Hollow Organ Engineering

  • Anthony AtalaEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Applications of regenerative medicine technology may offer novel therapies for patients with injuries, end-stage organ failure, or other clinical problems. Currently, patients suffering from diseased and injured organs can be treated with transplanted organs. However, there is a severe shortage of donor organs that is worsening yearly as the population ages and new cases of organ failure increase. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. In particular, efforts to engineer hollow organs, such as the urinary bladder, urethra, and vagina, have been particularly successful to date. Some therapies arising from these tissue engineering endeavors have already entered the clinical setting successfully, indicating the promise regenerative medicine holds for the future.


Regenerative Medicine Adult Stem Cell Urothelial Cell Composite Scaffold Bladder Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Amniotic-fluid and placental-derived stem


Extracellular matrix


Human embryonic stem cell


Induced pluripotent stem cell




Polyglycolic acid


Polylactic acid


Poly (lactic-co-glycolic acid)


Somatic cell nuclear transfer


Small intestinal submucosa



The author would like to thank Dr. Jennifer Olson for editorial assistance with this manuscript.


  1. 1.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12):7634–7638PubMedCrossRefGoogle Scholar
  2. 2.
    Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Neural progenitors from human embryonic stem cells.[see comment]. Nat Biotechnol 19(12):1134–1140PubMedCrossRefGoogle Scholar
  3. 3.
    Schuldiner M, Eiges R, Eden A, Yanuka O, Itskovitz-Eldor J, Goldstein RS, Benvenisty N (2001) Induced neuronal differentiation of human embryonic stem cells. Brain Res 913(2):201–205PubMedCrossRefGoogle Scholar
  4. 4.
    Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 98(19):10716–10721PubMedCrossRefGoogle Scholar
  5. 5.
    Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes [see comment]. J Clin Invest 108(3):407–414PubMedGoogle Scholar
  6. 6.
    Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99(7):4391–4396PubMedCrossRefGoogle Scholar
  7. 7.
    Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50(8):1691–1697PubMedCrossRefGoogle Scholar
  8. 8.
    Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6(2):88–95PubMedGoogle Scholar
  9. 9.
    Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18(4):399–404 [see comment][erratum appears in Nat Biotechnol 2000 May;18(5):559]PubMedCrossRefGoogle Scholar
  10. 10.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147 [see comment][erratum appears in Science 1998 Dec 4;282(5395):1827]PubMedCrossRefGoogle Scholar
  11. 11.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813. doi: 10.1038/385810a0 PubMedCrossRefGoogle Scholar
  12. 12.
    Hochedlinger K, Jaenisch R (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415(6875):1035–1038PubMedCrossRefGoogle Scholar
  13. 13.
    Simerly C, Dominko T, Navara C, Payne C, Capuano S, Gosman G, Chong KY, Takahashi D, Chace C, Compton D, Hewitson L, Schatten G (2003) Molecular correlates of primate nuclear transfer failures 2. Science 300(5617):297PubMedCrossRefGoogle Scholar
  14. 14.
    Byrne J, Pedersen D, Clepper L, Nelson M, Sanger W, Gokhale S, Wolf D, Mitalipov S (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450(7169):497–502PubMedCrossRefGoogle Scholar
  15. 15.
    Mitalipov S (2007) Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum Reprod 22:2232–2242PubMedCrossRefGoogle Scholar
  16. 16.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  17. 17.
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324PubMedCrossRefGoogle Scholar
  18. 18.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  19. 19.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. doi: 10.1126/science.1151526 PubMedCrossRefGoogle Scholar
  20. 20.
    In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai HH (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549PubMedCrossRefGoogle Scholar
  21. 21.
    De Coppi P, Callegari A, Chiavegato A, Gasparotto L, Piccoli M, Taiani J, Pozzobon M, Boldrin L, Okabe M, Cozzi E, Atala A, Gamba P, Sartore S (2007) Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 177(1):369–376PubMedCrossRefGoogle Scholar
  22. 22.
    Kolambkar YM, Peister A, Soker S, Atala A, Guldberg RE (2007) Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol 38(5):405–413PubMedCrossRefGoogle Scholar
  23. 23.
    Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, Warburton D, Atala A, De Filippo RE (2007) Renal differentiation of amniotic fluid stem cells. Cell Prolif 40(6):936–948PubMedCrossRefGoogle Scholar
  24. 24.
    Warburton D, Perin L, Defilippo R, Bellusci S, Shi W, Driscoll B (2008) Stem/progenitor cells in lung development, injury repair, and regeneration. Proc Am Thorac Soc 5(6):703–706PubMedCrossRefGoogle Scholar
  25. 25.
    Ballas CB, Zielske SP, Gerson SL (2002) Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem Suppl 38:20–28PubMedCrossRefGoogle Scholar
  26. 26.
    Taupin P (2006) Therapeutic potential of adult neural stem cells. Recent Pat CNS Drug Discov 1(3):299–303PubMedCrossRefGoogle Scholar
  27. 27.
    Jensen UB, Yan X, Triel C, Woo SH, Christensen R, Owens DM (2008) A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J Cell Sci 121(Pt 5):609–617PubMedCrossRefGoogle Scholar
  28. 28.
    Crisan M, Casteilla L, Lehr L, Carmona M, Paoloni-Giacobino A, Yap S, Sun B, Leger B, Logar A, Penicaud L, Schrauwen P, Cameron-Smith D, Russell AP, Peault B, Giacobino JP (2008) A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells 26(9):2425–2433PubMedCrossRefGoogle Scholar
  29. 29.
    Weiner LP (2008) Definitions and criteria for stem cells. Methods Mol Biol 438:3–8PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49PubMedCrossRefGoogle Scholar
  31. 31.
    Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347PubMedCrossRefGoogle Scholar
  32. 32.
    Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain [see comment]. Cell 130(6):1146–1158PubMedCrossRefGoogle Scholar
  33. 33.
    Ikeda E, Yagi K, Kojima M, Yagyuu T, Ohshima A, Sobajima S, Tadokoro M, Katsube Y, Isoda K, Kondoh M, Kawase M, Go MJ, Adachi H, Yokota Y, Kirita T, Ohgushi H (2008) Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation 76(5):495–505PubMedCrossRefGoogle Scholar
  34. 34.
    Nolen-Walston RD, Kim CF, Mazan MR, Ingenito EP, Gruntman AM, Tsai L, Boston R, Woolfenden AE, Jacks T, Hoffman AM (2008) Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration. Am J Physiol Lung Cell Mol Physiol 294(6):L1158–L1165PubMedCrossRefGoogle Scholar
  35. 35.
    In ‘t anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88(8):845–852PubMedGoogle Scholar
  36. 36.
    Mimeault M, Batra SK (2008) Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 4(1):27–49PubMedCrossRefGoogle Scholar
  37. 37.
    Cilento BG, Freeman MR, Schneck FX, Retik AB, Atala A (1994) Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol 152(2 Pt 2):665–670PubMedGoogle Scholar
  38. 38.
    Scriven SD, Booth C, Thomas DF, Trejdosiewicz LK, Southgate J (1997) Reconstitution of human urothelium from monolayer cultures. J Urol 158(3 Pt 2):1147–1152PubMedGoogle Scholar
  39. 39.
    Atala A (1998) Autologous cell transplantation for urologic reconstruction. J Urol 159(1):2–3PubMedCrossRefGoogle Scholar
  40. 40.
    Atala A, Freeman MR, Vacanti JP, Shepard J, Retik AB (1993) Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol 150(2 Pt 2):608–612PubMedGoogle Scholar
  41. 41.
    Yoo JJ, Meng J, Oberpenning F, Atala A (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51(2):221–225PubMedCrossRefGoogle Scholar
  42. 42.
    Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering [see comment]. Nat Biotechnol 17(2):149–155PubMedCrossRefGoogle Scholar
  43. 43.
    Park HJ, Yoo JJ, Kershen RT, Moreland R, Atala A (1999) Reconstitution of human corporal smooth muscle and endothelial cells in vivo. J Urol 162(3 Pt 2):1106–1109PubMedGoogle Scholar
  44. 44.
    Tobin MS, Freeman MR, Atala A (1994) Maturational response of normal human urothelial cells in culture is dependent on extracellular matrix and serum additives. Surg Forum 45:786Google Scholar
  45. 45.
    Harriss DR (1995) Smooth muscle cell culture: a new approach to the study of human detrusor physiology and pathophysiology. Br J Urol 75(Suppl 1):18–26PubMedGoogle Scholar
  46. 46.
    Atala A (2007) Engineering tissues, organs and cells. J Tissue Eng Regen Med 1(2):83–96PubMedCrossRefGoogle Scholar
  47. 47.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation [see comment]. N Engl J Med 331(14):889–895PubMedCrossRefGoogle Scholar
  48. 48.
    Bergsma JE, Rozema FR, Bos RR, Boering G, de Bruijn WC, Pennings AJ (1995) In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles [see comment]. Biomaterials 16(4):267–274PubMedCrossRefGoogle Scholar
  49. 49.
    Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25PubMedCrossRefGoogle Scholar
  50. 50.
    Deuel TF (1997) Growth factors. In: Lanza R, Langer R, Chick WL (eds) Principles of tissue engineering. Academic, New York, pp 133–149Google Scholar
  51. 51.
    Cook AD, Hrkach JS, Gao NN, Johnson IM, Pajvani UB, Cannizzaro SM, Langer R (1997) Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res 35(4):513–523PubMedCrossRefGoogle Scholar
  52. 52.
    Lee SJ, Oh SH, Liu J, Soker S, Atala A, Yoo JJ (2008) The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds. Biomaterials 29(10):1422–1430PubMedCrossRefGoogle Scholar
  53. 53.
    Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29(19):2899–2906PubMedCrossRefGoogle Scholar
  54. 54.
    Pariente JL, Kim BS, Atala A (2001) In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. J Biomed Mater Res 55(1):33–39PubMedCrossRefGoogle Scholar
  55. 55.
    Li ST (1995) Biologic biomaterials: tissue derived biomaterials (collagen). In: Brozino JD (ed) The biomedical engineering handbook. CRC Press, Boca Raton, pp 627–647Google Scholar
  56. 56.
    Furthmayr H, Timpl R (1976) Immunochemistry of collagens and procollagens. Int Rev Connect Tissue Res 7:61–99PubMedGoogle Scholar
  57. 57.
    Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63(5):492–496PubMedCrossRefGoogle Scholar
  58. 58.
    Silver FH, Pins G (1992) Cell growth on collagen: a review of tissue engineering using scaffolds containing extracellular matrix. J Long Term Eff Med Implants 2(1):67–80PubMedGoogle Scholar
  59. 59.
    Sams AE, Nixon AJ (1995) Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage 3(1):47–59PubMedCrossRefGoogle Scholar
  60. 60.
    Cavallaro JF, Kemp PD, Kraus KH (1994) Collagen fabrics as biomaterials. Biotechnol Bioeng 43:781–791PubMedCrossRefGoogle Scholar
  61. 61.
    Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8(3):71–78PubMedCrossRefGoogle Scholar
  62. 62.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53PubMedCrossRefGoogle Scholar
  63. 63.
    Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 7(8):1123–1127PubMedCrossRefGoogle Scholar
  64. 64.
    Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11–12):1658–1666PubMedCrossRefGoogle Scholar
  65. 65.
    Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ (2009) Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng Part A 15(1):95–101PubMedCrossRefGoogle Scholar
  66. 66.
    Dahms SE, Piechota HJ, Dahiya R, Lue TF, Tanagho EA (1998) Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol 82(3):411–419PubMedCrossRefGoogle Scholar
  67. 67.
    Chen F, Yoo JJ, Atala A (1999) Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology 54(3):407–410PubMedCrossRefGoogle Scholar
  68. 68.
    Gilding D (1981) Biodegradable polymers. In: Williams D (ed) Biocompatibility of clinical implant materials. CRC Press, Boca Raton, pp 209–232Google Scholar
  69. 69.
    Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Biotechnology (NY) 12(7):689–693CrossRefGoogle Scholar
  70. 70.
    Mikos AG, Lyman MD, Freed LE, Langer R (1994) Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15(1):55–58PubMedCrossRefGoogle Scholar
  71. 71.
    Harris LD, Kim BS, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42(3):396–402PubMedCrossRefGoogle Scholar
  72. 72.
    Peppas NA, Langer R (1994) New challenges in biomaterials [see comment]. Science 263(5154):1715–1720PubMedCrossRefGoogle Scholar
  73. 73.
    Eberli D, Freitas Filho L, Atala A, Yoo JJ (2009) Composite scaffolds for the engineering of hollow organs and tissues. Methods (Duluth) 47(2):109–115Google Scholar
  74. 74.
    Ju YM, Choi JS, Atala A, Yoo JJ, Lee SJ (2010) Bilayered scaffold for engineering cellularized blood vessels. Biomaterials 31(15):4313–4321. doi: S0142-9612(10)00198-5 [pii] 10.1016/j.biomaterials.2010.02.002 PubMedCrossRefGoogle Scholar
  75. 75.
    McDougal WS (1992) Metabolic complications of urinary intestinal diversion. J Urol 147(5):1199–1208PubMedGoogle Scholar
  76. 76.
    Cartwright PC, Snow BW (1989) Bladder autoaugmentation: early clinical experience. J Urol 142(2 Pt 2):505–508, discussion 520–501PubMedGoogle Scholar
  77. 77.
    Churchill BM, Aliabadi H, Landau EH, McLorie GA, Steckler RE, McKenna PH, Khoury AE (1993) Ureteral bladder augmentation. J Urol 150(2 Pt 2):716–720PubMedGoogle Scholar
  78. 78.
    Probst M, Dahiya R, Carrier S, Tanagho EA (1997) Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol 79(4):505–515PubMedGoogle Scholar
  79. 79.
    Sutherland RS, Baskin LS, Hayward SW, Cunha GR (1996) Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J Urol 156(2 Pt 2):571–577PubMedGoogle Scholar
  80. 80.
    Badylak SF, Lantz GC, Coffey A, Geddes LA (1989) Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 47(1):74–80PubMedCrossRefGoogle Scholar
  81. 81.
    Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383PubMedCrossRefGoogle Scholar
  82. 82.
    Kropp BP, Rippy MK, Badylak SF, Adams MC, Keating MA, Rink RC, Thor KB (1996) Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J Urol 155(6):2098–2104PubMedCrossRefGoogle Scholar
  83. 83.
    Kropp BP, Sawyer BD, Shannon HE, Rippy MK, Badylak SF, Adams MC, Keating MA, Rink RC, Thor KB (1996) Characterization of small intestinal submucosa regenerated canine detrusor: assessment of reinnervation, in vitro compliance and contractility. J Urol 156(2 Pt 2):599–607PubMedGoogle Scholar
  84. 84.
    Portis AJ, Elbahnasy AM, Shalhav AL, Brewer A, Humphrey P, McDougall EM, Clayman RV (2000) Laparoscopic augmentation cystoplasty with different biodegradable grafts in an animal model. J Urol 164(4):1405–1411PubMedCrossRefGoogle Scholar
  85. 85.
    Jayo MJ, Jain D, Ludlow JW, Payne R, Wagner BJ, McLorie G, Bertram TA (2008) Long-term durability, tissue regeneration and neo-organ growth during skeletal maturation with a neo-bladder augmentation construct. Regen Med 3(5):671–682PubMedCrossRefGoogle Scholar
  86. 86.
    Atala A (1997) Tissue engineering in the genitourinary system. In: Atala A, Mooney DJ (eds) Tissue engineering. Birkhauser Press, Boston, p 149Google Scholar
  87. 87.
    Jayo MJ, Jain D, Wagner BJ, Bertram TA (2008) Early cellular and stromal responses in regeneration versus repair of a mammalian bladder using autologous cell and biodegradable scaffold technologies [see comment]. J Urol 180(1):392–397PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang Y, Frimberger D, Cheng EY, Lin HK, Kropp BP (2006) Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int 98(5):1100–1105PubMedCrossRefGoogle Scholar
  89. 89.
    Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty [see comment]. Lancet 367(9518):1241–1246PubMedCrossRefGoogle Scholar
  90. 90.
    Sievert KD, Bakircioglu ME, Nunes L, Tu R, Dahiya R, Tanagho EA (2000) Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation. J Urol 163(6):1958–1965PubMedCrossRefGoogle Scholar
  91. 91.
    Atala A, Vacanti JP, Peters CA, Mandell J, Retik AB, Freeman MR (1992) Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol 148(2 Pt 2):658–662PubMedGoogle Scholar
  92. 92.
    Atala A, Guzman L, Retik AB (1999) A novel inert collagen matrix for hypospadias repair. J Urol 162(3 Pt 2):1148–1151PubMedGoogle Scholar
  93. 93.
    El-Kassaby AW, Retik AB, Yoo JJ, Atala A (2003) Urethral stricture repair with an off-the-shelf collagen matrix. J Urol 169(1):170–173, discussion 173PubMedCrossRefGoogle Scholar
  94. 94.
    El Kassaby A, Aboushwareb T, Atala A (2008) Randomized comparative study between ­buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J Urol 179(4):1432–1436PubMedCrossRefGoogle Scholar
  95. 95.
    De Filippo RE, Yoo JJ, Atala A (2002) Urethral replacement using cell seeded tubularized collagen matrices. J Urol 168(4 Pt 2):1789–1792, discussion 1792–1783PubMedCrossRefGoogle Scholar
  96. 96.
    le Roux PJ (2005) Endoscopic urethroplasty with unseeded small intestinal submucosa collagen matrix grafts: a pilot study. J Urol 173(1):140–143PubMedCrossRefGoogle Scholar
  97. 97.
    Dorin RP, Pohl HG, De Filippo RE, Yoo JJ, Atala A (2008) Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J Urol 26(4):323–326PubMedCrossRefGoogle Scholar
  98. 98.
    Wang T, Koh C, Yoo JJ (2003) Creation of an engineered uterus for surgical reconstruction. Paper presented at the American Academy of Pediatrics Section on Urology, New Orleans, LAGoogle Scholar
  99. 99.
    Wefer J, Sekido N, Sievert KD, Schlote N, Nunes L, Dahiya R, Jonas U, Tanagho EA (2002) Homologous acellular matrix graft for vaginal repair in rats: a pilot study for a new reconstructive approach. World J Urol 20(4):260–263PubMedGoogle Scholar
  100. 100.
    De Filippo RE, Yoo JJ, Atala A (2003) Engineering of vaginal tissue in vivo. Tissue Eng 9(2):301–306PubMedCrossRefGoogle Scholar
  101. 101.
    De Filippo RE, Bishop CE, Filho LF, Yoo JJ, Atala A (2008) Tissue engineering a complete vaginal replacement from a small biopsy of autologous tissue. Transplantation 86(2):208–214 [erratum appears in Transplantation. 2008 Sep 15;86(5): 751. Note: De Philippo, Roger E [corrected to De Filippo, Roger E]]PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations