Advertisement

Use of Large Animal and Nonhuman Primate Models for Cell Therapy and Tissue Engineering

  • Alice F. TarantalEmail author
  • Karina H. Nakayama
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

The intent of this chapter is to highlight the contributions of large animal models including pigs, sheep, goats, dogs, and nonhuman primates. These species are crucial for clinical translation of new cell and tissue engineering approaches for the treatment of human diseases. Choice of species, age, and model validation are necessary to ensure outcomes are predictive, and recapitulate human development, anatomy, physiology, and disease. The overriding objective is to select a model that can reliably assess the safety and efficacy of new therapies beyond the discovery phase and to obtain results that can be translated to clinical trials in children and adults.

Keywords

Spinal Cord Injury Nonhuman Primate Vascular Graft Large Animal Model PLGA Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ACL

Anterior cruciate ligament

A-V

Arteriovenous

CT

Computed tomography

CTSA

Clinical and Translational Science Award

DOA

Deoxycholic acid

ECFC

Endothelial colony forming cell

ECM

Extracellular matrix

ESRD

End-stage renal disease

HA

Hydroxyapatite

MI

Myocardial infarction

MSC

Mesenchymal stem cells

NIH

National Institutes of Health

PAD

Peripheral arterial disease

PCL

Poly(ε-caprolactone)

PDGF

Platelet-derived growth factor

PGA

Polyglycolic acid

PLGA

Poly(lactide-co-glycolic acid)

PLLA

Poly-l-lactide acid

PTFE

Polytetrafluroethylene

RPE

Retinal pigmented epithelium

SIS

Small intestinal submucosa

TCP

Tricalcium phosphate

VEGF

Vascular endothelial growth factor

Notes

Acknowledgments

Dr. A.F. Tarantal is Staff Scientist and Unit Leader at the California National Primate Research Center (NIH RR00169), and directs the NHLBI Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases (NIH HL85794), and the Translational and Pilot Programs in the UC Davis Clinical and Translational Science Center (CTSC) (NIH RR024146). Ms. K.H. Nakayama is a predoctoral scholar in the UC Davis Stem Cell Training Program (CIRM T1-00006 and TG2-01163) and a former CTSC T32 trainee.

References

  1. 1.
    Sykes M (2009) Hematopoietic cell transplantation for tolerance induction: animal models to clinical trials. Transplantation 87:309–316PubMedCrossRefGoogle Scholar
  2. 2.
    Bontrop RE (2001) Non-human primates: essential partners in biomedical research. Immunol Rev 183:5–9PubMedCrossRefGoogle Scholar
  3. 3.
    Gibbons DL, Spencer J (2011) Mouse and human intestinal immunity: same ballpark, different players; different rules, same score. Mucosal Immunol 4:148–157PubMedCrossRefGoogle Scholar
  4. 4.
    Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738PubMedGoogle Scholar
  5. 5.
    Shively CA, Clarkson TB (2009) The unique value of primate models in translational research. Am J Primatol 72:715–721CrossRefGoogle Scholar
  6. 6.
    Trobridge GD, Kiem H-P (2010) Large animal models of hematopoietic stem cell gene therapy. Gene Ther 17:939–948PubMedCrossRefGoogle Scholar
  7. 7.
    Abrams P, Levitt Katz LE (2011) Metabolic effects of obesity causing disease in childhood. Curr Opin Endocrinol Diabetes Obes 18:23–27PubMedCrossRefGoogle Scholar
  8. 8.
    Boegehold MA (2010) Endothelium-dependent control of vascular tone during early postnatal and juvenile growth. Microcirculation 17:394–406PubMedGoogle Scholar
  9. 9.
    Rahimtoola SH (2010) Choice of prosthetic heart valve in adults. J Am Coll Cardiol 55:2413–2426PubMedCrossRefGoogle Scholar
  10. 10.
    Dixon JA, Spinale FG (2009) Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2:262–271PubMedCrossRefGoogle Scholar
  11. 11.
    Rashid ST, Salacinski HJ, Hamilton G, Seifalian AM (2004) The use of animal models in developing the discipline of cardiovascular tissue engineering: a review. Biomaterials 25:1627–1637PubMedCrossRefGoogle Scholar
  12. 12.
    Ziegler MA, Distasi MR, Bills RG, Miller SJ, Alloosh M, Murphy MP, George Akingba A, Sturek M, Daising MC, Unthank JL (2010) Marvels, mysteries, and misconceptions of vascular compensation to peripheral artery occlusion. Microcirculation 17:3–20PubMedCrossRefGoogle Scholar
  13. 13.
    Recchia FA, Lionetti V (2007) Animal models of dilated cardiomyopathy for translational research. Vet Res Commun 31:35–41PubMedCrossRefGoogle Scholar
  14. 14.
    Fitzgerald JT, Sena MJ, Vandewalker KN, Johnson JR, Griffey SM, Tarantal AF, Barry PA, McChesney MB, Ramsamooj R, Perez RV (2004) Occult pretransplantation systemic inflammation and posttransplantation vascular changes in a primate arterial allograft model. Transplantation 78:367–374PubMedCrossRefGoogle Scholar
  15. 15.
    Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wünsch A, Wolf E (2010) Transgenic pigs as models for translational biomedical research. J Mol Med 88:653–664PubMedCrossRefGoogle Scholar
  16. 16.
    Granada JF, Kaluza GL, Wilenshy RL, Biedermann BC, Schwartz RS, Falk E (2009) Porcine models of coronary atherosclerosis and vulnerable plaque for imaging and interventional research. EuroIntervention 5:140–148PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki Y, Yeung AC, Ikeno F (2009) The pre-clinical animal model in the translational research of interventional cardiology. JACC Cardiovasc Interv 2:373–383PubMedCrossRefGoogle Scholar
  18. 18.
    Beier JP, Horch RE, Arkudas A, Polykandriotis E, Bleiziffer O, Adamek E, Hess A, Kneser U (2009) De novo generation of axially vascularized tissue in a large animal model. Microsurgery 29:42–51PubMedCrossRefGoogle Scholar
  19. 19.
    Tarantal AF, Lee CC, Itkin-Ansari P (2009) Real-time bioluminescence imaging of macroencapsulated fibroblasts reveals allograft protection in rhesus monkeys (Macaca mulatta). Transplantation 88:38–41PubMedCrossRefGoogle Scholar
  20. 20.
    Apte SS, Paul A, Prakash S, Shum-Tim D (2011) Current developments in the tissue engineering of autologous heart valves: moving towards clinical use. Future Cardiol 7:77–97PubMedCrossRefGoogle Scholar
  21. 21.
    Hønge JL, Funder J, Hansen E, Dohmen PM, Konertz W, Hasenkam JM (2010) Recellularization of aortic valves in pigs. Eur J Cardiothorac Surg 39:829–834PubMedCrossRefGoogle Scholar
  22. 22.
    Dohmen PM, Ozaki S, Nitsch R, Yperman J, Flameng W, Konertz W (2003) A tissue engineered heart valve implanted in a juvenile sheep model. Med Sci Monit 9:BR97–BR104PubMedGoogle Scholar
  23. 23.
    Dohmen PM, Costa F, Lopes SV, Yoshi S, Souza FP, Vilani R, Costa MB, Konertz W (2005) Results of decellularized porcine heart valve implanted into the juvenile sheep model. Heart Surg Forum 8:E100–E104PubMedCrossRefGoogle Scholar
  24. 24.
    Hønge JL, Funder JA, Jensen H, Dohmen PM, Konertz WF, Hasenkam JM (2010) Recellularization of decellularized mitral heart valves in juvenile pigs. J Heart Valve Dis 19:584–592PubMedGoogle Scholar
  25. 25.
    Baraki H, Tudorache I, Braun M, Höffler K, Görier A, Lichtenberg A, Bara C, Calistru A, Brandes G, Hewicker-Trautwein M, Hilfiker A, Haverich A, Cebotari S (2009) Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 30:6240–6246PubMedCrossRefGoogle Scholar
  26. 26.
    Lichtenberg A, Tudorache I, Cebotari S, Suprunov M, Tudorache G, Goerler H, Park JK, Hilfiker-Kleiner D, Ringes-Lichtenberg S, Karck M, Brandes G, Hilfiker A, Haverich A (2006) Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 114:I559–I565PubMedCrossRefGoogle Scholar
  27. 27.
    Dohmen PM, da Costa F, Yoshi S, Lopes SV, da Souza FP, Vilani R, Wouk AF, da Costa M, Konertz W (2006) Histological evaluation of tissue-engineered heart valves implanted in the juvenile sheep model: is there a need for in-vitro seeding? J Heart Valve Dis 15:823–829PubMedGoogle Scholar
  28. 28.
    Schmidt D, Dijkman PE, Driessen-Mol A, Stenger R, Mariani C, Puolakka A, Rissanen M, Deichmann T, Odsermatt B, Weber B, Emmert MY, Zund G, Baauhebs FP, Hoerstrup SP (2010) Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 56:510–520PubMedCrossRefGoogle Scholar
  29. 29.
    Harnden I, Kiernan K, Kearns-Jonker M (2010) The anti-nonGal xenoantibody response to alpha1,3-galactosyltransferase gene knockout pig xenografts. Curr Opin Organ Transplant 15:207–211PubMedCrossRefGoogle Scholar
  30. 30.
    Daly KA, Stewart-Akers AM, Hara H, Ezzelarab M, Long C, Cordero K, Johnson SA, Ayares D, Cooper DK, Badylak SF (2009) Effect of the αGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue Eng Part A 15:3877–3888PubMedCrossRefGoogle Scholar
  31. 31.
    McGregor CG, Carpentier A, Lila N, Logan JS, Byrne GW (2011) Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves. J Thorac Cardiovasc Surg 141:269–275PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor DA (2009) From stem cells to cadaveric matrix to engineered organs. Curr Opin Biotechnol 20:598–605PubMedCrossRefGoogle Scholar
  33. 33.
    Badylak SF, Kochupura PV, Cohen IS, Doronin SV, Saltman AE, Gilbert TW, Kelly DJ, Ignotz RA, Gaudette GR (2006) The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transplant 15:S29–S40PubMedCrossRefGoogle Scholar
  34. 34.
    Cui J, Li J, Mathison M, Tondato F, Mulkey SP, Micko C, Chronos NA, Robinson KA (2005) A clinically relevant large-animal model for evaluation of tissue-engineered cardiac surgical patch material. Cardiovasc Revasc Med 6:113–120PubMedCrossRefGoogle Scholar
  35. 35.
    Miyagawa S, Saito A, Sakaguchi T, Yoshikawa Y, Tamauchi T, Imanishi Y, Kawaguchi N, Teramoto N, Matsuura N, Lida H, Shimizu T, Okano T, Sawa Y (2010) Impaired myocardium regeneration with skeletal cell sheets-a preclinical trial for tissue-engineered regeneration therapy. Transplantation 90:364–372PubMedCrossRefGoogle Scholar
  36. 36.
    Singelyn JM, Christman KL (2010) Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res 3:478–486PubMedCrossRefGoogle Scholar
  37. 37.
    Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL (2009) Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30:5409–5416PubMedCrossRefGoogle Scholar
  38. 38.
    Lawall H, Bramlage P, Amann B (2010) Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost 103:696–709PubMedCrossRefGoogle Scholar
  39. 39.
    Isenberg BC, Williams C, Tranquillo RT (2006) Small-diameter artificial arteries engineered in vitro. Circ Res 98:25–35PubMedCrossRefGoogle Scholar
  40. 40.
    Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493PubMedCrossRefGoogle Scholar
  41. 41.
    Narita Y, Kagami H, Matsunuma H, Murase Y, Ueda M, Ueda Y (2008) Decellularized ureter for tissue-engineered small-caliber vascular graft. J Artif Organs 11:91–99PubMedCrossRefGoogle Scholar
  42. 42.
    Zilla P, Preiss P, Groscurth P, Rösemeier F, Deutsch M, Odell J, Heidinger C, Fasol R, von Oppell U (1994) In vitro-lined endothelium: initial integrity and ultrastructural events. Surgery 116:524–534PubMedGoogle Scholar
  43. 43.
    Meinhart JG, Deutsch M, Fischlein T, Howanietz N, Fröschi A, Zilla P (2001) Clinical autologous in vitro endothelialization of 153 infrainguinal PTFE grafts. Ann Thorac Surg 71:S327–S331PubMedCrossRefGoogle Scholar
  44. 44.
    Dahl SL, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y, Manson RJ, Tente WE, DiBernardo L, Hensley MT, Carter R, Williams TP, Prichard HL, Dey MS, Begelman KG, Niklason LE (2011) Readily available tissue-engineered vascular grafts. Sci Transl Med 3:68ra9PubMedCrossRefGoogle Scholar
  45. 45.
    Cho S-W, Kim I-K, Kang JM, Song KW, Kim HS, Park CH, Yoo KJ, Kim BS (2009) Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery. Tissue Eng Part A 15:901–912PubMedCrossRefGoogle Scholar
  46. 46.
    Brennan MP, Dardik A, Hibino N, Roh JD, Nelson GN, Papademitris X, Shinoka T, Breuer CK (2008) Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg 248:370–377PubMedGoogle Scholar
  47. 47.
    Hoerstrup SP, Cummings MI, Lachat M, Schoen FJ, Jenni R, Leschka S, Neuenschwander S, Schmidt D, Mol A, Günter C, Gössi M, Genoni M, Zund G (2006) Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation 114:I159–I166PubMedCrossRefGoogle Scholar
  48. 48.
    Tongers J, Roncalli JG, Losordo DW (2010) Role of endothelial progenitor cells during ischemia-induced vasculogenesis and collateral formation. Microvasc Res 79:200–206PubMedCrossRefGoogle Scholar
  49. 49.
    Critser PJ, Yoder MC (2010) Endothelial colony-forming cell role in neoangiogenesis and tissue repair. Curr Opin Organ Transplant 15:68–72PubMedCrossRefGoogle Scholar
  50. 50.
    Shelley WC, Leapley AC, Huang L, Critser PJ, Mead LE, Zeng P, Prater D, Ingram DA, Tarantal AF, Yoder MC Changes in the frequency and in vivo vessel forming ability of rhesus monkey circulating endothelial colony forming cells (ECFC) across the lifespan (birth to aged). In reviewGoogle Scholar
  51. 51.
    Tottey S, Johnson SA, Crapo PM, Reing JE, Zhang L, Jiang H, Medberry CJ, Reines B, Badylak SF (2011) The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials 32:128–136PubMedCrossRefGoogle Scholar
  52. 52.
    Shi W, Xu J, Warburton D (2009) Development, repair, and fibrosis: what is common and why it matters. Respirology 14:656–665PubMedCrossRefGoogle Scholar
  53. 53.
    Sueblinvong V, Weiss DJ (2010) Stem cells and cell therapy approaches in lung biology and diseases. Transl Res 156:188–205PubMedCrossRefGoogle Scholar
  54. 54.
    Stevenson CS, Birrell MA (2011) Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol Ther 130:93–105PubMedCrossRefGoogle Scholar
  55. 55.
    Birchall MA, Kingham PJ, Murison PJ, Ayling SM, Burt R, Mitchard L, Jones A, Lear P, Stokes CR, Terenghi G, Bailey M, Macchiarini P (2011) Laryngeal transplantation in minipigs: vascular, myologic and functional outcomes. Eur Arch Otorhinolaryngol 268:405–414PubMedCrossRefGoogle Scholar
  56. 56.
    Go T, Jungebluth P, Baiguero S, Asnaghi A, Martorell J, Ostertag H, Mantero S, Birchall M, Bader A, Macchiarini P (2010) Both epithelial cells and mesenchymal stem cell-derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs. J Thorac Cardiovasc Surg 139:437–443PubMedCrossRefGoogle Scholar
  57. 57.
    Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030PubMedCrossRefGoogle Scholar
  58. 58.
    Remlinger NT, Czajka CA, Juhas ME, Vorp DA, Stolz DB, Badylak SF, Gilbert S, Gilbert TW (2010) Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials 31:3520–3526PubMedCrossRefGoogle Scholar
  59. 59.
    Gupta A, Vara DS, Punshon G, Sales KM, Winslet MC, Seifalian AM (2009) In vitro small intestinal epithelial cell growth on a nanocomposite polycaprolactone scaffold. Biotechnol Appl Biochem 54:221–229PubMedCrossRefGoogle Scholar
  60. 60.
    Badylak S, Meurling S, Chen M, Spievack A, Simmons-Byrd A (2000) Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 35:1097–1103PubMedCrossRefGoogle Scholar
  61. 61.
    Badylak SF, Vorp DA, Spievack AR, Simmons-Byrd A, Hanke J, Freytes DO, Thapa A, Gilbert TW, Nieponice A (2005) Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res 128:87–97PubMedGoogle Scholar
  62. 62.
    Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, Sakakura C, Yamagishi H, Hamuro J, Ikada Y, Otsuji E, Hagiwara A (2008) Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg 136:850–859PubMedCrossRefGoogle Scholar
  63. 63.
    Zheng MH, Ye C, Braddock M, Chen YP (2010) Liver tissue engineering: promises and prospects of new technology. Cytotherapy 12:349–360PubMedCrossRefGoogle Scholar
  64. 64.
    Ramirez P, Chavez R, Majado M, Munitiz V, Muñoz A, Hernandez Q, Palenciano CG, Pino-Chavez G, Loba M, Minguela A, Yelamos J, Gago MR, Vizcaino AS, Asensi H, Cayuela MG, Segura B, Marin F, Rubio A, Fuente T, Robles R, Bueno FS, Sansano T, Acosta F, Rodriguez JM, Navarro F, Cabezuelo J, Cozzi E, White DJ, Calne RY, Parrilla P (2000) Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation 70:989–998PubMedCrossRefGoogle Scholar
  65. 65.
    Little MH, Bertram JF (2009) Is there such a thing as a renal stem cell? J Am Soc Nephrol 20:2112–2117PubMedCrossRefGoogle Scholar
  66. 66.
    Perin L, Da Sacco S, De Filippo RE (2010) Regenerative medicine of the kidney. Adv Drug Deliv Rev 63:379–387PubMedGoogle Scholar
  67. 67.
    Rastogi A, Nissenson AR (2009) Technological advances in renal replacement therapy: five years and beyond. Clin J Am Soc Nephrol 4:S132–S136PubMedCrossRefGoogle Scholar
  68. 68.
    Dankers PY, Boomker JM, der Vlag AH, Smedts FM, Harmsen MC, van Luyn MJ (2010) The use of fibrous, supramolecular membranes and human tubular cells for renal epithelial tissue engineering: towards a suitable membrane for a bioartificial kidney. Macromol Biosci 10:1345–1354PubMedCrossRefGoogle Scholar
  69. 69.
    Fissell WH, Roy S (2009) The implantable artificial kidney. Semin Dial 22:665–670PubMedCrossRefGoogle Scholar
  70. 70.
    Tarantal AF, Han VKM, Cochrum KC, Mok A, daSilva M, Matsell D (2001) Fetal rhesus monkey model of obstructive renal dysplasia. Kidney Int 59:446–456PubMedCrossRefGoogle Scholar
  71. 71.
    Trnka P, Hiatt MJ, Ivanova L, Tarantal AF, Matsell DG (2010) Phenotypic transition of the collecting duct epithelium in congenital urinary tract obstruction. J Biomed Biotechnol 2010:696034PubMedCrossRefGoogle Scholar
  72. 72.
    Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16:2207–2216PubMedCrossRefGoogle Scholar
  73. 73.
    Nakayama KH, Batchelder CA, Lee CI, Tarantal AF Renal tissue engineering with decellularized rhesus monkey kidney: age-related differences. Tissue Eng (in press)Google Scholar
  74. 74.
    DeFoor WR, Heshmat S, Minevich E, Reddy P, Koyle M, Sheldon C (2009) Long-term outcomes of the neobladder in pediatric continent urinary reconstruction. J Urol 181:2689–2694PubMedCrossRefGoogle Scholar
  75. 75.
    Davis NF, McGuire BB, Callanan A, Flood HD, McGloughlin TM (2010) Xenogenic extracellular matrices as potential biomaterials for interposition grafting in urological surgery. J Urol 184:2246–2253PubMedCrossRefGoogle Scholar
  76. 76.
    Liatsikos EN, Dinlenc CZ, Kapoor R, Alexianu M, Yohannes P, Anderson AE, Smith AD (2001) Laparoscopic ureteral reconstruction with small intestinal submucosa. J Endourol 15:217–220PubMedCrossRefGoogle Scholar
  77. 77.
    Smith TG 3rd, Gettman M, Lindberg G, Napper C, Pearle MS, Cadeddu JA (2002) Ureteral replacement using porcine small intestine submucosa in a porcine model. Urology 60:931–934PubMedCrossRefGoogle Scholar
  78. 78.
    Li C, Xu YM, Song LJ, Fu Q, Cui L, Yin S (2008) Urethral reconstruction using oral keratinocyte seeded bladder acellular matrix grafts. J Urol 180:1538–1542PubMedCrossRefGoogle Scholar
  79. 79.
    Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17:149–155PubMedCrossRefGoogle Scholar
  80. 80.
    Kwon TG, Yoo JJ, Atala A (2008) Local and systemic effects of a tissue engineered neobladder in a canine cystoplasty model. J Urol 179:2035–2041PubMedCrossRefGoogle Scholar
  81. 81.
    Reddy PP, Barrieras DJ, Wilson G, Bägli DJ, McLorie GA, Khoury AE, Merguerian PA (2000) Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J Urol 164:936–941PubMedCrossRefGoogle Scholar
  82. 82.
    Brehmer B, Rohrmann D, Rau G, Jakse G (2006) Bladder wall replacement by tissue engineering and autologous keratinocytes in minipigs. BJU Int 97:829–836PubMedCrossRefGoogle Scholar
  83. 83.
    Yang B, Zhang Y, Zhou L, Sun Z, Zheng J, Chen Y, Dai Y (2010) Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C 16:1201–1211CrossRefGoogle Scholar
  84. 84.
    Loai Y, Yeger H, Coz C, Antoon R, Islam SS, Moore K, Farhat WA (2010) Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models. J Biomed Mater Res A 94:1205–1215PubMedGoogle Scholar
  85. 85.
    Wolters HH, Heistermann HP, Stöppeler S, Hierlemann H, Soiegel HU, Palmes D (2010) A new technique for ureteral defect lesion reconstruction using an autologous vein graft and a biodegradable endoluminal stent. J Urol 184:1197–1203PubMedCrossRefGoogle Scholar
  86. 86.
    Nöth U, Rackwitz L, Steinert AF, Tuan RS (2010) Cell delivery therapeutics for musculoskeletal regeneration. Adv Drug Deliv Rev 62:765–783PubMedCrossRefGoogle Scholar
  87. 87.
    Muschler GF, Raut VP, Patterson TE, Wenke JC, Hollinger JO (2010) The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng Part B 16:123–145CrossRefGoogle Scholar
  88. 88.
    Sah RL, Ratcliffe A (2010) Translational models for musculoskeletal tissue engineering and regenerative medicine. Tissue Eng Part B 16:1–3CrossRefGoogle Scholar
  89. 89.
    Rodeo SA, Delos D, Weber A, Ju X, Cunningham ME, Fortier L, Maher S (2010) What’s new in orthopaedic research. J Bone Joint Surg Am 92:2491–2501PubMedCrossRefGoogle Scholar
  90. 90.
    Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP (2009) Rotator cuff repair augmentation in a canine model with use of a woven poly-l-lactide device. J Bone Joint Surg Am 91:1159–1171PubMedCrossRefGoogle Scholar
  91. 91.
    Joshi SM, Mastrangelo AN, Magarian EM, Fleming BC, Murray MM (2009) Collagen-platelet composite enhances biomechanical and histologic healing of the porcine anterior cruciate ligament. Am J Sports Med 37:2401–2410PubMedCrossRefGoogle Scholar
  92. 92.
    Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF (2007) Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am 89:621–630PubMedCrossRefGoogle Scholar
  93. 93.
    Cancedda R, Giannoni P, Mastrogiacomo M (2007) A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28:4240–4250PubMedCrossRefGoogle Scholar
  94. 94.
    Beier JP, Horch RE, Hess A, Arkudas A, Heinrich J, Loew J, Gulle H, Polykandriotis E, Bleiziffer O, Kneser U (2010) Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med 4:216–223PubMedCrossRefGoogle Scholar
  95. 95.
    Torigoe I, Sotome S, Tsuchiya A, Yoshi T, Maehara H, Sugata Y, Ichinose S, Shinomiya K, Okawa A (2009) Bone regeneration with autologous plasma, bone marrow stromal cells, and porous ß-tricalcium phosphate in nonhuman primates. Tissue Eng Part A 15:1489–1499PubMedCrossRefGoogle Scholar
  96. 96.
    Bi L, Cheng W, Fan H, Pei G (2010) Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet rich plasma. Biomaterials 31:3201–3211PubMedCrossRefGoogle Scholar
  97. 97.
    Scholz M, Schleicher P, Eindorf T, Friedersdorff F, Gelinsky M, König U, Sewing A, Haas NP, Kandziora F (2010) Cages augmented with mineralized collagen and platelet rich plasma as an osteoconductive/inductive combination for interbody fusion. Spine 35:740–746PubMedGoogle Scholar
  98. 98.
    Lin PB, Ning LJ, Lian QZ, Xia Z, Xin Y, Sen BH, Fei NF (2010) A study on repair of porcine articular cartilage defects with tissue-engineered cartilage constructed in vivo by composite scaffold materials. Ann Plast Surg 65:430–436PubMedCrossRefGoogle Scholar
  99. 99.
    Ng KW, Lima EG, Bian L, O’Conor CJ, Jayabalan PS, Stoker AM, Kuroki K, Cook CR, Ateshian GA, Cook JL, Hung CT (2010) Passaged adult chondrocytes can form engineered cartilage with functional mechanical properties: a canine model. Tissue Eng Part A 16:1041–1051PubMedCrossRefGoogle Scholar
  100. 100.
    Li WJ, Chiang H, Kuo TF, Lee HS, Jiang CC, Tuan RS (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: A pilot study. J Tissue Eng Regen Med 3:1–10PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang W, Abukawa H, Troulis MJ, Kaban LB, Vacanti JP, Yelick PC (2009) Tissue engineered hybrid tooth-bone constructs. Methods 47:122–128PubMedCrossRefGoogle Scholar
  102. 102.
    Ripamonti U (2007) Recapitulating development: a template for periodontal tissue engineering. Tissue Eng 13:51–71PubMedCrossRefGoogle Scholar
  103. 103.
    Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011) Skin tissue engineering – in vivo and in vitro applications. Adv Drug Deliv Rev 63:352–366PubMedCrossRefGoogle Scholar
  104. 104.
    Lammers G, Verhaegen PD, Ulrich MM, Schalkwijk J, Middelkoop E, Weiland D, Nillesen ST, Van Kuppevelt TH, Daamen WF (2011) An overview of methods for the in vivo evaluation of tissue-engineered skin constructs. Tissue Eng Part B 17:33–55CrossRefGoogle Scholar
  105. 105.
    Braziulis E, Biedermann T, Hartmann-Fritsch F, Schiestl C, Pontiggia L, Böttcher-Haberzeth S, Reichmann E, Meuli M (2011) Skingineering I: engineering porcine dermo-epidermal skin analogues for autologous transplantation in a large animal model. Pediatr Surg Int 27:241–247PubMedCrossRefGoogle Scholar
  106. 106.
    Schiestl C, Biedermann T, Braziulis E, Hartmann-Fritsch F, Böttcher-Haberzeth S, Arras M, Cesarovic N, Nicolls F, Linti C, Reichmann E, Meuli M (2011) Skingineering II: transplantation of large-scale laboratory-grown skin analogues in a new pig model. Pediatr Surg Int 27:249–254PubMedCrossRefGoogle Scholar
  107. 107.
    Fauza DO, Fishman SJ, Mehegan K, Atala A (1998) Videofetoscopically assisted fetal tissue engineering: skin replacement. J Pediatr Surg 33:357–361PubMedCrossRefGoogle Scholar
  108. 108.
    Eggink AJ, Roelofs LA, Feitz WF, Wijnen RM, Mullaart RA, Grotenhuis JA, van Kuppevelt TH, Lammens MM, Crevels AJ, Hanssen A, van den Berg PP (2005) In utero repair of an experimental neural tube defect in a chronic sheep model using biomatrices. Fetal Diagn Ther 20:335–340PubMedCrossRefGoogle Scholar
  109. 109.
    Hosper NA, Eggink AJ, Roelofs LA, Wijnen RM, van Luyn MJ, Bank RA, Harmsen MC, Geutjes PJ, Daamen WF, van Kuppevelt TH, Tiemessen DM, Oosterwijk E, Crevewls JJ, Blokx WA, Lotgering FK, van den Berg PP, Feitz WF (2010) Intra-uterine tissue engineering of full-thickness skin defects in a fetal sheep model. Biomaterials 31:3910–3919PubMedCrossRefGoogle Scholar
  110. 110.
    Redmond DE Jr, Weiss S, Elsworth JD, Roth RH, Wakeman DR, Bjugstad KB, Collier TJ, Blanchard BC, Teng YD, Synder EY, Sladek JR Jr (2010) Cellular repair in the Parkinsonian nonhuman primate brain. Rejuvenation Res 13:188–194PubMedCrossRefGoogle Scholar
  111. 111.
    Schwarz SC, Schwarz J (2010) Translation of stem cell therapy for neurological diseases. Transl Res 156:155–160PubMedCrossRefGoogle Scholar
  112. 112.
    Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, Maier I, Martin J, Nudo RJ, Ramon-Cueto A, Rouiller EM, Schnell L, Wannier T, Schwab ME, Edgerton VR (2007) Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med 13:561–566PubMedCrossRefGoogle Scholar
  113. 113.
    Mortazavi MM, Verma K, Tubbs RS (2011) Cellular and paracellular transplants for spinal cord injury: a review of the literature. Childs Nerv Syst 27:237–243PubMedCrossRefGoogle Scholar
  114. 114.
    Zuidema JM, Pap MM, Jaroch DB, Morrison FA, Gilbert RJ (2011) Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomater 7:1634–1643PubMedCrossRefGoogle Scholar
  115. 115.
    Lemon RN, Kirkwood PA, Maier MA, Nakajima K, Nathan P (2004) Direct and indirect pathways for corticospinal control of upper limb motoneurons in the primate. Prog Brain Res 143:263–279PubMedCrossRefGoogle Scholar
  116. 116.
    Pritchard CD, Slotkin JR, Yu D, Dai H, Lawrence MS, Bronson RT, Reynolds FM, Teng YD, Woodard EJ, Langer RS (2010) Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. J Neurosci Methods 188:258–269PubMedCrossRefGoogle Scholar
  117. 117.
    Calancie B, Madsen PW, Wood P, Marcillo AE, Levi AD, Bunge RP (2009) A guidance channel seeded with autologous Schwann cells for repair of cauda equina injury in a primate model. J Spinal Cord Med 32:379–388PubMedGoogle Scholar
  118. 118.
    Hynes SR, Lavik EB (2010) A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol 248:763–778PubMedCrossRefGoogle Scholar
  119. 119.
    Nicolini J, Kiilgaard JF, Wiencke AK, Heegaard S, Scherfig E, Prause JU, la Cour M (2000) The anterior lens capsule used as support material in RPE cell-transplantation. Acta Ophthalmol Scand 78:527–531PubMedCrossRefGoogle Scholar
  120. 120.
    Del Priore LV, Tezel TH, Kaplan HJ (2004) Survival of allogeneic porcine retinal pigment epithelial sheets after subretinal transplantation. Invest Ophthalmol Vis Sci 45:985–992PubMedCrossRefGoogle Scholar
  121. 121.
    Koizumi N, Sakamoto Y, Okumura N, Tsuchiya H, Torii R, Cooper LJ, Ban Y, Tanioka H, Kinoshita S (2008) Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea 27:S48–S55PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departments of Pediatrics, Cell Biology and Human Anatomy, School of Medicine, UC Davis Clinical and Translational Science Center, California National Primate Research CenterUniversity of CaliforniaDavisUSA

Personalised recommendations