Advertisement

Mesenchymal Stromal Cells: Latest Advances

  • Sowmya Viswanathan
  • Armand KeatingEmail author
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Over the past decade, the study of mesenchymal stromal cells (MSCs) has moved rapidly from in vitro and animal models to randomized clinical trials. Despite the challenges of defining MSCs, a consensus has emerged on culture methodology and their characterization, including the requirement for a minimum immunophenotype. Mechanisms of action in tissue regeneration have matured from the simple notion of transdifferentiation to effects on endogenous progenitors and promotion of an anti-inflammatory environment. Clinical investigation with MSCs now covers a wide variety of diseases, and sources of MSCs other than the bone marrow continue to be identified. Genetically engineered MSCs may provide more effective agents of tissue regeneration but will require careful preclinical study. Nonetheless, challenges remain: the need for appropriate preclinical models, informative clinical trials, good manufacturing practice cell production, and long-term trials follow-up.

Keywords

Spinal Cord Injury Expand Disability Status Scale Mesenchymal Stromal Cell Expand Disability Status Scale Score Human MSCs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ALS

Amyotrophic lateral sclerosis

AMI

Acute myocardial infarction

AT

Adipose tissue

AT-MSC

Adipose tissue-derived mesenchymal stromal cell

bFGF

Basic fibroblast growth factor

BDNF

Brain-derived neurotrophic factor

BM

Bone marrow

BM-MSC

Bone marrow-derived mesenchymal stromal cell

CD

Crohn’s disease

CDAI

Crohn’s disease activity index

DC

Dendritic cell

Dkk-1

Dickkopf-1

DMSO

Dimethyl sulfoxide

EAE

Experimental autoimmune encephalomyelitis

FBS

Fetal bovine serum

FGF

Fibroblast growth factor

GvHD

Graft-versus-host disease

GM-CSF

Granulocyte macrophage colony-stimulating factor

GMP

Good manufacturing practice

HGF

Hepatocyte growth factor

HLADR

Human leukocyte antigen DR

HLA-G5

Human leukocyte antigen G5

HUCPVCs

Human umbilical cord perivascular cells

IBD

Inflammatory bowel disease

IDO

Indoleamine-pyrrole 2,3-dioxygenase

IGF-1

Insulin-like growth factor-1

LIF

Leukemia inhibitory factor

MI

Myocardial infarction

MHC

Major histocompatibility complex

MSCs

Mesenchymal stromal cells

NGF

Nerve growth factor

NK

Natural killer

NO

Nitric oxide

NT-3

Neurotrophin-3

PD

Parkinson’s disease

PDGF

Platelet-derived growth factor

PGE2

Prostaglandin E2

SDF-1

Stromal cell-derived factor-1

SSEA-3/4

Stage specific embryonic antigen-3/4

TGF-β

Transforming growth factor-beta

T-reg

Regulatory T cell

TSG-6

Tumor necrosis factor inducible gene-6 protein

UC

Umbilical cord

UCB

Umbilical cord blood

VCAM-1

Vascular cell adhesion molecule-1

VEGF

Vascular endothelial growth factor

References

  1. 1.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403PubMedGoogle Scholar
  2. 2.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells 25:2896–2902PubMedGoogle Scholar
  3. 3.
    Tolar J, Le Blanc K, Keating A et al (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28:1446–1455PubMedGoogle Scholar
  4. 4.
    Horwitz EM, Le Blanc K, Dominici M et al (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395PubMedGoogle Scholar
  5. 5.
    Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedGoogle Scholar
  6. 6.
    Jones E, McGonagle D (2008) Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford) 47:126–131Google Scholar
  7. 7.
    Bonyadi M, Waldman SD, Liu D et al (2003) Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA 100:5840–5845PubMedGoogle Scholar
  8. 8.
    Hilton MJ, Tu X, Wu X et al (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314PubMedGoogle Scholar
  9. 9.
    Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedGoogle Scholar
  10. 10.
    D’Ippolito G, Diabira S, Howard GA et al (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981PubMedGoogle Scholar
  11. 11.
    Takashima Y, Era T, Nakao K et al (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388PubMedGoogle Scholar
  12. 12.
    Farrington-Rock C, Crofts NJ, Doherty MJ et al (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110:2226–2232PubMedGoogle Scholar
  13. 13.
    Doherty MJ, Ashton BA, Walsh S et al (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–838PubMedGoogle Scholar
  14. 14.
    Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedGoogle Scholar
  15. 15.
    Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedGoogle Scholar
  16. 16.
    Caspar-Bauguil S, Cousin B, Galinier A et al (2005) Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett 579:3487–3492PubMedGoogle Scholar
  17. 17.
    Coleman SR (1995) Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg 19:421–425PubMedGoogle Scholar
  18. 18.
    Aust L, Devlin B, Foster SJ et al (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7–14PubMedGoogle Scholar
  19. 19.
    Zhu Y, Liu T, Song K et al (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675PubMedGoogle Scholar
  20. 20.
    Lee RH, Kim B, Choi I et al (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14:311–324PubMedGoogle Scholar
  21. 21.
    Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301PubMedGoogle Scholar
  22. 22.
    Locke M, Feisst V, Dunbar PR (2011) Concise review: human adipose-derived stem cells (ASC): separating promise from clinical need. Stem Cells 29(3):404–411PubMedGoogle Scholar
  23. 23.
    Puissant B, Barreau C, Bourin P et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129:118–129PubMedGoogle Scholar
  24. 24.
    Gronthos S, Franklin DM, Leddy HA et al (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189:54–63PubMedGoogle Scholar
  25. 25.
    Wang M, Crisostomo PR, Herring C et al (2006) Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 291:R880–R884PubMedGoogle Scholar
  26. 26.
    Mareschi K, Biasin E, Piacibello W et al (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86:1099–1100PubMedGoogle Scholar
  27. 27.
    Bieback K, Kern S, Kluter H et al (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634PubMedGoogle Scholar
  28. 28.
    Lee OK, Kuo TK, Chen WM et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675PubMedGoogle Scholar
  29. 29.
    Moretti P, Hatlapatka T, Marten D et al (2010) Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications. Adv Biochem Eng Biotechnol 123:29–54PubMedGoogle Scholar
  30. 30.
    Carlin R, Davis D, Weiss M et al (2006) Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 4:8PubMedGoogle Scholar
  31. 31.
    Jo CH, Kim OS, Park EY et al (2008) Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell Tissue Res 334:423–433PubMedGoogle Scholar
  32. 32.
    Nanaev AK, Kohnen G, Milovanov AP et al (1997) Stromal differentiation and architecture of the human umbilical cord. Placenta 18:53–64PubMedGoogle Scholar
  33. 33.
    Kobayashi K, Kubota T, Aso T (1998) Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev 51:223–233PubMedGoogle Scholar
  34. 34.
    Weiss ML, Anderson C, Medicetty S et al (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26:2865–2874PubMedGoogle Scholar
  35. 35.
    Bongso A, Fong CY, Gauthaman K (2008) Taking stem cells to the clinic: major challenges. J Cell Biochem 105:1352–1360PubMedGoogle Scholar
  36. 36.
    Wang L, Ott L, Seshareddy K et al (2011) Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells. Regen Med 6:95–109PubMedGoogle Scholar
  37. 37.
    Sarugaser R, Lickorish D, Baksh D et al (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229PubMedGoogle Scholar
  38. 38.
    Sarugaser R, Hanoun L, Keating A et al (2009) Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One 4:e6498PubMedGoogle Scholar
  39. 39.
    Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392PubMedGoogle Scholar
  40. 40.
    Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262:509–525PubMedGoogle Scholar
  41. 41.
    Nauta AJ, Westerhuis G, Kruisselbrink AB et al (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108:2114–2120PubMedGoogle Scholar
  42. 42.
    Eliopoulos N, Stagg J, Lejeune L et al (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106:4057–4065PubMedGoogle Scholar
  43. 43.
    Meisel R, Zibert A, Laryea M et al (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621PubMedGoogle Scholar
  44. 44.
    Sato K, Ozaki K, Oh I et al (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234PubMedGoogle Scholar
  45. 45.
    Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843PubMedGoogle Scholar
  46. 46.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedGoogle Scholar
  47. 47.
    Selmani Z, Naji A, Zidi I et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222PubMedGoogle Scholar
  48. 48.
    Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478PubMedGoogle Scholar
  49. 49.
    Glennie S, Soeiro I, Dyson PJ et al (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827PubMedGoogle Scholar
  50. 50.
    Plumas J, Chaperot L, Richard MJ et al (2005) Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 19:1597–1604PubMedGoogle Scholar
  51. 51.
    Ren G, Zhang L, Zhao X et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150PubMedGoogle Scholar
  52. 52.
    Yang SH, Park MJ, Yoon IH et al (2009) Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp Mol Med 41:315–324PubMedGoogle Scholar
  53. 53.
    Di Ianni M, Del Papa B, De Ioanni M et al (2008) Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 36:309–318PubMedGoogle Scholar
  54. 54.
    Spaggiari GM, Capobianco A, Becchetti S et al (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490PubMedGoogle Scholar
  55. 55.
    Ramasamy R, Fazekasova H, Lam EW et al (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83:71–76PubMedGoogle Scholar
  56. 56.
    Zhang W, Ge W, Li C et al (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13:263–271PubMedGoogle Scholar
  57. 57.
    Nemeth K, Leelahavanichkul A, Yuen PS et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49PubMedGoogle Scholar
  58. 58.
    Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372PubMedGoogle Scholar
  59. 59.
    Zappia E, Casazza S, Pedemonte E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761PubMedGoogle Scholar
  60. 60.
    Gerdoni E, Gallo B, Casazza S et al (2007) Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 61:219–227PubMedGoogle Scholar
  61. 61.
    Xu G, Zhang L, Ren G et al (2007) Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Res 17:240–248PubMedGoogle Scholar
  62. 62.
    Rafei M, Hsieh J, Fortier S et al (2008) Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112:4991–4998PubMedGoogle Scholar
  63. 63.
    Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441PubMedGoogle Scholar
  64. 64.
    Gonzalez MA, Gonzalez-Rey E, Rico L et al (2009) Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136:978–989PubMedGoogle Scholar
  65. 65.
    Duijvestein M, Vos AC, Roelofs H et al (2010) Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59:1662–1669PubMedGoogle Scholar
  66. 66.
    Garcia-Olmo D, Herreros D, Pascual I et al (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52:79–86PubMedGoogle Scholar
  67. 67.
    Onken J, Gallup D, Hanson J (2006) Successful outpatient treatment of refractory Crohn’s disease using adult mesenchymal stem cells. ACG 2006 Final Program Book. p 121.Google Scholar
  68. 68.
    Lee RH, Seo MJ, Reger RL et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 103:17438–17443PubMedGoogle Scholar
  69. 69.
    Ezquer FE, Ezquer ME, Parrau DB et al (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14:631–640PubMedGoogle Scholar
  70. 70.
    Wang HS, Shyu JF, Shen WS et al (2011) Transplantation of insulin producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant 20(3):455–466PubMedGoogle Scholar
  71. 71.
    Chen NK, Tan SY, Udolph G et al (2010) Insulin expressed from endogenously active glucose-responsive EGR1 promoter in bone marrow mesenchymal stromal cells as diabetes therapy. Gene Ther 17:592–605PubMedGoogle Scholar
  72. 72.
    Estrada EJ, Valacchi F, Nicora E et al (2008) Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transplant 17:1295–1304PubMedGoogle Scholar
  73. 73.
    Kassis I, Grigoriadis N, Gowda-Kurkalli B et al (2008) Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 65:753–761PubMedGoogle Scholar
  74. 74.
    Liang J, Zhang H, Hua B et al (2009) Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler 15:644–646PubMedGoogle Scholar
  75. 75.
    Bonab M, Yazdanbakhsh S, Lofti J (2007) Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 4:50–57Google Scholar
  76. 76.
    Joyce N, Annett G, Wirthlin L et al (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5:933–946PubMedGoogle Scholar
  77. 77.
    Munoz JR, Stoutenger BR, Robinson AP et al (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA 102:18171–18176PubMedGoogle Scholar
  78. 78.
    Kemp K, Hares K, Mallam E et al (2010) Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem 114:1569–1580PubMedGoogle Scholar
  79. 79.
    Crigler L, Robey RC, Asawachaicharn A et al (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64PubMedGoogle Scholar
  80. 80.
    Lanza C, Morando S, Voci A et al (2009) Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem 110:1674–1684PubMedGoogle Scholar
  81. 81.
    Wilkins A, Kemp K, Ginty M et al (2009) Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res 3:63–70Google Scholar
  82. 82.
    Etheridge SL, Spencer GJ, Heath DJ et al (2004) Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22:849–860PubMedGoogle Scholar
  83. 83.
    Rivera FJ, Couillard-Despres S, Pedre X et al (2006) Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells 24:2209–2219PubMedGoogle Scholar
  84. 84.
    Morita E, Watanabe Y, Ishimoto M et al (2008) A novel cell transplantation protocol and its application to an ALS mouse model. Exp Neurol 213:431–438PubMedGoogle Scholar
  85. 85.
    Vercelli A, Mereuta OM, Garbossa D et al (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31:395–405PubMedGoogle Scholar
  86. 86.
    Mazzini L, Ferrero I, Luparello V et al (2010) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 223:229–237PubMedGoogle Scholar
  87. 87.
    Bouchez G, Sensebe L, Vourc’h P et al (2008) Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochem Int 52:1332–1342PubMedGoogle Scholar
  88. 88.
    Sadan O, Bahat-Stromza M, Barhum Y et al (2009) Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells Dev 18:1179–1190PubMedGoogle Scholar
  89. 89.
    Venkataramana NK, Kumar SK, Balaraju S et al (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 155:62–70PubMedGoogle Scholar
  90. 90.
    Chen J, Li Y, Wang L et al (2001) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189:49–57PubMedGoogle Scholar
  91. 91.
    Chen J, Sanberg PR, Li Y et al (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688PubMedGoogle Scholar
  92. 92.
    Shen LH, Li Y, Chen J et al (2007) Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 27:6–13PubMedGoogle Scholar
  93. 93.
    Kim SS, Yoo SW, Park TS et al (2008) Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells 26:2217–2228PubMedGoogle Scholar
  94. 94.
    Bao X, Wei J, Feng M et al (2011) Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res 1367:103–113PubMedGoogle Scholar
  95. 95.
    Bang OY, Lee JS, Lee PH et al (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882PubMedGoogle Scholar
  96. 96.
    Himes BT, Neuhuber B, Coleman C et al (2006) Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 20:278–296PubMedGoogle Scholar
  97. 97.
    Park HC, Shim YS, Ha Y et al (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11:913–922PubMedGoogle Scholar
  98. 98.
    Yoon SH, Shim YS, Park YH et al (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 25:2066–2073PubMedGoogle Scholar
  99. 99.
    Pal R, Venkataramana NK, Bansal A et al (2009) Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11:897–911PubMedGoogle Scholar
  100. 100.
    Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102:11474–11479PubMedGoogle Scholar
  101. 101.
    Silva GV, Litovsky S, Assad JA et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156PubMedGoogle Scholar
  102. 102.
    Schuleri KH, Feigenbaum GS, Centola M et al (2009) Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 30:2722–2732PubMedGoogle Scholar
  103. 103.
    Nagaya N, Kangawa K, Itoh T et al (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135PubMedGoogle Scholar
  104. 104.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedGoogle Scholar
  105. 105.
    Shim WS, Jiang S, Wong P et al (2004) Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 324:481–488PubMedGoogle Scholar
  106. 106.
    Yoon J, Min BG, Kim YH et al (2005) Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol 60:277–284PubMedGoogle Scholar
  107. 107.
    Behfar A, Faustino RS, Arrell DK et al (2008) Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 45:523–529PubMedGoogle Scholar
  108. 108.
    Gnecchi M, He H, Liang OD et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368PubMedGoogle Scholar
  109. 109.
    Kinnaird T, Stabile E, Burnett MS et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549PubMedGoogle Scholar
  110. 110.
    Nakanishi C, Yamagishi M, Yamahara K et al (2008) Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun 374:11–16PubMedGoogle Scholar
  111. 111.
    Ohnishi S, Sumiyoshi H, Kitamura S et al (2007) Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett 581:3961–3966PubMedGoogle Scholar
  112. 112.
    Takahashi M, Li TS, Suzuki R et al (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 291:H886–H893PubMedGoogle Scholar
  113. 113.
    Gnecchi M, Zhang Z, Ni A et al (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219PubMedGoogle Scholar
  114. 114.
    Lee RH, Pulin AA, Seo MJ et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory ­protein TSG-6. Cell Stem Cell 5:54–63PubMedGoogle Scholar
  115. 115.
    Maina V, Cotena A, Doni A et al (2009) Coregulation in human leukocytes of the long ­pentraxin PTX3 and TSG-6. J Leukoc Biol 86:123–132PubMedGoogle Scholar
  116. 116.
    Hare JM, Traverse JH, Henry TD et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (­prochymal) after acute myocardial infarction. J Am Coll Cardiol 54:2277–2286PubMedGoogle Scholar
  117. 117.
    Gao J, Dennis JE, Muzic RF et al (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20PubMedGoogle Scholar
  118. 118.
    Chen S, Liu Z, Tian N et al (2006) Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 18:552–556PubMedGoogle Scholar
  119. 119.
    Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586PubMedGoogle Scholar
  120. 120.
    Spees JL, Gregory CA, Singh H et al (2004) Internalized antigens must be removed to ­prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther 9:747–756PubMedGoogle Scholar
  121. 121.
    Muller I, Kordowich S, Holzwarth C et al (2006) Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 8:437–444PubMedGoogle Scholar
  122. 122.
    Kocaoemer A, Kern S, Kluter H et al (2007) Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25:1270–1278PubMedGoogle Scholar
  123. 123.
    Kasten P, Vogel J, Beyen I et al (2008) Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. J Biomater Appl 23:169–188PubMedGoogle Scholar
  124. 124.
    von Bonin M, Stolzel F, Goedecke A et al (2009) Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 43:245–251Google Scholar
  125. 125.
    Chase LG, Lakshmipathy U, Solchaga LA et al (2010) A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther 1:8PubMedGoogle Scholar
  126. 126.
    Tarte K, Gaillard J, Lataillade JJ et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115:1549–1553PubMedGoogle Scholar
  127. 127.
    Samuelsson H, Ringden O, Lonnies H et al (2009) Optimizing in vitro conditions for immunomodulation and expansion of mesenchymal stromal cells. Cytotherapy 11:129–136PubMedGoogle Scholar
  128. 128.
    Lepperdinger G, Brunauer R, Jamnig A et al (2008) Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies? Exp Gerontol 43:1018–1023PubMedGoogle Scholar
  129. 129.
    Prockop DJ, Brenner M, Fibbe WE et al (2010) Defining the risks of mesenchymal stromal cell therapy. Cytotherapy 12:576–578PubMedGoogle Scholar
  130. 130.
    Ringden O, Uzunel M, Rasmusson I et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–1397PubMedGoogle Scholar
  131. 131.
    Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398PubMedGoogle Scholar
  132. 132.
    Chen X, Xu H, Wan C et al (2006) Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 24:2052–2059PubMedGoogle Scholar
  133. 133.
    Vergidis J, Suck G, Wang X et al (2004) Culture conditions for generating human bone marrow stromal cells influence cell immunophenotype and in vivo biodistribution in immune deficient mice. In: American Society of Hematology Annual Meetings Abstracts, Orlando, Florida, p 2334Google Scholar
  134. 134.
    Yang Y, Rossi FM, Putnins EE (2007) Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials 28:3110–3120PubMedGoogle Scholar
  135. 135.
    Schop D, van Dijkhuizen-Radersma R, Borgart E et al (2010) Expansion of human mesenchymal stromal cells on microcarriers: growth and metabolism. J Tissue Eng Regen Med 4:131–140PubMedGoogle Scholar
  136. 136.
    McMahon JM, Conroy S, Lyons M et al (2006) Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem Cells Dev 15:87–96PubMedGoogle Scholar
  137. 137.
    Stender S, Murphy M, O’Brien T et al (2007) Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater 13:93–99, discussion 99PubMedGoogle Scholar
  138. 138.
    Dao MA, Pepper KA, Nolta JA (1997) Long-term cytokine production from engineered primary human stromal cells influences human hematopoiesis in an in vivo xenograft model. Stem Cells 15:443–454PubMedGoogle Scholar
  139. 139.
    Li W, Ma N, Ong LL et al (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25:2118–2127PubMedGoogle Scholar
  140. 140.
    Tang J, Wang J, Zheng F et al (2010) Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats. Mol Cell Biochem 339:107–118PubMedGoogle Scholar
  141. 141.
    Dey ND, Bombard MC, Roland BP et al (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214:193–200PubMedGoogle Scholar
  142. 142.
    Benabdallah BF, Allard E, Yao S et al (2010) Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy 12:394–399PubMedGoogle Scholar
  143. 143.
    Yang F, Cho SW, Son SM et al (2010) Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci USA 107:3317–3322PubMedGoogle Scholar
  144. 144.
    Madeira C, Mendes RD, Ribeiro SC et al (2010) Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy. J Biomed Biotechnol 2010:735349PubMedGoogle Scholar
  145. 145.
    Rubio D, Garcia-Castro J, Martin MC et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039PubMedGoogle Scholar
  146. 146.
    Rosland GV, Svendsen A, Torsvik A et al (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69:5331–5339PubMedGoogle Scholar
  147. 147.
    Garcia S, Bernad A, Martin MC et al (2010) Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Exp Cell Res 316:1648–1650PubMedGoogle Scholar
  148. 148.
    Fehrer C, Brunauer R, Laschober G et al (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6:745–757PubMedGoogle Scholar
  149. 149.
    Stenderup K, Justesen J, Clausen C et al (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926PubMedGoogle Scholar
  150. 150.
    Stolzing A, Jones E, McGonagle D et al (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129:163–173PubMedGoogle Scholar
  151. 151.
    Castillero-Trejo Y, Eliazer S, Xiang L et al (2005) Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells results in EWS/FLI-1-dependent, ewing sarcoma-like tumors. Cancer Res 65:8698–8705PubMedGoogle Scholar
  152. 152.
    Charytonowicz E, Cordon-Cardo C, Matushansky I et al (2009) Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell? Cancer Lett 279:126–136PubMedGoogle Scholar
  153. 153.
    Riggi N, Cironi L, Provero P et al (2005) Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 65:11459–11468PubMedGoogle Scholar
  154. 154.
    Riggi N, Cironi L, Provero P et al (2006) Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res 66:7016–7023PubMedGoogle Scholar
  155. 155.
    Tirode F, Laud-Duval K, Prieur A et al (2007) Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11:421–429PubMedGoogle Scholar
  156. 156.
    Burns JS, Abdallah BM, Schroder HD et al (2008) The histopathology of a human mesenchymal stem cell experimental tumor model: support for an hMSC origin for Ewing’s sarcoma? Histol Histopathol 23:1229–1240PubMedGoogle Scholar
  157. 157.
    Suva ML, Riggi N, Stehle JC et al (2009) Identification of cancer stem cells in Ewing’s sarcoma. Cancer Res 69:1776–1781PubMedGoogle Scholar
  158. 158.
    Cironi L, Provero P, Riggi N et al (2009) Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1. PLoS One 4:e7904PubMedGoogle Scholar
  159. 159.
    Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571PubMedGoogle Scholar
  160. 160.
    Rubio R, Garcia-Castro J, Gutierrez-Aranda I et al (2010) Deficiency in p53 but not retinoblastoma induces the transformation of mesenchymal stem cells in vitro and initiates leiomyosarcoma in vivo. Cancer Res 70:4185–4194PubMedGoogle Scholar
  161. 161.
    Wu C, Nik-Amini S, Nadesan P et al (2010) Aggressive fibromatosis (desmoid tumor) is derived from mesenchymal progenitor cells. Cancer Res 70:7690–7698PubMedGoogle Scholar
  162. 162.
    Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563PubMedGoogle Scholar
  163. 163.
    Kidd S, Spaeth E, Dembinski JL et al (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27:2614–2623PubMedGoogle Scholar
  164. 164.
    Bexell D, Scheding S, Bengzon J (2010) Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors. Mol Ther 18:1067–1075PubMedGoogle Scholar
  165. 165.
    Loebinger MR, Janes SM (2010) Stem cells as vectors for antitumour therapy. Thorax 65:362–369PubMedGoogle Scholar
  166. 166.
    Djouad F, Plence P, Bony C et al (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–3844PubMedGoogle Scholar
  167. 167.
    Spaeth EL, Dembinski JL, Sasser AK et al (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4:e4992PubMedGoogle Scholar
  168. 168.
    Rhodes LV, Muir SE, Elliott S et al (2010) Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Res Treat 121:293–300PubMedGoogle Scholar
  169. 169.
    Martin FT, Dwyer RM, Kelly J et al (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 124:317–326PubMedGoogle Scholar
  170. 170.
    Klopp AH, Lacerda L, Gupta A et al (2010) Mesenchymal stem cells promote mammo-sphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One 5:e12180PubMedGoogle Scholar
  171. 171.
    Breitbach M, Bostani T, Roell W et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369PubMedGoogle Scholar
  172. 172.
    Price MJ, Chou CC, Frantzen M et al (2006) Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol 111:231–239PubMedGoogle Scholar
  173. 173.
    Karussis D, Kassis I, Kurkalli BG et al (2008) Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J Neurol Sci 265:131–135PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Cell Therapy Program, Princess Margaret HospitalUniversity Health NetworkTorontoCanada
  2. 2.Department of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations