Advertisement

Regenerative Medicine and the Foreign Body Response

  • Kerry A. Daly
  • Bryan N. Brown
  • Stephen F. BadylakEmail author
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

The host response, and in particular the innate immune response, is critical to the successful application of tissue engineering to the reconstruction of injured or missing tissues. Cell-based, scaffold-based, and signal molecule-based strategies are utilized in regenerative medicine and each of these approaches elicits a distinct host immune response that has a significant impact upon the downstream outcome. Modulation, but not suppression of the immune component of wound healing appears to be essential for constructive remodeling of tissues and organs. Promotion of a pro-wound healing and anti-inflammatory response, and avoidance of the foreign body reaction is associated with a constructive functional remodeling outcome. While macrophages play a pivotal role in this response, other immune cells and the interactions between all cell types involved in tissue remodeling are also clearly important. The objective of this chapter is to provide an overview of the host response to biomaterials including both the pro-inflammatory and resultant foreign body reaction, and the pro-wound healing, anti-inflammatory response that is associated with constructive remodeling.

Keywords

Host Response Foreign Body Reaction Macrophage Phenotype Foreign Body Giant Cell Foreign Body Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

bFGF

Basic fibroblast growth factor

C5

Complement cascade component 5

CCL

Chemokine C–C ligand

CD

Cluster of differentiation

CXCL

Chemokine C–X–C ligand

DAMPs

Damage-associated molecular patterns

ECM

Extracellular matrix

EDAC

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide; carbodiimide

EGF

Epidermal growth factor

IgG

Immunoglobulin isotype G

IL

Interleukin

iNOS

Inducible nitric oxide synthetase

M1

Classically activated macrophage

M2

Alternatively activated macrophage

MMP

Matrix metalloproteinase

PDGF

Platelet-derived growth factor

PLGA

Poly-lactic co-glycolic acid

RNI

Reactive nitrogen intermediates

ROI

Reactive oxygen intermediates

SIS

Small intestinal submucosal ECM

TGF-α

Transforming growth factor alpha

TGF-β

Transforming growth factor beta

Th

T helper cell (either type 1 or 2)

TIMP

Tissue inhibitor of metalloproteinase

TNF-α

Tumor necrosis factor alpha

VEGF

Vascular endothelial growth factor

References

  1. 1.
    Guo S, Dipietro LA (2004) Factors affecting wound healing. J Dent Res 89(3):219–229Google Scholar
  2. 2.
    Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289PubMedCrossRefGoogle Scholar
  3. 3.
    Kumar V, Abbas AK, Fausto N, Robbins SL, Cotran RS (2005) Robbins and Cotran pathologic basis of disease, 7th edn. Elsevier Saunders, PhiladelphiaGoogle Scholar
  4. 4.
    Clark RA (2001) Fibrin and wound healing. Ann N Y Acad Sci 936:355–367PubMedCrossRefGoogle Scholar
  5. 5.
    Broughton G 2nd, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117(7 Suppl):12S–34SPubMedCrossRefGoogle Scholar
  6. 6.
    Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601PubMedCrossRefGoogle Scholar
  7. 7.
    Werner S, Grose R (2003 Jul) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870PubMedGoogle Scholar
  8. 8.
    Artuc M, Hermes B, Steckelings UM, Grutzkau A, Henz BM (1999) Mast cells and their mediators in cutaneous wound healing – active participants or innocent bystanders? Exp Dermatol 8(1):1–16PubMedCrossRefGoogle Scholar
  9. 9.
    Adamson R (2009 Aug) Role of macrophages in normal wound healing: an overview. J Wound Care 18(8):349–351PubMedGoogle Scholar
  10. 10.
    Sylvia CJ (2003 Jan) The role of neutrophil apoptosis in influencing tissue repair. J Wound Care 12(1):13–16PubMedGoogle Scholar
  11. 11.
    Keen D (2008) A review of research examining the regulatory role of lymphocytes in normal wound healing. J Wound Care 17(5):218–220, 222PubMedGoogle Scholar
  12. 12.
    Knighton DR, Hunt TK, Scheuenstuhl H, Halliday BJ, Werb Z, Banda MJ (1983) Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221(4617):1283–1285PubMedCrossRefGoogle Scholar
  13. 13.
    LaVan FB, Hunt TK (1990) Oxygen and wound healing. Clin Plast Surg 17(3):463–472PubMedGoogle Scholar
  14. 14.
    Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40(6–7):1334–1347PubMedCrossRefGoogle Scholar
  15. 15.
    Ratner BD (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, Amsterdam; BostonGoogle Scholar
  16. 16.
    Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100PubMedCrossRefGoogle Scholar
  17. 17.
    Horbett TA (2004) The role of adsorbed proteins in tissue response to biomaterials. In: Ratner BD et al (eds) Biomaterials science: an introduction to biomaterials in medicine. Elsevier Academic Press, San Diego, pp 237–246Google Scholar
  18. 18.
    Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18PubMedCrossRefGoogle Scholar
  19. 19.
    Jenney CR, Anderson JM (2000) Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res 49(4):435–447PubMedCrossRefGoogle Scholar
  20. 20.
    Brodbeck WG, Colton E, Anderson JM (2003) Effects of adsorbed heat labile serum proteins and fibrinogen on adhesion and apoptosis of monocytes/macrophages on biomaterials. J Mater Sci Mater Med 14(8):671–675PubMedCrossRefGoogle Scholar
  21. 21.
    Hu WJ, Eaton JW, Ugarova TP, Tang L (2001) Molecular basis of biomaterial-mediated foreign body reactions. Blood 98(4):1231–1238PubMedCrossRefGoogle Scholar
  22. 22.
    Dadsetan M, Jones JA, Hiltner A, Anderson JM (2004) Surface chemistry mediates adhesive structure, cytoskeletal organization, and fusion of macrophages. J Biomed Mater Res A 71(3):439–448PubMedCrossRefGoogle Scholar
  23. 23.
    MacEwan MR, Brodbeck WG, Matsuda T, Anderson JM (2005) Monocyte/lymphocyte interactions and the foreign body response: in vitro effects of biomaterial surface chemistry. J Biomed Mater Res A 74(3):285–293PubMedGoogle Scholar
  24. 24.
    Chen S, Jones JA, Xu Y, Low HY, Anderson JM, Leong KW (2010) Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31(13):3479–3491PubMedCrossRefGoogle Scholar
  25. 25.
    Wendel HP, Ziemer G (1999) Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation. Eur J Cardiothorac Surg 16(3):342–350PubMedCrossRefGoogle Scholar
  26. 26.
    Sin DC, Kei HL, Miao X (2009 Jan) Surface coatings for ventricular assist devices. Expert Rev Med Devices 6(1):51–60PubMedCrossRefGoogle Scholar
  27. 27.
    Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y et al (2002) Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Natl Acad Sci USA 99(16):10287–10292PubMedCrossRefGoogle Scholar
  28. 28.
    Brodbeck WG, Nakayama Y, Matsuda T, Colton E, Ziats NP, Anderson JM (2002 Jun 21) Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro. Cytokine 18(6):311–319PubMedCrossRefGoogle Scholar
  29. 29.
    Bota PC, Collie AM, Puolakkainen P, Vernon RB, Sage EH, Ratner BD et al (2010) Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J Biomed Mater Res A 95(2):649–657PubMedGoogle Scholar
  30. 30.
    Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL et al (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci USA 107(34):15211–15216PubMedCrossRefGoogle Scholar
  31. 31.
    Bartneck M, Schulte VA, Paul NE, Diez M, Lensen MC, Zwadlo-Klarwasser G (2010) Induction of specific macrophage subtypes by defined micro-patterned structures. Acta Biomater 6(10):3864–3872PubMedCrossRefGoogle Scholar
  32. 32.
    VandeVord PJ, Matthew HW, DeSilva SP, Mayton L, Wu B, Wooley PH (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59(3):585–590PubMedCrossRefGoogle Scholar
  33. 33.
    Valentin JE, Turner NJ, Gilbert TW, Badylak SF (2010) Functional skeletal muscle formation with a biologic scaffold. Biomaterials 31(29):7475–7484PubMedCrossRefGoogle Scholar
  34. 34.
    Agrawal V, Brown BN, Beattie AJ, Gilbert TW, Badylak SF (2009) Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues. J Tissue Eng Regen Med 3(8):590–600PubMedCrossRefGoogle Scholar
  35. 35.
    Valentin JE, Badylak JS, McCabe GP, Badylak SF (2006) Extracellular matrix bioscaffolds for orthopaedic applications: a comparative histologic study. J Bone Joint Surg Am 88(12):2673–2686PubMedCrossRefGoogle Scholar
  36. 36.
    Adkisson HD, Milliman C, Zhang X, Mauch K, Maziarz RT, Streeter PR (2010 Jan) Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage. Stem Cell Res 4(1):57–68PubMedCrossRefGoogle Scholar
  37. 37.
    Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8CrossRefGoogle Scholar
  38. 38.
    Cheung CY, Anseth KS (2006) Synthesis of immunoisolation barriers that provide localized immunosuppression for encapsulated pancreatic islets. Bioconjug Chem 17(4):1036–1042PubMedCrossRefGoogle Scholar
  39. 39.
    Cruise GM, Hegre OD, Lamberti FV, Hager SR, Hill R, Scharp DS et al (1999) In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant 8(3):293–306PubMedGoogle Scholar
  40. 40.
    Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A et al (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069PubMedCrossRefGoogle Scholar
  41. 41.
    Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C et al (2001) Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 71(11):1631–1640PubMedCrossRefGoogle Scholar
  42. 42.
    Allman AJ, McPherson TB, Merrill LC, Badylak SF, Metzger DW (2002 Feb) The Th2-restricted immune response to xenogeneic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens. Tissue Eng 8(1):53–62PubMedCrossRefGoogle Scholar
  43. 43.
    Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14(11):1835–1842. doi: 10.1089/ten.tea.2007.0264 PubMedCrossRefGoogle Scholar
  44. 44.
    Valentin JE, Stewart-Akers AM, Gilbert TW, Badylak SF (2009) Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A 15(7):1687–1694PubMedCrossRefGoogle Scholar
  45. 45.
    Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491PubMedCrossRefGoogle Scholar
  46. 46.
    Ansaloni L, Cambrini P, Catena F, Di Saverio S, Gagliardi S, Gazzotti F et al (2007) Immune response to small intestinal submucosa (surgisis) implant in humans: preliminary observations. J Invest Surg 20(4):237–241PubMedCrossRefGoogle Scholar
  47. 47.
    Shokouhi B, Coban C, Hasirci V, Aydin E, Dhanasingh A, Shi N et al (2010) The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials 31(22):5759–5771PubMedCrossRefGoogle Scholar
  48. 48.
    Schutte RJ, Xie L, Klitzman B, Reichert WM (2009 Jan) In vivo cytokine-associated responses to biomaterials. Biomaterials 30(2):160–168PubMedCrossRefGoogle Scholar
  49. 49.
    Bonfield TL, Colton E, Marchant RE, Anderson JM (1992 Jul) Cytokine and growth factor production by monocytes/macrophages on protein preadsorbed polymers. J Biomed Mater Res 26(7):837–850PubMedCrossRefGoogle Scholar
  50. 50.
    Schutte RJ, Parisi-Amon A, Reichert WM (2009 Jan) Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries. J Biomed Mater Res A 88(1):128–139PubMedGoogle Scholar
  51. 51.
    Chen H, Li P, Yin Y, Cai X, Huang Z, Chen J et al (2010) The promotion of type 1 T helper cell responses to cationic polymers in vivo via toll-like receptor-4 mediated IL-12 secretion. Biomaterials 31(32):8172–8180PubMedCrossRefGoogle Scholar
  52. 52.
    Brodbeck WG, Voskerician G, Ziats NP, Nakayama Y, Matsuda T, Anderson JM (2003 Feb 1) In vivo leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry. J Biomed Mater Res A 64(2):320–329PubMedCrossRefGoogle Scholar
  53. 53.
    Rogers TH, Babensee JE (2010 Feb) Altered adherent leukocyte profile on biomaterials in Toll-like receptor 4 deficient mice. Biomaterials 31(4):594–601PubMedCrossRefGoogle Scholar
  54. 54.
    Liu L, Kuffova L, Griffith M, Dang Z, Muckersie E, Liu Y et al (2007 Sep) Immunological responses in mice to full-thickness corneal grafts engineered from porcine collagen. Biomaterials 28(26):3807–3814PubMedCrossRefGoogle Scholar
  55. 55.
    Anderson JM, Ziats NP, Azeez A, Brunstedt MR, Stack S, Bonfield TL (1995) Protein adsorption and macrophage activation on polydimethylsiloxane and silicone rubber. J Biomater Sci Polym Ed 7(2):159–169PubMedCrossRefGoogle Scholar
  56. 56.
    Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T et al (2007 Dec 1) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A 83(3):585–596PubMedGoogle Scholar
  57. 57.
    Tiainen J, Soini Y, Tormala P, Waris T, Ashammakhi N (2004) Self-reinforced polylactide/polyglycolide 80/20 screws take more than 1(1/2) years to resorb in rabbit cranial bone. J Biomed Mater Res B Appl Biomater 70(1):49–55PubMedCrossRefGoogle Scholar
  58. 58.
    Tiainen J, Soini Y, Suokas E, Veiranto M, Tormala P, Waris T et al (2006) Tissue reactions to bioabsorbable ciprofloxacin-releasing polylactide-polyglycolide 80/20 screws in rabbits’ cranial bone. J Mater Sci Mater Med 17(12):1315–1322PubMedCrossRefGoogle Scholar
  59. 59.
    Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Muller W et al (2010 Apr 1) Differential roles of macrophages in diverse phases of skin repair. J Immunol 184(7):3964–3977PubMedCrossRefGoogle Scholar
  60. 60.
    Mirza R, DiPietro LA, Koh TJ (2009) Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol 175(6):2454–2462PubMedCrossRefGoogle Scholar
  61. 61.
    Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739PubMedGoogle Scholar
  62. 62.
    Gilbert TW, Freund JM, Badylak SF (2008) Quantification of DNA in biologic scaffold materials. J Surg Res 152(1):135–139. doi: 10.1016/j.jss.2008.02.013 PubMedCrossRefGoogle Scholar
  63. 63.
    McPherson TB, Liang H, Record RD, Badylak SF (2000 Jun) Galalpha(1,3)Gal epitope in porcine small intestinal submucosa. Tissue Eng 6(3):233–239PubMedCrossRefGoogle Scholar
  64. 64.
    Daly K, Stewart-Akers A, Hara H, Ezzelarab M, Long C, Cordero K et al (2009) Effect of the alphaGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate Model. Tissue Eng Part A 15(12):3877–3888PubMedCrossRefGoogle Scholar
  65. 65.
    Santos TC, Marques AP, Horing B, Martins AR, Tuzlakoglu K, Castro AG et al (2010) In vivo short-term and long-term host reaction to starch-based scaffolds. Acta Biomater 6(11):4314–4326PubMedCrossRefGoogle Scholar
  66. 66.
    Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U et al (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23(6):1002–1006, discussion 1006PubMedCrossRefGoogle Scholar
  67. 67.
    Zhou J, Fritze O, Schleicher M, Wendel HP, Schenke-Layland K, Harasztosi C et al (2010) Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31(9):2549–2554PubMedCrossRefGoogle Scholar
  68. 68.
    Bastian F, Stelzmuller ME, Kratochwill K, Kasimir MT, Simon P, Weigel G (2008 Apr) IgG deposition and activation of the classical complement pathway involvement in the activation of human granulocytes by decellularized porcine heart valve tissue. Biomaterials 29(12):1824–1832PubMedCrossRefGoogle Scholar
  69. 69.
    Pang K, Du L, Wu X (2010) A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes. Biomaterials 31(28):7257–7265PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kerry A. Daly
    • 1
  • Bryan N. Brown
    • 2
  • Stephen F. Badylak
    • 1
    Email author
  1. 1.McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghUSA
  2. 2.Department of Clinical SciencesCornell UniversityIthacaUSA

Personalised recommendations