42.
    DeLong SA, Gobin AS, West JL (2005) Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J Control Release 109(1–3):139–148PubMedCrossRefGoogle Scholar
  43. 43.
    Moon JJ, Hahn MS, Kim I, Nsiah BA, West JL (2009) Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng Part A 15(3):579–585PubMedCrossRefGoogle Scholar
  44. 44.
    Taipale J, KeskiOja J (1997) Growth factors in the extracellular matrix. FASEB J 11(1):51–59PubMedGoogle Scholar
  45. 45.
    Yamaguchi N, Kiick KL (2005) Polysaccharide-poly(ethylene glycol) star copolymer as a scaffold for the production of bioactive hydrogels. Biomacromolecules 6(4):1921–1930PubMedCrossRefGoogle Scholar
  46. 46.
    Benoit DSW, Durney AR, Anseth KS (2007) The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials 28(1):66–77PubMedCrossRefGoogle Scholar
  47. 47.
    Ungaro F, Biondi M, D’Angelo I, Indolfi L, Quaglia F, Netti PA et al (2006) Microsphere-integrated collagen scaffolds for tissue engineering: effect of microsphere formulation and scaffold properties on protein release kinetics. J Control Release 113(2):128–136PubMedCrossRefGoogle Scholar
  48. 48.
    Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65A(4):489–497CrossRefGoogle Scholar
  49. 49.
    Ferreira LS, Gerecht S, Fuller J, Shieh HF, Vunjak-Novakovic G, Langer R (2007) Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28(17):2706–2717PubMedCrossRefGoogle Scholar
  50. 50.
    Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034PubMedCrossRefGoogle Scholar
  51. 51.
    Maschke A, Becker C, Eyrich D, Kiermaier J, Blunk T, Gopferich A (2007) Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm 65(2):175–187PubMedCrossRefGoogle Scholar
  52. 52.
    Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441PubMedCrossRefGoogle Scholar
  53. 53.
    Lutolf M, Doyonnas R, Havenstrite K, Koleckar K, Blau HM (2009) Perturbation of single hematopoietic stem cell fates in artificial niches. Integr Biol 1(1):59–69CrossRefGoogle Scholar
  54. 54.
    Luo Y, Shoichet M (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3:249–253PubMedCrossRefGoogle Scholar
  55. 55.
    Albrecht D et al (2006) Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods 3:369–375PubMedCrossRefGoogle Scholar
  56. 56.
    Khademhosseini G, Eng G, Yeh J, Fukuda J, Blumling J III, Langer R et al (2006) Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A 79:522–532PubMedGoogle Scholar
  57. 57.
    Mapili G, Lu Y, Chen S, Roy K (2005) Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res B Appl Biomater 75:414–424PubMedGoogle Scholar
  58. 58.
    Jongpaiboonkit L, King W, Murphy W (2009) Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays. Tissue Eng Part A 15:343–353PubMedCrossRefGoogle Scholar
  59. 59.
    Brannon-Peppas L (1997) Polymers in controlled drug delivery. Medical Plastic and Biomaterials MagazineGoogle Scholar
  60. 60.
    Heller J, Hoffman A (2004) Drug delivery systems. In: Ratner BD, Hoffman A, Schoen F, Lemons J (eds) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, San Francisco, CA, pp 628–648Google Scholar
  61. 61.
    Holland T, Tabata Y, Mikos A (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101:111–125PubMedCrossRefGoogle Scholar
  62. 62.
    Peter S et al (2000) Effects of transforming growth factor beta1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res 50:452–462PubMedCrossRefGoogle Scholar
  63. 63.
    Zhum LY, Wu W, Zhu M, Han J, Hurst J, Li A (2007) Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J Am Chem Soc 129(12):3524–3526CrossRefGoogle Scholar
  64. 64.
    Liu G, Kim J, Lu Y, Lee L (2005) Optofluidic control using photothermal nanoparticles. Nat Mater 10:1–6Google Scholar
  65. 65.
    Tokatlian T et al (2010) Protease degradable tethers for controlled and cell-mediated release of nanoparticles in 2- and 3-Dimensions. Biomaterials 31(31):8072–8080PubMedCrossRefGoogle Scholar
  66. 66.
    Wichterle H, Lieberam I, Porter J, Jessel T (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110(3):385–397PubMedCrossRefGoogle Scholar
  67. 67.
    D’Amour K, Bang A, Eliazer S, Kelly O, Agulnick A, Smart N et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401PubMedCrossRefGoogle Scholar
  68. 68.
    Bae S, Choi D, Han D, Park K (2010) Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchyman stromal cells. J Control Release 143(1):23–30PubMedCrossRefGoogle Scholar
  69. 69.
    Ogawa T, Akazawa T, Tabata Y (2010) In vitro proliferation and chondrogenic differentiation of rat bone marrow stem cells cultured with gelatin hydrogel microspheres for TGF-beta1. J Biomater Sci Polym Ed 21(5):609–621PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kelly Clause
    • 1
  • Jonathan Lam
    • 2
  • Tatiana Segura
    • 3
  • Thomas H. Barker
    • 4
    Email author
  1. 1.The Wallace H. Coulter Department of Biomedical Engineering at Georgia TechEmory UniversityAtlantaUSA
  2. 2.Department of Biomedical EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaLos AngelesUSA
  4. 4.The Wallace H. Coulter Department of Biomedical Engineering at Georgia TechEmory UniversityAtlantaUSA

Personalised recommendations