Immune Modulation for Stem Cell Therapy

  • Gaetano Faleo
  • Qizhi TangEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


The remarkable strides made by stem cell biologists and tissue engineers have brought us ever so close to the promised land of having unlimited supplies of cells, tissues, and even organs to cure end-stage organ failure and reverse the course of degenerative diseases. Will our immune system perceive these engineered cells as foreign and target them for destruction as it does for conventional transplants? If so, how do we manage the immune response to prevent rejection, or better yet, to teach the immune system to accept the transplanted stem cells as self? In this ­chapter, we review how the immune system recognizes transplant antigens and analyze current data on immunogenicity of the various types of stem cells. We summarize current strategies for controlling transplant rejection and speculate on future directions in inducing transplant tolerance with the exciting possibilities of using stem cells to reeducate the immune system.


Human ESCs Minor Histocompatibility Antigen Stem Cell Graft Alloimmune Response Stem Cell Biologist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Cytotoxic lymphocyte antigen-4


Embryonic stem cell


Human leukocyte antigen






Induced pluripotent stem cell




Leukocyte function antigen-1


Major histocompatibility complex


Mesenchymal stem cell


Natural killer


T cell receptor


T helper


Tumor necrosis factor


Regulatory T cells


  1. 1.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  2. 2.
    Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337PubMedCrossRefGoogle Scholar
  3. 3.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  4. 4.
    Paust S, Senman B, von Andrian UH (2010) Adaptive immune responses mediated by natural killer cells. Immunol Rev 235:286–296PubMedGoogle Scholar
  5. 5.
    van der Touw W, Bromberg JS (2010) Natural killer cells and the immune response in solid organ transplantation. Am J Transplant 10:1354–1358PubMedCrossRefGoogle Scholar
  6. 6.
    Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502PubMedCrossRefGoogle Scholar
  7. 7.
    Champsaur M, Lanier LL (2010) Effect of NKG2D ligand expression on host immune responses. Immunol Rev 235:267–285PubMedGoogle Scholar
  8. 8.
    Engels EA, Biggar RJ, Hall HI et al (2008) Cancer risk in people infected with human immunodeficiency virus in the United States. Int J Cancer 123:187–194PubMedCrossRefGoogle Scholar
  9. 9.
    Kersey JH, Spector BD, Good RA (1973) Primary immunodeficiency diseases and cancer: the immunodeficiency-cancer registry. Int J Cancer 12:333–347PubMedCrossRefGoogle Scholar
  10. 10.
    Vajdic CM, van Leeuwen MT (2009) Cancer incidence and risk factors after solid organ transplantation. Int J Cancer 125:1747–1754PubMedCrossRefGoogle Scholar
  11. 11.
    Mathis D, Benoist C (2009) Aire. Annu Rev Immunol 27:287–312PubMedCrossRefGoogle Scholar
  12. 12.
    Ochs HD, Gambineri E, Torgerson TR (2007) IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity. Immunol Res 38:112–121PubMedCrossRefGoogle Scholar
  13. 13.
    Ruemmele FM, Moes N, de Serre NP, Rieux-Laucat F, Goulet O (2008) Clinical and molecular aspects of autoimmune enteropathy and immune dysregulation, polyendocrinopathy autoimmune enteropathy X-linked syndrome. Curr Opin Gastroenterol 24:742–748PubMedCrossRefGoogle Scholar
  14. 14.
    Loser K, Scherer A, Krummen MB et al (2005) An important role of CD80/CD86-CTLA-4 signaling during photocarcinogenesis in mice. J Immunol 174:5298–5305PubMedGoogle Scholar
  15. 15.
    Law CL, Grewal IS (2009) Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. Adv Exp Med Biol 647:8–36PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–655PubMedCrossRefGoogle Scholar
  17. 17.
    Khalturin K, Bosch TC (2007) Self/nonself discrimination at the basis of chordate evolution: limits on molecular conservation. Curr Opin Immunol 19:4–9PubMedCrossRefGoogle Scholar
  18. 18.
    Simpson E, Scott D, James E et al (2001) Minor H antigens: genes and peptides. Eur J Immunogenet 28:505–513PubMedCrossRefGoogle Scholar
  19. 19.
    Clausen H, Hakomori S (1989) ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang 56:1–20PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor CJ, Welsh KI, Gray CM, et al (1993) Clinical and socioeconomic benefits of serological HLA-DR matching for renal transplantation over three eras of immunosuppression regimens at a single unit. In: Terasaki PI and Cecka JM (eds) Clinical Transplants. UCLA Tissue Typing Laboratory, Los Angeles, pp 233–241Google Scholar
  21. 21.
    Morris PJ, Johnson RJ, Fuggle SV, Belger MA, Briggs JD (1999) Analysis of factors that affect outcome of primary cadaveric renal transplantation in the UK. HLA Task Force of the Kidney Advisory Group of the United Kingdom Transplant Support Service Authority (UKTSSA). Lancet 354:1147–1152PubMedCrossRefGoogle Scholar
  22. 22.
    Rogers NJ, Lechler RI (2001) Allorecognition. Am J Transplant 1:97–102PubMedCrossRefGoogle Scholar
  23. 23.
    Auchincloss H Jr, Lee R, Shea S, Markowitz JS, Grusby MJ, Glimcher LH (1993) The role of “indirect” recognition in initiating rejection of skin grafts from major histocompatibility complex class II-deficient mice. Proc Natl Acad Sci USA 90:3373–3377PubMedCrossRefGoogle Scholar
  24. 24.
    Brennan TV, Jaigirdar A, Hoang V et al (2009) Preferential priming of alloreactive T cells with indirect reactivity. Am J Transplant 9:709–718PubMedCrossRefGoogle Scholar
  25. 25.
    Lechler RI, Batchelor JR (1982) Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 155:31–41PubMedCrossRefGoogle Scholar
  26. 26.
    Lee RS, Grusby MJ, Glimcher LH, Winn HJ, Auchincloss H Jr (1994) Indirect recognition by helper cells can induce donor-specific cytotoxic T lymphocytes in vivo. J Exp Med 179:865–872PubMedCrossRefGoogle Scholar
  27. 27.
    Suchin EJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA (2001) Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol 166:973–981PubMedGoogle Scholar
  28. 28.
    Steele DJ, Laufer TM, Smiley ST et al (1996) Two levels of help for B cell alloantibody production. J Exp Med 183:699–703PubMedCrossRefGoogle Scholar
  29. 29.
    Dierselhuis M, Goulmy E (2009) The relevance of minor histocompatibility antigens in solid organ transplantation. Curr Opin Organ Transplant 14:419–425PubMedCrossRefGoogle Scholar
  30. 30.
    Vendrame F, Pileggi A, Laughlin E et al (2010) Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes 59:947–957PubMedCrossRefGoogle Scholar
  31. 31.
    Bradley JA, Bolton EM, Pedersen RA (2002) Stem cell medicine encounters the immune system. Nat Rev Immunol 2:859–871PubMedCrossRefGoogle Scholar
  32. 32.
    Lui KO, Waldmann H, Fairchild PJ (2009) Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Curr Stem Cell Res Ther 4:70–80PubMedCrossRefGoogle Scholar
  33. 33.
    Lampton PW, Crooker RJ, Newmark JA, Warner CM (2008) Expression of major histocompatibility complex class I proteins and their antigen processing chaperones in mouse embryonic stem cells from fertilized and parthenogenetic embryos. Tissue Antigens 72:448–457PubMedCrossRefGoogle Scholar
  34. 34.
    Suarez-Alvarez B, Rodriguez RM, Calvanese V et al (2010) Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells. PLoS One 5:e10192PubMedCrossRefGoogle Scholar
  35. 35.
    Dressel R, Nolte J, Elsner L et al (2010) Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J 24:2164–2177PubMedCrossRefGoogle Scholar
  36. 36.
    Moretta L, Bottino C, Cantoni C, Mingari MC, Moretta A (2001) Human natural killer cell function and receptors. Curr Opin Pharmacol 1:387–391PubMedCrossRefGoogle Scholar
  37. 37.
    Henderson JK, Draper JS, Baillie HS et al (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20:329–337PubMedCrossRefGoogle Scholar
  38. 38.
    Boyd AS, Wood KJ (2009) Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation 87:1300–1304PubMedCrossRefGoogle Scholar
  39. 39.
    Drukker M, Katz G, Urbach A et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869PubMedCrossRefGoogle Scholar
  40. 40.
    Swijnenburg RJ, Tanaka M, Vogel H et al (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112:I166–I172PubMedGoogle Scholar
  41. 41.
    Li L, Baroja ML, Majumdar A et al (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22:448–456PubMedCrossRefGoogle Scholar
  42. 42.
    Dressel R, Guan K, Nolte J et al (2009) Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules. Biol Direct 4:31PubMedCrossRefGoogle Scholar
  43. 43.
    Kofidis T, deBruin JL, Tanaka M et al (2005) They are not stealthy in the heart: embryonic stem cells trigger cell infiltration, humoral and T-lymphocyte-based host immune response. Eur J Cardiothorac Surg 28:461–466PubMedCrossRefGoogle Scholar
  44. 44.
    Swijnenburg RJ, Schrepfer S, Cao F et al (2008) In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev 17:1023–1029PubMedCrossRefGoogle Scholar
  45. 45.
    Wu DC, Boyd AS, Wood KJ (2008) Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells 26:1939–1950PubMedCrossRefGoogle Scholar
  46. 46.
    Robertson NJ, Brook FA, Gardner RL, Cobbold SP, Waldmann H, Fairchild PJ (2007) Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci USA 104:20920–20925PubMedCrossRefGoogle Scholar
  47. 47.
    Drukker M, Katchman H, Katz G et al (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24:221–229PubMedCrossRefGoogle Scholar
  48. 48.
    Swijnenburg RJ, Schrepfer S, Govaert JA et al (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci USA 105:12991–12996PubMedCrossRefGoogle Scholar
  49. 49.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736PubMedCrossRefGoogle Scholar
  50. 50.
    Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8CrossRefGoogle Scholar
  51. 51.
    Saito T, Kuang JQ, Bittira B, Al-Khaldi A, Chiu RC (2002) Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 74:19–24, discussion 24PubMedCrossRefGoogle Scholar
  52. 52.
    Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827PubMedCrossRefGoogle Scholar
  53. 53.
    Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372PubMedCrossRefGoogle Scholar
  54. 54.
    Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101:2999–3001PubMedCrossRefGoogle Scholar
  55. 55.
    Li Y, Chen J, Chen XG et al (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523PubMedGoogle Scholar
  56. 56.
    Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441PubMedCrossRefGoogle Scholar
  57. 57.
    Noort WA, Feye D, Van Den Akker F et al (2010) Mesenchymal stromal cells to treat cardiovascular disease: strategies to improve survival and therapeutic results. Panminerva Med 52:27–40PubMedGoogle Scholar
  58. 58.
    Rafei M, Campeau PM, Aguilar-Mahecha A et al (2009) Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 182:5994–6002PubMedCrossRefGoogle Scholar
  59. 59.
    Prockop DJ (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 17:939–946PubMedCrossRefGoogle Scholar
  60. 60.
    Lee RH, Pulin AA, Seo MJ et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63PubMedCrossRefGoogle Scholar
  61. 61.
    Bowles EJ, Campbell KH, St John JC (2007) Nuclear transfer: preservation of a nuclear genome at the expense of its associated mtDNA genome(s). Curr Top Dev Biol 77:251–290PubMedCrossRefGoogle Scholar
  62. 62.
    Hanna J, Wernig M, Markoulaki S et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923PubMedCrossRefGoogle Scholar
  63. 63.
    Tripathy SK, Black HB, Goldwasser E, Leiden JM (1996) Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med 2:545–550PubMedCrossRefGoogle Scholar
  64. 64.
    Bluestone JA, Auchincloss H, Nepom GT, Rotrosen D, St Clair EW, Turka LA (2010) The Immune Tolerance Network at 10 years: tolerance research at the bedside. Nat Rev Immunol 10:797–803PubMedCrossRefGoogle Scholar
  65. 65.
    Fishman JA, Rubin RH (1998) Infection in organ-transplant recipients. N Engl J Med 338:1741–1751PubMedCrossRefGoogle Scholar
  66. 66.
    Nanji SA, Shapiro AM (2004) Islet transplantation in patients with diabetes mellitus: choice of immunosuppression. BioDrugs 18:315–328PubMedCrossRefGoogle Scholar
  67. 67.
    Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10:301–316PubMedCrossRefGoogle Scholar
  68. 68.
    Arai S, Miklos DB (2010) Rituximab in hematopoietic cell transplantation. Expert Opin Biol Ther 10:971–982PubMedCrossRefGoogle Scholar
  69. 69.
    Grinnemo KH, Genead R, Kumagai-Braesch M et al (2008) Costimulation blockade induces tolerance to HESC transplanted to the testis and induces regulatory T-cells to HESC transplanted into the heart. Stem Cells 26:1850–1857PubMedCrossRefGoogle Scholar
  70. 70.
    Peyrin-Biroulet L (2010) Anti-TNF therapy in inflammatory bowel diseases: a huge review. Minerva Gastroenterol Dietol 56:233–243PubMedGoogle Scholar
  71. 71.
    Taylor PC, Feldmann M (2009) Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 5:578–582PubMedCrossRefGoogle Scholar
  72. 72.
    Dinarello CA (2005) Blocking IL-1 in systemic inflammation. J Exp Med 201:1355–1359PubMedCrossRefGoogle Scholar
  73. 73.
    Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6:232–241PubMedCrossRefGoogle Scholar
  74. 74.
    Ildstad ST, Sachs DH (1984) Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307:168–170PubMedCrossRefGoogle Scholar
  75. 75.
    Brunstein CG, Miller JS, Cao Q et al (2010) Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 10(12):1486–1490Google Scholar
  76. 76.
    Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD (2006) Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26:149–188PubMedGoogle Scholar
  77. 77.
    Dufour JM, Rajotte RV, Korbutt GS, Emerich DF (2003) Harnessing the immunomodulatory properties of Sertoli cells to enable xenotransplantation in type I diabetes. Immunol Invest 32:275–297PubMedCrossRefGoogle Scholar
  78. 78.
    Ito T, Meyer KC, Ito N, Paus R (2008) Immune privilege and the skin. Curr Dir Autoimmun 10:27–52PubMedCrossRefGoogle Scholar
  79. 79.
    Niederkorn JY (1999) The immune privilege of corneal allografts. Transplantation 67:1503–1508PubMedCrossRefGoogle Scholar
  80. 80.
    Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC (1995) A role for CD95 ligand in preventing graft rejection. Nature 377:630–632PubMedCrossRefGoogle Scholar
  81. 81.
    Wilbanks GA, Streilein JW (1992) Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-beta. Eur J Immunol 22:1031–1036PubMedCrossRefGoogle Scholar
  82. 82.
    Yang J, Jiang Z, Fitzgerald DC et al (2009) Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest 119:3678–3691PubMedCrossRefGoogle Scholar
  83. 83.
    Tanaka K, Albin MJ, Yuan X et al (2007) PDL1 is required for peripheral transplantation tolerance and protection from chronic allograft rejection. J Immunol 179:5204–5210PubMedGoogle Scholar
  84. 84.
    Yang J, Popoola J, Khandwala S et al (2008) Critical role of donor tissue expression of programmed death ligand-1 in regulating cardiac allograft rejection and vasculopathy. Circulation 117:660–669PubMedCrossRefGoogle Scholar
  85. 85.
    Griffin MD, Hong DK, Holman PO et al (2000) Blockade of T cell activation using a surface-linked single-chain antibody to CTLA-4 (CD152). J Immunol 164:4433–4442PubMedGoogle Scholar
  86. 86.
    Kang SM, Schneider DB, Lin Z et al (1997) Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 3:738–743PubMedCrossRefGoogle Scholar
  87. 87.
    La OR, Tai L, Lee L et al (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461:659–663CrossRefGoogle Scholar
  88. 88.
    Lau HT, Yu M, Fontana A, Stoeckert CJ Jr (1996) Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273:109–112PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations