Advertisement

Human Embryonic Stem Cells in Regenerative Medicine

  • Odessa Yabut
  • Harold S. BernsteinEmail author
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Human embryonic stem cells have the capacity for self-renewal and pluripotency, making them a primary candidate for tissue engineering and regenerative therapies. To date, numerous human embryonic stem cell (hESC) lines have been developed and characterized. In this chapter, we discuss how hESC lines are derived, the means by which pluripotency is monitored, and how their ability to differentiate into all three embryonic germ layers is determined. We also outline the methods currently employed to direct their differentiation into populations of tissue-specific, functional cells. Finally, we highlight the general challenges that must be overcome and the strategies being developed in order to generate highly purified hESC-derived cell populations that can safely be used for clinical applications.

Keywords

Retinal Pigment Epithelium Human Embryonic Stem Cell Somatic Cell Nuclear Transfer Molecular Beacon hESC Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

bFGF

Basic fibroblast growth factor

DKK1

Dickkopf homolog-1

hEB

Human embryoid body

hESC

Human embryonic stem cells

HLA

Human lymphocyte antigen

miR

MicroRNA

RPE

Retinal pigment epithelium

TGFβ

Transforming growth factor-β

VEGF

Vascular endothelial growth factor

Notes

Acknowledgments

The authors thank members of the Bernstein Laboratory for helpful discussion. H.S.B. is supported by grants from the National Institutes of Health, the California Institute for Regenerative Medicine, and the Muscular Dystrophy Association. O.Y. is supported by a fellowship from the National Institutes of Health.

References

  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedCrossRefGoogle Scholar
  2. 2.
    Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, McMahon AP, Powers D, Melton DA (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350(13):1353–1356PubMedCrossRefGoogle Scholar
  3. 3.
    Park SP, Lee YJ, Lee KS, Ah Shin H, Cho HY, Chung KS, Kim EY, Lim JH (2004) Establishment of human embryonic stem cell lines from frozen-thawed blastocysts using STO cell feeder layers. Hum Reprod 19(3):676–684PubMedCrossRefGoogle Scholar
  4. 4.
    Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18(4):399–404PubMedCrossRefGoogle Scholar
  5. 5.
    Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, Zdravkovic T, Ilic D, Genbacev O, Fisher S, Krtolica A, Lanza R (2008) Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2(2):113–117PubMedCrossRefGoogle Scholar
  6. 6.
    Geens M, Mateizel I, Sermon K, De Rycke M, Spits C, Cauffman G, Devroey P, Tournaye H, Liebaers I, Van de Velde H (2009) Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod 24(11):2709–2717PubMedCrossRefGoogle Scholar
  7. 7.
    Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444(7118):481–485PubMedCrossRefGoogle Scholar
  8. 8.
    Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2007) Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2(8):1963–1972PubMedCrossRefGoogle Scholar
  9. 9.
    Strelchenko N, Verlinsky O, Kukharenko V, Verlinsky Y (2004) Morula-derived human embryonic stem cells. Reprod Biomed Online 9(6):623–629PubMedCrossRefGoogle Scholar
  10. 10.
    Strelchenko N, Verlinsky Y (2006) Embryonic stem cells from morula. Methods Enzymol 418:93–108PubMedCrossRefGoogle Scholar
  11. 11.
    Kim K, Ng K, Rugg-Gunn PJ, Shieh JH, Kirak O, Jaenisch R, Wakayama T, Moore MA, Pedersen RA, Daley GQ (2007) Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1(3):346–352PubMedCrossRefGoogle Scholar
  12. 12.
    Lin G, OuYang Q, Zhou X, Gu Y, Yuan D, Li W, Liu G, Liu T, Lu G (2007) A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 17(12):999–1007PubMedCrossRefGoogle Scholar
  13. 13.
    Mai Q, Yu Y, Li T, Wang L, Chen MJ, Huang SZ, Zhou C, Zhou Q (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17(12):1008–1019PubMedCrossRefGoogle Scholar
  14. 14.
    Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9(3):432–449PubMedCrossRefGoogle Scholar
  15. 15.
    Bodnar MS, Meneses JJ, Rodriguez RT, Firpo MT (2004) Propagation and maintenance of undifferentiated human embryonic stem cells. Stem Cells Dev 13(3):243–253PubMedCrossRefGoogle Scholar
  16. 16.
    Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, Blum B, Brooking J, Chen KG, Choo AB, Churchill GA, Corbel M, Damjanov I, Draper JS, Dvorak P, Emanuelsson K, Fleck RA, Ford A, Gertow K, Gertsenstein M, Gokhale PJ, Hamilton RS, Hampl A, Healy LE, Hovatta O, Hyllner J, Imreh MP, Itskovitz-Eldor J, Jackson J, Johnson JL, Jones M, Kee K, King BL, Knowles BB, Lako M, Lebrin F, Mallon BS, Manning D, Mayshar Y, McKay RD, Michalska AE, Mikkola M, Mileikovsky M, Minger SL, Moore HD, Mummery CL, Nagy A, Nakatsuji N, O’Brien CM, Oh SK, Olsson C, Otonkoski T, Park KY, Passier R, Patel H, Patel M, Pedersen R, Pera MF, Piekarczyk MS, Pera RA, Reubinoff BE, Robins AJ, Rossant J, Rugg-Gunn P, Schulz TC, Semb H, Sherrer ES, Siemen H, Stacey GN, Stojkovic M, Suemori H, Szatkiewicz J, Turetsky T, Tuuri T, van den Brink S, Vintersten K, Vuoristo S, Ward D, Weaver TA, Young LA, Zhang W (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25(7):803–816PubMedCrossRefGoogle Scholar
  17. 17.
    Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840PubMedCrossRefGoogle Scholar
  18. 18.
    Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM, Ruzzo WL, Ware C, Radich JP, Gentleman R, Ruohola-Baker H, Tewari M (2008) MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26(10):2496–2505PubMedCrossRefGoogle Scholar
  19. 19.
    Laurent LC, Chen J, Ulitsky I, Mueller FJ, Lu C, Shamir R, Fan JB, Loring JF (2008) Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells 26(6):1506–1516PubMedCrossRefGoogle Scholar
  20. 20.
    Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, Sahinalp SC, Unrau PJ (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18(4):571–584PubMedCrossRefGoogle Scholar
  21. 21.
    Ren J, Jin P, Wang E, Marincola FM, Stroncek DF (2009) MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J Transl Med 7:20PubMedCrossRefGoogle Scholar
  22. 22.
    Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270(2):488–498PubMedCrossRefGoogle Scholar
  23. 23.
    Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK (2008) Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 28(20):6426–6438PubMedCrossRefGoogle Scholar
  24. 24.
    Sengupta S, Nie J, Wagner RJ, Yang C, Stewart R, Thomson JA (2009) MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells. Stem Cells 27(7):1524–1528PubMedCrossRefGoogle Scholar
  25. 25.
    Gan Q, Yoshida T, McDonald OG, Owens GK (2007) Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 25(1):2–9PubMedCrossRefGoogle Scholar
  26. 26.
    Bibikova M, Chudin E, Wu B, Zhou L, Garcia EW, Liu Y, Shin S, Plaia TW, Auerbach JM, Arking DE, Gonzalez R, Crook J, Davidson B, Schulz TC, Robins A, Khanna A, Sartipy P, Hyllner J, Vanguri P, Savant-Bhonsale S, Smith AK, Chakravarti A, Maitra A, Rao M, Barker DL, Loring JF, Fan JB (2006) Human embryonic stem cells have a unique epigenetic signature. Genome Res 16(9):1075–1083PubMedCrossRefGoogle Scholar
  27. 27.
    Lagarkova MA, Volchkov PY, Lyakisheva AV, Philonenko ES, Kiselev SL (2006) Diverse epigenetic profile of novel human embryonic stem cell lines. Cell Cycle 5(4):416–420PubMedCrossRefGoogle Scholar
  28. 28.
    Dvash T, Lavon N, Fan G (2010) Variations of X-chromosome inactivation occur in early passages of female human embryonic stem cells. PLoS One 5(6):e11330PubMedCrossRefGoogle Scholar
  29. 29.
    Shen Y, Matsuno Y, Fouse SD, Rao N, Root S, Xu R, Pellegrini M, Riggs AD, Fan G (2008) X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci USA 105(12):4709–4714PubMedCrossRefGoogle Scholar
  30. 30.
    Silva SS, Rowntree RK, Mekhoubad S, Lee JT (2008) X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci USA 105(12):4820–4825PubMedCrossRefGoogle Scholar
  31. 31.
    Hall LL, Byron M, Butler J, Becker KA, Nelson A, Amit M, Itskovitz-Eldor J, Stein J, Stein G, Ware C, Lawrence JB (2008) X-inactivation reveals epigenetic anomalies in most hESC but identifies sublines that initiate as expected. J Cell Physiol 216(2):445–452PubMedCrossRefGoogle Scholar
  32. 32.
    Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6(2):88–95PubMedGoogle Scholar
  33. 33.
    King FW, Liszewski W, Ritner C, Bernstein HS (2011) High-throughput tracking of pluripotent human embryonic stem cells with dual FRET molecular beacons. Stem Cells Dev 20(3):465–484CrossRefGoogle Scholar
  34. 34.
    King FW, Ritner C, Liszewski W, Kwan HC, Pedersen A, Leavitt AD, Bernstein HS (2009) Subpopulations of human embryonic stem cells with distinct tissue-specific fates can be selected from pluripotent cultures. Stem Cells Dev 18(10):1441–1450PubMedCrossRefGoogle Scholar
  35. 35.
    Ritner C, Bernstein HS (2010) Fate mapping of human embryonic stem cells by teratoma formation. J Vis Exp 42:2036 [http://www.jove.com/index/details.stp?id  =  2036; doi: 10.3791/2036]
  36. 36.
    Gaur M, Ritner C, Sievers R, Pedersen A, Prasad M, Bernstein HS, Yeghiazarians Y (2010) Timed inhibition of p38MAPK directs accelerated differentiation of human embryonic stem cells into cardiomyocytes. Cytotherapy 12(6):807–817PubMedCrossRefGoogle Scholar
  37. 37.
    D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23(12):1534–1541PubMedCrossRefGoogle Scholar
  38. 38.
    D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401PubMedCrossRefGoogle Scholar
  39. 39.
    Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H (2008) Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 135(17):2969–2979PubMedCrossRefGoogle Scholar
  40. 40.
    McLean AB, D’Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, Sheppard AM, Liu H, Xu Y, Baetge EE, Dalton S (2007) Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25(1):29–38PubMedCrossRefGoogle Scholar
  41. 41.
    Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452PubMedCrossRefGoogle Scholar
  42. 42.
    Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45(5):1229–1239PubMedCrossRefGoogle Scholar
  43. 43.
    Agarwal S, Holton KL, Lanza R (2008) Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells 26(5):1117–1127PubMedCrossRefGoogle Scholar
  44. 44.
    Evseenko D, Zhu Y, Schenke-Layland K, Kuo J, Latour B, Ge S, Scholes J, Dravid G, Li X, MacLellan WR, Crooks GM (2010) Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 107(31):13742–13747PubMedCrossRefGoogle Scholar
  45. 45.
    Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106(5):1601–1603PubMedCrossRefGoogle Scholar
  46. 46.
    Su Z, Frye C, Bae KM, Kelley V, Vieweg J (2008) Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res 14(19):6207–6217PubMedCrossRefGoogle Scholar
  47. 47.
    Woll PS, Grzywacz B, Tian X, Marcus RK, Knorr DA, Verneris MR, Kaufman DS (2009) Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 113(24):6094–6101PubMedCrossRefGoogle Scholar
  48. 48.
    Senju S, Hirata S, Motomura Y, Fukuma D, Matsunaga Y, Fukushima S, Matsuyoshi H, Nishimura Y (2010) Pluripotent stem cells as source of dendritic cells for immune therapy. Int J Hematol 91(3):392–400PubMedCrossRefGoogle Scholar
  49. 49.
    Wong SS, Bernstein HS (2010) Cardiac regeneration using human embryonic stem cells: producing cells for future therapy. Regen Med 5(5):763–775PubMedCrossRefGoogle Scholar
  50. 50.
    Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108(3):407–414PubMedGoogle Scholar
  51. 51.
    He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93(1):32–39PubMedCrossRefGoogle Scholar
  52. 52.
    Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107(21):2733–2740PubMedCrossRefGoogle Scholar
  53. 53.
    Ritner C, Wong SY, King FW, Mihardja SS, Liszewski W, Erle DE, Lee RJ, Bernstein HS (2011) An engineered cardiac reporter cell line identifies human embryonic stem cell-derived myocardial precursors. PLoS One 6(1):e16004PubMedCrossRefGoogle Scholar
  54. 54.
    Satin J, Kehat I, Caspi O, Huber I, Arbel G, Itzhaki I, Magyar J, Schroder EA, Perlman I, Gepstein L (2004) Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J Physiol 559(Pt 2):479–496PubMedCrossRefGoogle Scholar
  55. 55.
    Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024PubMedCrossRefGoogle Scholar
  56. 56.
    Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528PubMedCrossRefGoogle Scholar
  57. 57.
    Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19(12):1134–1140PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133PubMedCrossRefGoogle Scholar
  59. 59.
    Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101(34):12543–12548PubMedCrossRefGoogle Scholar
  60. 60.
    Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28(1):31–40PubMedCrossRefGoogle Scholar
  61. 61.
    Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa S, Nakatsuji N, Sasai Y (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci USA 99(3):1580–1585PubMedCrossRefGoogle Scholar
  62. 62.
    Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang SC (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23(6):781–790PubMedCrossRefGoogle Scholar
  63. 63.
    Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23(2):215–221PubMedCrossRefGoogle Scholar
  64. 64.
    Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25(12):1468–1475PubMedCrossRefGoogle Scholar
  65. 65.
    Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49(3):385–396PubMedCrossRefGoogle Scholar
  66. 66.
    Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzrafi L, Rechavi G, Banin E, Reubinoff B (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5(4):396–408PubMedCrossRefGoogle Scholar
  67. 67.
    Guenou H, Nissan X, Larcher F, Feteira J, Lemaitre G, Saidani M, Del Rio M, Barrault CC, Bernard FX, Peschanski M, Baldeschi C, Waksman G (2009) Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet 374(9703):1745–1753PubMedCrossRefGoogle Scholar
  68. 68.
    Wang D, Haviland DL, Burns AR, Zsigmond E, Wetsel RA (2007) A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 104(11):4449–4454PubMedCrossRefGoogle Scholar
  69. 69.
    Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA (2010) Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther 18(3):625–634PubMedCrossRefGoogle Scholar
  70. 70.
    Toh WS, Yang Z, Liu H, Heng BC, Lee EH, Cao T (2007) Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25(4):950–960PubMedCrossRefGoogle Scholar
  71. 71.
    Bielby RC, Boccaccini AR, Polak JM, Buttery LD (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 10(9–10):1518–1525PubMedGoogle Scholar
  72. 72.
    Vats A, Bielby RC, Tolley N, Dickinson SC, Boccaccini AR, Hollander AP, Bishop AE, Polak JM (2006) Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 12(6):1687–1697PubMedCrossRefGoogle Scholar
  73. 73.
    Cohen S, Leshansky L, Zussman E, Burman M, Srouji S, Livne E, Abramov N, Itskovitz-Eldor J (2010) Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues. Tissue Eng Part A 16(10):3119–3137PubMedCrossRefGoogle Scholar
  74. 74.
    Toh WS, Lee EH, Guo XM, Chan JK, Yeow CH, Choo AB, Cao T (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31(27):6968–6980PubMedCrossRefGoogle Scholar
  75. 75.
    Crook JM, Hei D, Stacey G (2010) The International Stem Cell Banking Initiative (ISCBI): raising standards to bank on. Vitro Cell Dev Biol Anim 46(3–4):169–172CrossRefGoogle Scholar
  76. 76.
    Catalina P, Montes R, Ligero G, Sanchez L, de la Cueva T, Bueno C, Leone PE, Menendez P (2008) Human ESCs predisposition to karyotypic instability: Is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer 7:76PubMedCrossRefGoogle Scholar
  77. 77.
    Strom S, Holm F, Bergstrom R, Stromberg AM, Hovatta O (2010) Derivation of 30 human embryonic stem cell lines–improving the quality. Vitro Cell Dev Biol Anim 46(3–4):337–344CrossRefGoogle Scholar
  78. 78.
    Ilic D, Giritharan G, Zdravkovic T, Caceres E, Genbacev O, Fisher SJ, Krtolica A (2009) Derivation of human embryonic stem cell lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem Cells Dev 18(9):1343–1350PubMedCrossRefGoogle Scholar
  79. 79.
    Tecirlioglu RT, Nguyen L, Koh K, Trounson AO, Michalska AE (2010) Derivation and maintenance of human embryonic stem cell line on human adult skin fibroblast feeder cells in serum replacement medium. Vitro Cell Dev Biol Anim 46(3–4):231–235CrossRefGoogle Scholar
  80. 80.
    Genbacev O, Krtolica A, Zdravkovic T, Brunette E, Powell S, Nath A, Caceres E, McMaster M, McDonagh S, Li Y, Mandalam R, Lebkowski J, Fisher SJ (2005) Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil Steril 83(5):1517–1529PubMedCrossRefGoogle Scholar
  81. 81.
    Lefort N, Feyeux M, Bas C, Feraud O, Bennaceur-Griscelli A, Tachdjian G, Peschanski M, Perrier AL (2008) Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol 26(12):1364–1366PubMedCrossRefGoogle Scholar
  82. 82.
    Narva E, Autio R, Rahkonen N, Kong L, Harrison N, Kitsberg D, Borghese L, Itskovitz-Eldor J, Rasool O, Dvorak P, Hovatta O, Otonkoski T, Tuuri T, Cui W, Brustle O, Baker D, Maltby E, Moore HD, Benvenisty N, Andrews PW, Yli-Harja O, Lahesmaa R (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol 28(4):371–377PubMedCrossRefGoogle Scholar
  83. 83.
    Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25(2):207–215PubMedCrossRefGoogle Scholar
  84. 84.
    Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12(11):1259–1268PubMedCrossRefGoogle Scholar
  85. 85.
    Wernig M, Benninger F, Schmandt T, Rade M, Tucker KL, Bussow H, Beck H, Brustle O (2004) Functional integration of embryonic stem cell-derived neurons in vivo. J Neurosci 24(22):5258–5268PubMedCrossRefGoogle Scholar
  86. 86.
    Gepstein L, Ding C, Rehemedula D, Wilson EE, Yankelson L, Caspi O, Gepstein A, Huber I, Olgin JE (2010) In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells 28(12):2151–2161PubMedCrossRefGoogle Scholar
  87. 87.
    Bradley JA, Bolton EM, Pedersen RA (2002) Stem cell medicine encounters the immune system. Nat Rev Immunol 2(11):859–871PubMedCrossRefGoogle Scholar
  88. 88.
    Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99(15):9864–9869PubMedCrossRefGoogle Scholar
  89. 89.
    Drukker M (2004) Immunogenicity of human embryonic stem cells: can we achieve tolerance? Springer Semin Immunopathol 26(1–2):201–213PubMedCrossRefGoogle Scholar
  90. 90.
    Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366(9502):2019–2025PubMedCrossRefGoogle Scholar
  91. 91.
    Nakajima F, Tokunaga K, Nakatsuji N (2007) Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantation therapy. Stem Cells 25(4):983–985PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA
  2. 2.Cardiovascular Research InstituteUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoUSA
  4. 4.Department of PediatricsUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations