Synthetic Multi-level Matrices for Bone Regeneration

  • Nicholas R. Boyd
  • Richard L. Boyd
  • George P. Simon
  • David R. NisbetEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Current bone replacement strategies are clinically inadequate, yet there is great promise in the use of synthetic adjuvant matrices. Electrospinning provides a three-dimensional platform in which matrices can be designed to mimic features of the extracellular matrix and improve bone regeneration. Composite nanofibers can be functionalised with therapeutic molecules, and/or may permit the delivery of growth factor combinations as required to stimulate bone healing. Collectively, these should more precisely direct repair by exogenous and endogenous stem and progenitor cells. The real novelty will be in combining multiple levels of scaffold-based tissue engineering developments in an “off the shelf” clinic-ready product. Until then, application of bioactive nanofiber analogues, with dual-scale three-dimensional porosity that can be co-interfaced within effective stem cell treatment regimes, will be crucial in develo­ping smart matrices for skeletal repair. This review presents holistic concepts for more effective bone regeneration and the methods in which they can be incorporated into nanotechnology-based scaffolds from a materials engineering perspective.


Bone Regeneration Bioactive Glass Bone Tissue Engineering Composite Nanofibers Electrospun Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Alkaline phosphate


Bone morphogenetic protein-2


Bone-marrow-derived stromal cells


Bone sialoprotein-2


Extracellular matrix




Food and Drug Administration


Fibroblast growth factor-2






Heparan sulphate






Mesenchymal stem cells


Multi-walled carbon nanotube


Multi-walled nanotube










Platelet-derived growth factor


Polyethylene oxide




Polyglycolic acid


Polylactic acid


Poly-l-lactide acid


Receptor activator of NF-κB ligand




Recombinant human BMP-2


Simulated body fluid


Scanning electron microscopy


Small intestinal submucosa




Tricalcium phosphate


Transmission electron microscopy


Transforming growth factor β




Vascular endothelial growth factor


  1. 1.
    Vallet-Regí M, Arcos D (2008) Nanostructured hybrid materials for bone implants fabrication. In: Ruiz-Hitzky E, Ariga K, Lvov YM (eds) Bio-inorganic hybrid nanomaterials: strategies, syntheses, characterization and applications. Wiley, Weinheim, GermanyGoogle Scholar
  2. 2.
    Balasundaram G (2007) Nanomaterials for better orthopedics. In: Webster TJ (ed) Nanotechnology for the regeneration of hard and soft tissues. World Scienticfic Publishing, SingaporeGoogle Scholar
  3. 3.
    Tiegs RD (1997) Paget’s disease of bone: Indications for treatment and goals of therapy. Clin Ther 19(6):1309–1329PubMedCrossRefGoogle Scholar
  4. 4.
    Reginster J, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38(2):4–9CrossRefGoogle Scholar
  5. 5.
    Assouline-Dayan Y, Chang C, Greenspan A et al (2002) Pathogenesis and natural history of osteonecrosis. Semin Arthritis Rheum 32(2):94–124PubMedGoogle Scholar
  6. 6.
    Simon LS (1999) Osteoarthritis: a review. Clin Cornerstone 2(2):26–37PubMedCrossRefGoogle Scholar
  7. 7.
    Reddy SV, Kurihara N, Menaa C et al (2001) Paget’s disease of bone: a disease of the osteoclast. Rev Endocr Metab Disord 2(2):195–205PubMedCrossRefGoogle Scholar
  8. 8.
    Glorieux F (2008) Osteogenesis imperfecta. Best Pract Res Clin Rheumatol 22(1):85–100PubMedCrossRefGoogle Scholar
  9. 9.
    Lindsay R, Christiansen C, Einhorn TA et al (1997) Who are candidates for prevention and treatment for osteoporosis? Osteoporos Int 7(1):1–6CrossRefGoogle Scholar
  10. 10.
    Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7(5):407–413PubMedCrossRefGoogle Scholar
  11. 11.
    Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(Suppl 3):20–27CrossRefGoogle Scholar
  12. 12.
    Beutner R, Michael J, Schwenzer B et al (2009) Biological nano-functionalization of ­titanium-based biomaterial surfaces: a flexible toolbox. J R Soc Interface 7(Suppl 1):S93–S105PubMedGoogle Scholar
  13. 13.
    Johnsen SP, Sørensen HT, Pedersen AB et al (2006) Patient-related predictors of implant failure after primary total hip replacement in the initial, short- and long-terms: a nationwide Danish follow-up study including 36 984 patients. J Bone Joint Surg Ser B 88(10):1303–1308CrossRefGoogle Scholar
  14. 14.
    De Long WG Jr, Einhorn TA, Koval K et al (2007) Bone grafts and bone graft substitutes in orthopaedic trauma surgery: a critical analysis. J Bone Joint Surg Ser A 89(3):649–658CrossRefGoogle Scholar
  15. 15.
    Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Ser A 84(3):454–464Google Scholar
  16. 16.
    Rogel MR, Qiu H, Ameer GA (2008) The role of nanocomposites in bone regeneration. J Mater Chem 18(36):4233–4241CrossRefGoogle Scholar
  17. 17.
    Liu X, Chu P, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R Rep 47(3–4):49–121CrossRefGoogle Scholar
  18. 18.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170CrossRefGoogle Scholar
  19. 19.
    Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425CrossRefGoogle Scholar
  20. 20.
    Hohman MM, Shin M, Rutledge G et al (2001) Electrospinning and electrically forced jets. II. Applications. Phys Fluids 13(8):2221–2236CrossRefGoogle Scholar
  21. 21.
    Hohman MM, Shin M, Rutledge G et al (2001) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13(8):2201CrossRefGoogle Scholar
  22. 22.
    Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765PubMedCrossRefGoogle Scholar
  23. 23.
    Gaalen Sv, Kruyt M, Meijer G et al (2008) Tissue engineering of bone. In: Blitterswijk CV, Thomsen P, Lindahl A et al (eds) Tissue engineering. Elsevier, LondonGoogle Scholar
  24. 24.
    Barrère F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine 1(3):317–332PubMedGoogle Scholar
  25. 25.
    Lui H, Webster TJ (2007) Bioinspired nanocomposites for orthopedic applications. In: Webster TJ (ed) Nanotechnology for the regeneration of hard and soft tissues. World Scientific Publishing, SingaporeGoogle Scholar
  26. 26.
    Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102PubMedCrossRefGoogle Scholar
  27. 27.
    Espinosa HD, Rim JE, Barthelat F et al (2009) Merger of structure and material in nacre and bone – perspectives on de novo biomimetic materials. Prog Mat Sci 54(8):1059–1100CrossRefGoogle Scholar
  28. 28.
    Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28(1):271–298CrossRefGoogle Scholar
  29. 29.
    Jang JH, Castano O, Kim HW (2009) Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 61(12):1065–1083PubMedCrossRefGoogle Scholar
  30. 30.
    Gupta HS, Seto J, Wagermaier W et al (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA 103(47):17741–17746PubMedCrossRefGoogle Scholar
  31. 31.
    Fratzl P, Gupta HS, Paschalis EP et al (2004) Structure and mechanical quality of the ­collagen-mineral nano-composite in bone. J Mater Chem 14(14):2115–2123CrossRefGoogle Scholar
  32. 32.
    Sommerfeldt D, Rubin C (2001) Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J 10(Suppl 2):S86–S95PubMedGoogle Scholar
  33. 33.
    Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22(3):181–187PubMedCrossRefGoogle Scholar
  34. 34.
    Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. Annu Rev Mater Res 40(1):25–53CrossRefGoogle Scholar
  35. 35.
    Kadler KE, Holmes DF, Trotter JA et al (1996) Collagen fibril formation. Biochem J 316(1):1–11PubMedGoogle Scholar
  36. 36.
    Hassenkam T, Fantner G, Cutroni J et al (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1):4–10PubMedCrossRefGoogle Scholar
  37. 37.
    Landis WJ, Hodgens KJ, Song MJ et al (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117(1):24–35PubMedCrossRefGoogle Scholar
  38. 38.
    Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20(5):495–501PubMedCrossRefGoogle Scholar
  39. 39.
    Wenstrup RJ, Florer JB, Brunskill EW et al (2004) Type v collagen controls the initiation of collagen fibril assembly. J Biol Chem 279(51):53331–53337PubMedCrossRefGoogle Scholar
  40. 40.
    Alford AI, Hankenson KD (2006) Matricellular proteins: extracellular modulators of bone development, remodeling, and regeneration. Bone 38(6):749–757PubMedCrossRefGoogle Scholar
  41. 41.
    Giachelli CM, Steitz S (2000) Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol 19(7):615–622PubMedCrossRefGoogle Scholar
  42. 42.
    Hoang QQ, Sicheri F, Howard AJ et al (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425(6961):977–980PubMedCrossRefGoogle Scholar
  43. 43.
    Bradshaw AD, Sage EH (2001) Sparc, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 107(9):1049–1054PubMedCrossRefGoogle Scholar
  44. 44.
    Shekaran A, García AJ (2011) Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 96A(1):261–272CrossRefGoogle Scholar
  45. 45.
    Bellahcène A, Bonjean K, Fohr B et al (2000) Bone sialoprotein mediates human endothelial cell attachment and migration and promotes angiogenesis. Circ Res 86(8):885–891PubMedGoogle Scholar
  46. 46.
    Bornstein P (2001) Thrombospondins as matricellular modulators of cell function. J Clin Invest 107(8):929–934PubMedCrossRefGoogle Scholar
  47. 47.
    Midwood K (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037PubMedCrossRefGoogle Scholar
  48. 48.
    Taylor DK, Meganck JA, Terkhorn S et al (2009) Thrombospondin-2 influences the proportion of cartilage and bone during fracture healing. J Bone Miner Res 24(6):1043–1054PubMedCrossRefGoogle Scholar
  49. 49.
    Vaananen H, Laitalaleinonen T (2008) Osteoclast lineage and function. Arch Biochem Biophys 473(2):132–138PubMedCrossRefGoogle Scholar
  50. 50.
    Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4(8):638–649PubMedCrossRefGoogle Scholar
  51. 51.
    Heino TJ, Hentunen TA (2008) Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Curr Stem Cell Res Ther 3(2):131–145PubMedCrossRefGoogle Scholar
  52. 52.
    Kartsogiannis V, Ng K (2004) Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 228(1–2):79–102PubMedCrossRefGoogle Scholar
  53. 53.
    Huang C, Ogawa R (2010) Mechanotransduction in bone repair and regeneration. J Fed Am Soc Exp Biol 24:p3625–p3632Google Scholar
  54. 54.
    You J, Yellowley CE, Donahue HJ et al (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng 122(4):387–393PubMedCrossRefGoogle Scholar
  55. 55.
    Boyce B, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–146PubMedCrossRefGoogle Scholar
  56. 56.
    Schindeler A, McDonald M, Bokko P et al (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19(5):459–466PubMedCrossRefGoogle Scholar
  57. 57.
    Gerstenfeld LC, Cullinane DM, Barnes GL et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5):873–884PubMedCrossRefGoogle Scholar
  58. 58.
    Carano RAD, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8(21):980–989PubMedCrossRefGoogle Scholar
  59. 59.
    Willie BM, Petersen A, Schmidt-Bleek K et al (2010) Designing biomimetic scaffolds for bone regeneration: why aim for a copy of mature tissue properties if nature uses a different approach? Soft Matter 6(20):4976–4987CrossRefGoogle Scholar
  60. 60.
    Ferguson C, Alpern E, Miclau T et al (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87(1–2):57–66PubMedCrossRefGoogle Scholar
  61. 61.
    Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater 15:53–76PubMedGoogle Scholar
  62. 62.
    Ai-Aql ZS, Alagl AS, Graves DT et al (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87(2):107–118PubMedCrossRefGoogle Scholar
  63. 63.
    Phillips A (2005) Overview of the fracture healing cascade. Injury 36(3):S5–S7PubMedCrossRefGoogle Scholar
  64. 64.
    Dimitriou R, Tsiridis E, Giannoudis P (2005) Current concepts of molecular aspects of bone healing. Injury 36(12):1392–1404PubMedCrossRefGoogle Scholar
  65. 65.
    Yoshimoto H (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082PubMedCrossRefGoogle Scholar
  66. 66.
    Sisson K, Zhang C, Farach-Carson MC et al (2010) Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A 94A(4):1312–1320Google Scholar
  67. 67.
    Bondar B, Fuchs S, Motta A et al (2008) Functionality of endothelial cells on silk fibroin nets: comparative study of micro- and nanometric fiber size. Biomaterials 29(5):561–572PubMedCrossRefGoogle Scholar
  68. 68.
    Badami AS, Kreke MR, Thompson MS et al (2006) Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27(4):596–606PubMedCrossRefGoogle Scholar
  69. 69.
    Chen M, Patra PK, Lovett ML et al (2009) Role of electrospun fiber diameter and corresponding specific surface area (SSA) on cell attachment. J Tissue Eng Regen Med 3(4):269–279PubMedCrossRefGoogle Scholar
  70. 70.
    Del Gaudio C, Bianco A, Folin M et al (2009) Structural characterization and cell response evaluation of electrospun PCL membranes: micrometric versus submicrometric fibers. J Biomed Mater Res A 89A(4):1028–1039CrossRefGoogle Scholar
  71. 71.
    Chen M, Patra PK, Warner SB et al (2007) Role of fiber diameter in adhesion and proliferation of NIH 3 t3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng 13(3):579–587PubMedCrossRefGoogle Scholar
  72. 72.
    Szentivanyi A, Chakradeo T, Zernetsch H et al (2010) Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev 63(4–5):209–220PubMedGoogle Scholar
  73. 73.
    Pham QP, Sharma U, Mikos AG (2006) Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7(10):2796–2805PubMedCrossRefGoogle Scholar
  74. 74.
    Huebsch N, Arany PR, Mao AS et al (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9(6):518–526PubMedCrossRefGoogle Scholar
  75. 75.
    Heo S-J, Kim S-E, Wei J et al (2008) Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. J Biomed Mater Res A 89A(1):108–116Google Scholar
  76. 76.
    Park SH, Kim TG, Kim HC et al (2008) Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater 4(5):1198–1207PubMedCrossRefGoogle Scholar
  77. 77.
    Sung H (2004) The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25(26):5735–5742PubMedCrossRefGoogle Scholar
  78. 78.
    Lee H, Kim G (2010) Biocomposites electrospun with poly(ε-caprolactone) and silk fibroin powder for biomedical applications. J Biomater Sci Polym Ed 21(13):1687–1699PubMedCrossRefGoogle Scholar
  79. 79.
    Chan CK, Liao S, Li B et al (2009) Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers. Biomed Mater 4(3):035006PubMedCrossRefGoogle Scholar
  80. 80.
    Zhao J, Zhao Y, Guan Q et al (2011) Crosslinking of electrospun fibrous gelatin scaffolds for apatite mineralization. J Appl Poly Sci 119(2):786–793CrossRefGoogle Scholar
  81. 81.
    Park SY, Ki CS, Park YH et al (2010) Electrospun silk fibroin scaffolds with macropores for bone regeneration: an in vitro and in vivo study. Tissue Eng Part A 16(4):1271–1279PubMedCrossRefGoogle Scholar
  82. 82.
    Meechaisue C, Wutticharoenmongkol P, Waraput R et al (2007) Preparation of electrospun silk fibroin fiber mats as bone scaffolds: a preliminary study. Biomed Mater 2(3):181–188PubMedCrossRefGoogle Scholar
  83. 83.
    Geng X, Kwon O, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432PubMedCrossRefGoogle Scholar
  84. 84.
    Luong-Van E, Grøndahl L, Song S et al (2007) The in vivo assessment of a novel scaffold containing heparan sulfate for tissue engineering with human mesenchymal stem cells. J Mol Histol 38(5):459–468PubMedCrossRefGoogle Scholar
  85. 85.
    Kim H-W, Yu H-S, Lee H-H (2008) Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A 87A(1):25–32CrossRefGoogle Scholar
  86. 86.
    Yoon H, Ahn S, Kim G (2009) Three-dimensional polycaprolactone hierarchical scaffolds supplemented with natural biomaterials to enhance mesenchymal stem cell proliferation. Macromol Rapid Commun 30(19):1632–1637PubMedCrossRefGoogle Scholar
  87. 87.
    Lee J-J, Yu H-S, Hong S-J et al (2009) Nanofibrous membrane of collagen–polycaprolactone for cell growth and tissue regeneration. J Mater Sci Mater Med 20(9):1927–1935PubMedCrossRefGoogle Scholar
  88. 88.
    Jackson RA, McDonald MM, Nurcombe V et al (2006) The use of heparan sulfate to augment fracture repair in a rat fracture model. J Orthop Res 24(4):636–644PubMedCrossRefGoogle Scholar
  89. 89.
    Chronakis I (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process – a review. J Mater Process Technol 167(2–3):283–293CrossRefGoogle Scholar
  90. 90.
    Kim HW, Kim HE, Knowles JC (2006) Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv Func Mater 16(12):1529–1535CrossRefGoogle Scholar
  91. 91.
    Sakai S, Yamada Y, Yamaguchi T et al (2006) Prospective use of electrospun ultra-fine silicate fibers for bone tissue engineering. Biotechnol J 1(9):958–962PubMedCrossRefGoogle Scholar
  92. 92.
    Xia W, Zhang D, Chang J (2007) Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibers. Nanotechnology 18(13):135601PubMedCrossRefGoogle Scholar
  93. 93.
    Lu H, Zhang T, Wang XP et al (2008) Electrospun submicron bioactive glass fibers for bone tissue scaffold. J Mater Sci Mater Med 20(3):793–798PubMedCrossRefGoogle Scholar
  94. 94.
    Kim H-W, Kim H-E (2006) Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics. J Biomed Mater Res B Appl Biomater 77B(2):323–328CrossRefGoogle Scholar
  95. 95.
    Chen F, Tang Q-L, Zhu Y-J et al (2010) Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: electrospun preparation and transformation to hydroxyapatite nanostructures. Acta Biomater 6(8):3013–3020PubMedCrossRefGoogle Scholar
  96. 96.
    Tan F, Naciri M, Al-Rubeai M (2011) Osteoconductivity and growth factor production by MG63 osteoblastic cells on bioglass-coated orthopedic implants. Biotechnol Bioeng 108(2):454–464PubMedCrossRefGoogle Scholar
  97. 97.
    Y-c Hu, J-p Z (2009) Osteostimulation of bioglass. Chin Med J 122(19):2386–2389Google Scholar
  98. 98.
    White AA, Best SM, Kinloch IA (2007) Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol 4(1):1–13CrossRefGoogle Scholar
  99. 99.
    Venugopal J, Prabhakaran MP, Zhang Y et al (2010) Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 368(1917):2065–2081CrossRefGoogle Scholar
  100. 100.
    Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5(8):2884–2893PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang H, Liu J, Yao Z et al (2009) Biomimetic mineralization of electrospun poly(lactic-co-glycolic acid)/multi-walled carbon nanotubes composite scaffolds in vitro. Mater Lett 63(27):2313–2316CrossRefGoogle Scholar
  102. 102.
    Allo BA, Rizkalla AS, Mequanint K (2010) Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol–gel process. Langmuir 26(23):18340–18348PubMedCrossRefGoogle Scholar
  103. 103.
    Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10(Suppl 2):S96–S101PubMedGoogle Scholar
  104. 104.
    Asran AS, Henning S, Michler GH (2010) Polyvinyl alcohol-collagen-hydroxyapatite biocomposite nanofibrous scaffold: mimicking the key features of natural bone at the nanoscale level. Polymer 51(4):868–876CrossRefGoogle Scholar
  105. 105.
    Kim H-W, Lee H-H, Knowles JC (2006) Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. J Biomed Mater Res A 79A(3):643–649CrossRefGoogle Scholar
  106. 106.
    Rai B, Noohom W, Kithva PH et al (2008) Bionanohydroxyapatite/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composites with improved particle dispersion and superior mechanical properties. Chem Mater 20(8):2802–2808CrossRefGoogle Scholar
  107. 107.
    Lee HJ, Choi HW, Kim KJ et al (2006) Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites. Chem Mater 18(21):5111–5118CrossRefGoogle Scholar
  108. 108.
    Chen C-W, Oakes CS, Byrappa K et al (2004) Synthesis, characterization, and dispersion properties of hydroxyapatite prepared by mechanochemical-hydrothermal methods. J Mater Chem 14(15):2425CrossRefGoogle Scholar
  109. 109.
    Wilson OC Jr (2009) Surface modification of hydroxyapatite: a review. In: Narayan RJ, Kumta PN, Wagner WR (eds) Advances in biomedical and biomimetic materials. The American Ceramic Society, Pittsburgh, PAGoogle Scholar
  110. 110.
    Kurashina K, Kurita H, Wu Q et al (2002) Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials 23(2):407–412PubMedCrossRefGoogle Scholar
  111. 111.
    Norton J, Malik KR, Darr JA et al (2006) Recent developments in processing and surface modification of hydroxyapatite. Adv Appl Ceram 105(3):113–139CrossRefGoogle Scholar
  112. 112.
    Bhadang KA, Holding CA, Thissen H et al (2010) Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends. Acta Biomater 6(4):1575–1583PubMedCrossRefGoogle Scholar
  113. 113.
    Arinzeh T, Tran T, McAlary J et al (2005) A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26(17):3631–3638PubMedCrossRefGoogle Scholar
  114. 114.
    Cholewa-Kowalska K, Kokoszka J, Łączka M et al (2009) Gel-derived bioglass as a compound of hydroxyapatite composites. Biomed Mater 4(5):055007PubMedCrossRefGoogle Scholar
  115. 115.
    Boccaccini AR, Gerhardt L-C (2010) Carbon nanotube composite scaffolds and coatings for tissue engineering applications. Key Eng Mater 441(31):31–52CrossRefGoogle Scholar
  116. 116.
    Meng ZX, Zheng W, Li L et al (2010) Fabrication and characterization of three-dimensional nanofiber membrane of PCL-MWCNTs by electrospinning. Mater Sci Eng C 30(7):1014–1021CrossRefGoogle Scholar
  117. 117.
    Kang M, Chen P, Jin H (2009) Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers by electrospinning. Curr Appl Phys 9(1):S95–S97CrossRefGoogle Scholar
  118. 118.
    Yoon OJ, Kim HW, Kim DJ et al (2009) Nanocomposites of electrospun poly[(d, l-lactic)-co-(glycolic acid)] and plasma-functionalized single-walled carbon nanotubes for biomedical applications. Plasma Process Polym 6(2):101–109CrossRefGoogle Scholar
  119. 119.
    Pantarotto D, Briand J-P, Prato M et al (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 10(1):16CrossRefGoogle Scholar
  120. 120.
    Zeng H, Gao C, Yan D (2006) Poly(ε-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Func Mater 16(6):812–818CrossRefGoogle Scholar
  121. 121.
    Sui XM, Giordani S, Prato M et al (2009) Effect of carbon nanotube surface modification on dispersion and structural properties of electrospun fibers. Appl Phys Lett 95(23):233113CrossRefGoogle Scholar
  122. 122.
    Zhang H, Chen Z (2010) Fabrication and characterization of electrospun plga/mwnts/hydroxyapatite biocomposite scaffolds for bone tissue engineering. J Bioactive Comp Polym 25(3):241–259CrossRefGoogle Scholar
  123. 123.
    Teo W-E, Ramakrishna S (2009) Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos Sci Technol 69(11–12):1804–1817CrossRefGoogle Scholar
  124. 124.
    Moghe AK, Gupta BS (2008) Co-axial electrospinning for nanofiber structures: preparation and applications. Polym Rev 48(2):353–377CrossRefGoogle Scholar
  125. 125.
    Townsend-Nicholson A, Jayasinghe SN (2006) Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7(12):3364–3369PubMedCrossRefGoogle Scholar
  126. 126.
    Koyama Y, Mitsui N, Suzuki N et al (2008) Effect of compressive force on the expression of inflammatory cytokines and their receptors in osteoblastic SAOS-2 cells. Arch Oral Biol 53(5):488–496PubMedCrossRefGoogle Scholar
  127. 127.
    Lee YH, Lee JH, An IG et al (2005) Electrospun dual-porosity structure and biodegradation morphology of montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26(16):3165–3172PubMedCrossRefGoogle Scholar
  128. 128.
    Baker BM, Gee AO, Metter RB et al (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29(15):2348–2358PubMedCrossRefGoogle Scholar
  129. 129.
    Guimaires A, Martins A, Pinho ED et al (2010) Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications. Nanomedicine 5(4):539–554CrossRefGoogle Scholar
  130. 130.
    Whited BM, Whitney JR, Hofmann MC et al (2011) Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials 32(9):2294–2304PubMedCrossRefGoogle Scholar
  131. 131.
    Simonet M, Schneider OD, Neuenschwander P et al (2007) Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template. Polym Eng Sci 47(12):2020–2026CrossRefGoogle Scholar
  132. 132.
    Leong MF, Rasheed MZ, Lim TC et al (2009) In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(d, l-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res A 91A(1):231–240CrossRefGoogle Scholar
  133. 133.
    Teo WE, Liao S, Chan CK et al (2008) Remodeling of three-dimensional hierarchically organized nanofibrous assemblies. Curr Nanosci 4(4):361–369CrossRefGoogle Scholar
  134. 134.
    Martins A, Chung S, Pedro AJ et al (2009) Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 3(1):37–42PubMedCrossRefGoogle Scholar
  135. 135.
    Soliman S, Pagliari S, Rinaldi A et al (2010) Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater 6(4):1227–1237PubMedCrossRefGoogle Scholar
  136. 136.
    Kim T, Chung H, Park T (2008) Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater 4(6):1611–1619PubMedCrossRefGoogle Scholar
  137. 137.
    Wright LD, Andric T, Freeman JW (2011) Utilizing NaCl to increase the porosity of electrospun materials. Mater Sci Eng C 31(1):30–36CrossRefGoogle Scholar
  138. 138.
    Luong ND, Moon I-S, Nam J-D (2009) A solvent-assisted compression molded of poly(l-lactide)/hydroxyapatite electrospun fibers for robust engineered scaffold systems. Macromol Mater Eng 294(10):669–704CrossRefGoogle Scholar
  139. 139.
    Shim IK, Jung MR, Kim KH et al (2010) Novel three-dimensional scaffolds of poly(l-lactic acid) microfibers using electrospinning and mechanical expansion: fabrication and bone regeneration. J Biomed Mater Res B Appl Biomater 95B(1):150–160CrossRefGoogle Scholar
  140. 140.
    Blakeney BA, Tambralli A, Anderson JM et al (2011) Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 32(6):1583–1590PubMedCrossRefGoogle Scholar
  141. 141.
    McCullen SD, Miller PR, Gittard SD et al (2010) In situ collagen polymerization of layered cell-seeded electrospun scaffolds for bone tissue engineering applications. Tissue Eng Part C Methods 16(5):1095–1105PubMedCrossRefGoogle Scholar
  142. 142.
    Kurpinski KT, Stephenson JT, Janairo RRR et al (2010) The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials 31(13):3536–3542PubMedCrossRefGoogle Scholar
  143. 143.
    Moore K, Macsween M, Shoichet MS (2006) Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. Tissue Eng 12(2):267–278PubMedCrossRefGoogle Scholar
  144. 144.
    Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61(12):1033–1042PubMedCrossRefGoogle Scholar
  145. 145.
    Park K, Ju YM, Son JS et al (2007) Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J Biomater Sci Polym Ed 18(4):369–382PubMedCrossRefGoogle Scholar
  146. 146.
    Polini A, Pagliara S, Stabile R et al (2010) Collagen-functionalised electrospun polymer fibers for bioengineering applications. Soft Matter 6(8):1668CrossRefGoogle Scholar
  147. 147.
    Chen J-P, Su C-H (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7(1):234–243PubMedCrossRefGoogle Scholar
  148. 148.
    Kim TG, Park TG (2006) Biomimicking extracellular matrix- cell adhesive RGD peptide modified electrospun poly(d, l-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng 12(2):221–233PubMedCrossRefGoogle Scholar
  149. 149.
    Shin YM, Shin H, Lim YM (2010) Surface modification of electrospun poly(l-lactide-co-ε-caprolactone) fibrous meshes with a RGD peptide for the control of adhesion, proliferation and differentiation of the preosteoblastic cells. Macromol Res 18(5):472–481CrossRefGoogle Scholar
  150. 150.
    Paletta JRJ, Bockelmann S, Walz A et al (2009) RGD-functionalisation of PLLA nanofibers by surface coupling using plasma treatment: Influence on stem cell differentiation. J Mater Sci Mater Med 21(4):1363–1369PubMedCrossRefGoogle Scholar
  151. 151.
    Casper CL, Yang W, Farach-Carson MC et al (2007) Coating electrospun collagen and gelatin fibers with perlecan domain i for increased growth factor binding. Biomacromolecules 8(4):1116–1123PubMedCrossRefGoogle Scholar
  152. 152.
    Joung YK, Bae JW, Park KD (2008) Controlled release of heparin-binding growth factors using heparin-containing particulate systems for tissue regeneration. Expert Opin Drug Deliv 5(11):1173–1184PubMedCrossRefGoogle Scholar
  153. 153.
    Sun B, Chen B, Zhao Y et al (2009) Crosslinking heparin to collagen scaffolds for the delivery of human platelet-derived growth factor. J Biomed Mater Res B Appl Biomater 91B(1):366–372CrossRefGoogle Scholar
  154. 154.
    Patel S, Kurpinski K, Quigley R et al (2007) Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett 7(7):2122–2128PubMedCrossRefGoogle Scholar
  155. 155.
    Kanzaki S, Takahashi T, Kanno T et al (2008) Heparin inhibits BMP-2 osteogenic bioactivity by binding to both BMP-2 and BMP receptor. J Cell Physiol 216(3):844–850PubMedCrossRefGoogle Scholar
  156. 156.
    Zhang H, Migneco F, Lin C-Y et al (2010) Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng Part A 16(11):3441–3448PubMedCrossRefGoogle Scholar
  157. 157.
    Luu HH, Song W-X, Luo X et al (2007) Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 25(5):665–677PubMedCrossRefGoogle Scholar
  158. 158.
    Wozney JM (2002) Overview of bone morphogenetic proteins. Spine 27(165):S2–S8PubMedCrossRefGoogle Scholar
  159. 159.
    David L, Feige J-J, Bailly S (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 20(3):203–212PubMedCrossRefGoogle Scholar
  160. 160.
    Nandakumar A, Yang L, Habibovic P et al (2010) Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir 26(10):7380–7387PubMedCrossRefGoogle Scholar
  161. 161.
    Cui W, Li X, Xie C et al (2010) Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials 31(17):4620–4629PubMedCrossRefGoogle Scholar
  162. 162.
    Yang F, Wolke JGC, Jansen JA (2008) Biomimetic calcium phosphate coating on electrospun poly (ε-caprolactone) scaffolds for bone tissue engineering. Chem Eng J 137(1):154–161CrossRefGoogle Scholar
  163. 163.
    Chen J, Chu B, Hsiao BS (2006) Mineralization of hydroxyapatite in electrospun nanofibrous poly(l-lactic acid) scaffolds. J Biomed Mater Res A 79A(2):307–317CrossRefGoogle Scholar
  164. 164.
    Li X, Xie J, Yuan X et al (2008) Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24(24):14145–14150PubMedCrossRefGoogle Scholar
  165. 165.
    Cui W, Li X, Xie C et al (2010) Controllable growth of hydroxyapatite on electrospun poly(dl-lactide) fibers grafted with chitosan as potential tissue engineering scaffolds. Polymer 51(11):2320–2328CrossRefGoogle Scholar
  166. 166.
    Gupta D, Venugopal J, Mitra S et al (2009) Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials 30(11):2085–2094PubMedCrossRefGoogle Scholar
  167. 167.
    Jaworek A, Krupa A, Lackowski M et al (2009) Nanocomposite fabric formation by electrospinning and electrospraying technologies. J Electrostat 67(2–3):435–438CrossRefGoogle Scholar
  168. 168.
    Francis L, Venugopal J, Prabhakaran MP et al (2010) Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration. Acta Biomater 6(10):4100–4109PubMedCrossRefGoogle Scholar
  169. 169.
    Tsai W-B, Chen RP-Y, Wei K-L et al (2010) Modulation of RGD-functionalized polyelectrolyte multilayer membranes for promoting osteoblast function. J Biomater Sci Polym Ed 21(3):377–394PubMedCrossRefGoogle Scholar
  170. 170.
    Tang Z, Wang Y, Podsiadlo P et al (2006) Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater 18(24):3203–3224CrossRefGoogle Scholar
  171. 171.
    Tryoen-Tth P, Vautier D, Haikel Y et al (2002) Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films. J Biomed Mater Res 60(4):657–667CrossRefGoogle Scholar
  172. 172.
    Lochmann A, Nitzsche H, von Einem S et al (2010) The influence of covalently linked and free polyethylene glycol on the structural and release properties of rhBMP-2 loaded microspheres. J Control Release 147(1):92–100PubMedCrossRefGoogle Scholar
  173. 173.
    Crouzier T, Ren K, Nicolas C et al (2009) Layer-by-layer films as a biomimetic reservoir for rhBMP-2 delivery: controlled differentiation of myoblasts to osteoblasts. Small 5(5):598–608PubMedCrossRefGoogle Scholar
  174. 174.
    Quinn A, Such GK, Quinn JF et al (2008) Polyelectrolyte blend multilayers: a versatile route to engineering interfaces and films. Adv Func Mater 18(1):17–26CrossRefGoogle Scholar
  175. 175.
    Pytlík R, Stehlík D, Soukup T et al (2009) The cultivation of human multipotent mesenchymal stromal cells in clinical grade medium for bone tissue engineering. Biomaterials 30(20):3415–3427PubMedCrossRefGoogle Scholar
  176. 176.
    Jayasinghe SN, Townsend-Nicholson A (2006) Stable electric-field driven cone-jetting of concentrated biosuspensions. Lab Chip 6(8):1086–1090PubMedCrossRefGoogle Scholar
  177. 177.
    Ward E, Chan E, Gustafsson K et al (2010) Combining bio-electrospraying with gene therapy: a novel biotechnique for the delivery of genetic material via living cells. Analyst 135(5):1042PubMedCrossRefGoogle Scholar
  178. 178.
    Yang X, Shah JD, Wang H (2009) Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng Part A 15(4):945–956PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nicholas R. Boyd
    • 1
  • Richard L. Boyd
    • 2
  • George P. Simon
    • 1
  • David R. Nisbet
    • 3
    Email author
  1. 1.Department of Materials EngineeringMonash UniversityClaytonAustralia
  2. 2.Monash Immunology and Stem Cell LaboratoriesMonash UniversityClaytonAustralia
  3. 3.Research School of Engineering, ANU College of Engineering and Computer ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations