Skip to main content

Engineering Functional Cartilage Grafts

  • Chapter
  • First Online:
Book cover Tissue Engineering in Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Articular cartilage is the specialized connective tissue that covers diarthrodial joints (e.g., hip, knee, and shoulder) and serves a load-bearing and lubrication function. As the tissue is avascular, it exhibits a poor healing capacity when injured. Joint arthroplasty, comprised of metal and plastic prostheses, has a limited lifespan after implantation and are ideally reserved for cases of significant traumatic injury and pervasive arthritis. As such, there have been significant efforts to develop cell-based strategies for cartilage repair. Accordingly, there is great anticipation regarding the role that stem cells can serve as a cell source for generating functional articular cartilage grafts. There is a need for both the use of animal cells and models as well as parallel development using human cells to successfully translate these strategies to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMSC:

Bone marrow-derived stem cell

CAD:

Computer-aided design

CZ:

Calcified cartilage zone

DZ:

Deep zone

ECM:

Extracellular matrix

FGF:

Fibroblast growth factor

GAG:

Glycosaminoglycan

hESC:

Human embryonic stem cell

IGF:

Insulin-like growth factor

MRI:

Magnetic resonance imaging

MZ:

Middle zone

OA:

Osteoarthritis

PG:

Proteoglycan

SZ:

Superficial zone

TGF:

Transforming growth factor

References

  1. Mow VC, Lai M (1990) Biorheology of swelling tissue. Biorheology 27(1):110–119

    PubMed  CAS  Google Scholar 

  2. Eyre DR (1980) Collagen: molecular diversity in the body’s protein scaffold. Science 207(4437):1315–1322

    PubMed  CAS  Google Scholar 

  3. Clarke IC (1971) Articular cartilage: a review and scanning electron microscope study. 1. The interterritorial fibrillar architecture. J Bone Joint Surg Br 53(4):732–750

    PubMed  CAS  Google Scholar 

  4. Muir H, Bullough P, Maroudas A (1970) The distribution of collagen in human articular cartilage with some of its physiological implications. J Bone Joint Surg Br 52(3):554–563

    PubMed  CAS  Google Scholar 

  5. Lipshitz H, Etheredge R 3rd, Glimcher MJ (1976) Changes in the hexosamine content and swelling ratio of articular cartilage as functions of depth from the surface. J Bone Joint Surg Am 58(8):1149–1153

    PubMed  CAS  Google Scholar 

  6. Maroudas A (1979) Physicochemical properties of articular cartilage. In: Freeman MAR (ed) Adult articular cartilage. Pitman Medical, Kent, pp 215–290

    Google Scholar 

  7. Stockwell RA (1979) Biology of cartilage cells. Biological structure and function, vol 7. Cambridge University Press, Cambridge. pp viii, 329

    Google Scholar 

  8. Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res 13(3):410–421

    PubMed  CAS  Google Scholar 

  9. Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486

    PubMed  CAS  Google Scholar 

  10. Donzelli PS et al (1999) Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. J Biomech 32(10):1037–1047

    PubMed  CAS  Google Scholar 

  11. Mankin HJ (1982) Alterations in the structure, chemistry, and metabolism of the articular cartilage in osteoarthritis of the human hip. Hip 126–145

    Google Scholar 

  12. Felson DT et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133(8):635–646

    PubMed  CAS  Google Scholar 

  13. Tew SR et al (2000) The reactions of articular cartilage to experimental wounding: role of apoptosis. Arthritis Rheum 43(1):215–225

    PubMed  CAS  Google Scholar 

  14. Quinn TM et al (2001) Matrix and cell injury due to sub-impact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress. J Orthop Res 19(2):242–249

    PubMed  CAS  Google Scholar 

  15. Chen CT et al (1999) Compositional and metabolic changes in damaged cartilage are peak-stress, stress-rate, and loading-duration dependent. J Orthop Res 17(6):870–879

    PubMed  CAS  Google Scholar 

  16. Chen CT et al (2001) Chondrocyte necrosis and apoptosis in impact damaged articular cartilage. J Orthop Res 19(4):703–711

    PubMed  CAS  Google Scholar 

  17. Mowery C, Botte M, Bradley G (1987) Fracture of polyethylene tibial component in a total knee replacement. A case report. Orthopedics 10(2):309–313

    PubMed  CAS  Google Scholar 

  18. Bradley GW et al (1993) Evaluation of wear in an all-polymer total knee replacement. Part 2: clinical evaluation of wear in a polyethylene on polyacetal total knee. Clin Mater 14(2):127–132

    PubMed  CAS  Google Scholar 

  19. Whiteside LA (1989) Clinical results of Whiteside Ortholoc total knee replacement. Orthop Clin North Am 20(1):113–124

    PubMed  CAS  Google Scholar 

  20. Ayers DC (1997) Polyethylene wear and osteolysis following total knee replacement. Instr Course Lect 46:205–213

    PubMed  CAS  Google Scholar 

  21. Ahsan T et al (1999) Integrative cartilage repair: inhibition by beta-aminopropionitrile. J Orthop Res 17(6):850–857

    PubMed  CAS  Google Scholar 

  22. Harper MC (1988) Viscous isoamyl 2-cyanoacrylate as an osseous adhesive in the repair of osteochondral osteotomies in rabbits. J Orthop Res 6(2):287–292

    PubMed  CAS  Google Scholar 

  23. Caplan AI et al (1997) Principles of cartilage repair and regeneration. Clin Orthop 342:254–269

    PubMed  Google Scholar 

  24. Zuger BJ et al (2001) Laser solder welding of articular cartilage: tensile strength and chondrocyte viability. Lasers Surg Med 28(5):427–434

    PubMed  CAS  Google Scholar 

  25. O’Driscoll SW, Keeley FW, Salter RB (1986) The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the ­rabbit. J Bone Joint Surg Am 68(7):1017–1035

    PubMed  Google Scholar 

  26. Hangody L et al (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc 5(4):262–267

    PubMed  CAS  Google Scholar 

  27. Brittberg M et al (1996) Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop 326:270–283

    PubMed  Google Scholar 

  28. Ahmad CS et al (2001) Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med 29(2):201–206

    PubMed  CAS  Google Scholar 

  29. Lee CR et al (2000) Effects of harvest and selected cartilage repair procedures on the physical and biochemical properties of articular cartilage in the canine knee. J Orthop Res 18(5):790–799

    PubMed  CAS  Google Scholar 

  30. Lee DA et al (2000) The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs. Biorheology 37(1–2):149–161

    PubMed  CAS  Google Scholar 

  31. Vunjak-Novakovic G et al (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17:130–138

    PubMed  CAS  Google Scholar 

  32. Pazzano D et al (2000) Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol Prog 16(5):893–896

    PubMed  CAS  Google Scholar 

  33. Mauck RL et al (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122(3):252–260

    PubMed  CAS  Google Scholar 

  34. Lima EG et al (2004) Functional tissue engineering of chondral and osteochondral constructs. Biorheology 41(3–4):577–590

    PubMed  Google Scholar 

  35. Smetana K (1993) Cell biology of hydrogels. Biomaterials 14(14):1046–1050

    PubMed  CAS  Google Scholar 

  36. Rice MA et al (2008) Effects of directed gel degradation and collagenase digestion on the integration of neocartilage produced by chondrocytes encapsulated in hydrogel carriers. J Tissue Eng Regen Med 2(7):418–429

    PubMed  CAS  Google Scholar 

  37. Burdick JA et al (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6(1):386–391

    PubMed  CAS  Google Scholar 

  38. Chao PH et al (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 95(1):84–90

    PubMed  Google Scholar 

  39. van Susante JL et al (1995) Culture of chondrocytes in alginate and collagen carrier gels. Acta Orthop Scand 66(6):549–556

    PubMed  Google Scholar 

  40. Buschmann MD et al (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108(Pt 4):1497–1508

    PubMed  CAS  Google Scholar 

  41. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224

    PubMed  CAS  Google Scholar 

  42. Buschmann MD et al (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res 10(6):745–758

    PubMed  CAS  Google Scholar 

  43. Lee DA, Bader DL (1995) The development and characterization of an in vitro system to study strain-induced cell deformation in isolated chondrocytes. In Vitro Cell Dev Biol Anim 31(11):828–835

    PubMed  CAS  Google Scholar 

  44. Lee DA, Bader DL (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 15(2):181–188

    PubMed  Google Scholar 

  45. Mauck RL et al (2002) Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30(8):1046–1056

    PubMed  Google Scholar 

  46. Rahfoth B et al (1998) Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage 6(1):50–65

    PubMed  CAS  Google Scholar 

  47. Cook JL et al (2003) Biocompatibility of three-dimensional chondrocyte grafts in large tibial defects of rabbits. Am J Vet Res 64(1):12–20

    PubMed  Google Scholar 

  48. Lima EG et al (2007) The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthritis Cartilage 15(9):1025–1033

    PubMed  CAS  Google Scholar 

  49. Selmi TA et al (2007) Autologous chondrocyte transplantation in combination with an ­alginate-agarose based hydrogel (Cartipatch). Tech Knee Surg 6(4):253–258

    Google Scholar 

  50. Selmi TA et al (2008) Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years. J Bone Joint Surg Br 90(5):597–604

    PubMed  CAS  Google Scholar 

  51. Guilak F, Hung CT (2005) Physical regulation of cartilage metabolism. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics. Lippincott-Raven, Philadelphia, pp 179–207

    Google Scholar 

  52. Hung CT et al (2004) A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann Biomed Eng 32(1):35–49

    PubMed  Google Scholar 

  53. Gooch KJ et al (2001) Effects of mixing intensity on tissue-engineered cartilage. Biotechnol Bioeng 72(4):402–407

    PubMed  CAS  Google Scholar 

  54. Kaysen JH et al (1999) Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent. J Membr Biol 168(1):77–89

    PubMed  CAS  Google Scholar 

  55. Freed LE et al (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci USA 94(25):13885–13890

    PubMed  CAS  Google Scholar 

  56. Obradovic B et al (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng 63(2):197–205

    PubMed  CAS  Google Scholar 

  57. Ateshian GA, Hung CT (2003) Functional properties of native articular cartilage. In: Guilak F et al (eds) Functional tissue engineering. Springer-Verlag, New York, pp 46–66

    Google Scholar 

  58. Carver SE, Heath CA (1999) Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol Bioeng 62(2):166–174

    PubMed  CAS  Google Scholar 

  59. Mauck RL et al (2003) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage 11(12):879–890

    PubMed  CAS  Google Scholar 

  60. Mauck RL, Hung CT, Ateshian GA (2003) Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue. J Biomech Eng 125(5):602–614

    PubMed  Google Scholar 

  61. Albro MB et al (2008) Dynamic loading of deformable porous media can induce active solute transport. J Biomech 41(15):3152–3157

    PubMed  Google Scholar 

  62. Elder SH et al (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29(6):476–482

    PubMed  CAS  Google Scholar 

  63. Huang CY et al (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22(3):313–323

    PubMed  CAS  Google Scholar 

  64. Miyanishi K et al (2006) Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 12(6):1419–1428

    PubMed  CAS  Google Scholar 

  65. Kisiday JD et al (2009) Dynamic compression stimulates PG synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. Tissue Eng Part A 15(10):2817–2824

    PubMed  CAS  Google Scholar 

  66. Huang AH, Farrell MJ, Mauck RL (2010) Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J Biomech 43(1):128–136

    PubMed  Google Scholar 

  67. Byers BA et al (2006) Temporal exposure of TGF-B3 under serum-free conditions enhances biomechanical and biochemical maturation of tissue-engineered cartilage. Trans Orthop Res Soc 31:43

    Google Scholar 

  68. Mauck RL et al (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9(4):597–611

    PubMed  CAS  Google Scholar 

  69. Mauck RL et al (2001) Transforming growth factor B1 increases the mechanical properties and matrix development of chondrocyte-seeded agarose hydrogels. Adv Bioeng 50:691–692

    CAS  Google Scholar 

  70. Thorp BH, Anderson I, Jakowlew SB (1992) Transforming growth factor-beta1, -beta2 and -beta3 in cartilage and bone cells during endochondral ossification in the chick. Development 114(4):907–911

    PubMed  CAS  Google Scholar 

  71. Bian L et al (2009) Effects of dexamethasone on the functional properties of cartilage explants during long term culture. Trans Orthop Res Soc 34:329

    Google Scholar 

  72. Awad H et al (2003) Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng 9(6):1301–1312

    PubMed  CAS  Google Scholar 

  73. Ratcliffe A, Tyler JA, Hardingham TE (1986) Articular cartilage cultured with interleukin 1. Increased release of link protein, hyaluronate-binding region and other PG fragments. Biochem J 238(2):571–580

    PubMed  CAS  Google Scholar 

  74. Aydelotte MB et al (1992) Influence of interleukin-1 on the morphology and PG metabolism of cultured bovine articular chondrocytes. Connect Tissue Res 28(1–2):143–159

    PubMed  CAS  Google Scholar 

  75. Lima EG et al (2008) Differences in Interleukin-1 Response between Engineered and Native Cartilage. Tissue Eng Part A 14(10):1721–1730

    PubMed  CAS  Google Scholar 

  76. Martin I et al (2000) Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37(1–2):141–147

    PubMed  CAS  Google Scholar 

  77. Tran-Khanh N et al (2005) Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J Orthop Res 23:1354–1362

    PubMed  CAS  Google Scholar 

  78. Adkisson HDt et al (2010) The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med 38(7):1324–1333

    PubMed  Google Scholar 

  79. Gilbert JE (1998) Current treatment options for the restoration of articular cartilage. Am J Knee Surg 11(1):42–46

    PubMed  CAS  Google Scholar 

  80. Wang J et al (2003) Homeostasis of the extracellular matrix of normal and osteoarthritic human articular cartilage chondrocytes in vitro. Osteoarthritis Cartilage 11(11):801–809

    PubMed  CAS  Google Scholar 

  81. Bulstra SK et al (1989) Metabolic characteristics of in vitro cultured human chondrocytes in relation to the histopathologic grade of osteoarthritis. Clin Orthop Relat Res 242: 294–302

    PubMed  Google Scholar 

  82. Glenn RE Jr et al (2006) Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med 34(7):1084–1093

    PubMed  Google Scholar 

  83. Garrett JC (1998) Osteochondral allografts for reconstruction of articular defects of the knee. AAOS Instr Course Lect 47:517–522

    CAS  Google Scholar 

  84. Tew SR et al (2008) Cellular methods in cartilage research: primary human chondrocytes in culture and chondrogenesis in human bone marrow stem cells. Methods 45(1):2–9

    PubMed  CAS  Google Scholar 

  85. Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    PubMed  CAS  Google Scholar 

  86. Zuk PA et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    PubMed  CAS  Google Scholar 

  87. Xu Y et al (2007) In vitro expansion of adipose-derived adult stromal cells in hypoxia enhances early chondrogenesis. Tissue Eng 13(12):2981–2993

    PubMed  CAS  Google Scholar 

  88. Xu Y et al (2007) Analysis of the material properties of early chondrogenic differentiated adipose-derived stromal cells (ASC) using an in vitro three-dimensional micromass culture system. Biochem Biophys Res Commun 359(2):311–316

    PubMed  CAS  Google Scholar 

  89. Kim JH et al (2011) Enhanced proliferation and chondrogenic differentiation of human ­synovium-derived stem cells expanded with basic fibroblast growth factor. Tissue Eng 17(7–8):991–1002

    Google Scholar 

  90. Arufe MC et al (2010) Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. J Cell Biochem 111(4):834–845

    PubMed  CAS  Google Scholar 

  91. Li J, Pei M (2010) Optimization of an in vitro three-dimensional microenvironment to reprogram synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A 17(5–6):703–712

    PubMed  Google Scholar 

  92. Hwang NS, Varghese S, Elisseeff J (2008) Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One 3(6):e2498

    PubMed  Google Scholar 

  93. Hoben GM, Willard VP, Athanasiou KA (2009) Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells Dev 18(2):283–292

    PubMed  CAS  Google Scholar 

  94. Huang AH et al (2009) Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A 15(11):3461–3472

    PubMed  CAS  Google Scholar 

  95. Koay EJ, Athanasiou KA (2008) Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality. Osteoarthritis Cartilage 16(12):1450–1456

    PubMed  CAS  Google Scholar 

  96. Koay EJ, Hoben GM, Athanasiou KA (2007) Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25(9):2183–2190

    PubMed  CAS  Google Scholar 

  97. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    PubMed  CAS  Google Scholar 

  98. Kim K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    PubMed  CAS  Google Scholar 

  99. Ng KW et al (2010) Passaged adult chondrocytes can form engineered cartilage with functional mechanical properties: a canine model. Tissue Eng Part A 16(3):1041–1051

    PubMed  CAS  Google Scholar 

  100. Francioli SE et al (2007) Growth factors for clinical-scale expansion of human articular chondrocytes: relevance for automated bioreactor systems. Tissue Eng 13(6):1227–1234

    PubMed  CAS  Google Scholar 

  101. Hwang NS et al (2006) Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. Biomaterials 27(36):6015–6023

    PubMed  CAS  Google Scholar 

  102. Williams CG et al (2003) In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 9(4):679–688

    PubMed  CAS  Google Scholar 

  103. Guilak F et al (2004) Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology 41(3–4):389–399

    PubMed  CAS  Google Scholar 

  104. Brighton CT et al (1979) Articular cartilage preservation and storage I. Application of tissue culture techiques to the storage of viable articular cartilage. Arthritis Rheum 1979:1093–1101

    Google Scholar 

  105. Bian L et al (2008) Mechanical and biochemical characterization of cartilage explants in serum-free culture. J Biomech 41(6):1153–1159

    PubMed  CAS  Google Scholar 

  106. Mauck RL, Yuan X, Tuan RS (2006) Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long term agarose culture. Osteoarthritis Cartilage 14(2):179–189

    PubMed  CAS  Google Scholar 

  107. Cooney WP, Chao EYS (1977) Biomechanical analysis of static forces in the thumb during hand functions. J Bone Joint Surg 59-A:27–36

    Google Scholar 

  108. Ateshian GA et al (1992) A biphasic model for contact in diarthrodial joints. Adv Bioeng ASME BED 22:191–194

    Google Scholar 

  109. Ateshian GA, Rosenwasser MP, Mow VC (1992) Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints. J Biomech 25(6):591–607

    PubMed  CAS  Google Scholar 

  110. Ateshian GA et al (1995) Contact areas in the thumb carpometacarpal joint. J Orthop Res 13(3):450–458

    PubMed  CAS  Google Scholar 

  111. Brown TD, Shaw DT (1983) In vitro contact stress distributions in the natural human hip. J Biomech 16(6):373–384

    PubMed  CAS  Google Scholar 

  112. Eberhardt AW et al (1990) An analytical model of joint contact. J Biomech Eng 112(4):407–413

    PubMed  CAS  Google Scholar 

  113. Huberti HH, Hayes WC (1984) Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am 66(5):715–724

    PubMed  CAS  Google Scholar 

  114. Undt G et al (2000) MRI-based stereolithographic models of the temporomandibular joint: technical innovation. J Craniomaxillofac Surg 28(5):258–263

    PubMed  CAS  Google Scholar 

  115. Koo S et al (2010) Fabrication of custom-shaped grafts for cartilage regeneration. Int J Artif Organs 33(10):731–737

    PubMed  Google Scholar 

  116. Hung CT et al (2003) Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech 36(12):1853–1864

    PubMed  Google Scholar 

  117. Ateshian GA, Hung CT (2005) Patellofemoral joint biomechanics and tissue engineering. Clin Orthop Relat Res 436:81–90

    PubMed  Google Scholar 

  118. Cook JL et al (2005) In vitro and in vivo evaluation of tissue-engineered constructs for articular cartilage regeneration. Trans Orthop Res Soc 30:1767

    Google Scholar 

  119. Albro MB et al (2010) Validation of theoretical framework explaining active solute uptake in dynamically loaded porous media. J Biomech 43(12):2267–2273

    PubMed  Google Scholar 

  120. Bian L et al (2009) Influence of decreasing nutrient path length on the development of engineered cartilage. Osteoarthritis Cartilage 17(5):677–685

    PubMed  CAS  Google Scholar 

  121. Ahsan T, Sah RL (1999) Biomechanics of integrative cartilage repair. Osteoarthritis Cartilage 7(1):29–40

    PubMed  CAS  Google Scholar 

  122. Bobic V (1999) The utilization of osteochondral autografts in the treatment of articular cartilage lesions (part 1 of 3). Int Soc Arthrosc Knee Surg Orthop Sports Med 1–2

    Google Scholar 

  123. Hunziker EB (1999) Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage 7:15–28

    PubMed  CAS  Google Scholar 

  124. Obradovic B et al (2001) Integration of engineered cartilage. J Orthop Res 19:1089–1097

    PubMed  CAS  Google Scholar 

  125. Williams C et al (2002). Musculoskeletal tissue engineering and photopolymerizing hydrogels. In: Tissue engineering. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  126. Kreklau B et al (1999) Tissue engineering of biphasic joint cartilage transplants. Biomaterials 20:1743–1749

    PubMed  CAS  Google Scholar 

  127. Schaefer D et al (2000) In vitro generation of osteochondral composites. Biomaterials 21(24):2599–2606

    PubMed  CAS  Google Scholar 

  128. Sherwood JK et al (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751

    PubMed  CAS  Google Scholar 

  129. van Susante JL et al (1998) Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects. A pilot study in the goat. Biomaterials 19(24):2367–2374

    PubMed  Google Scholar 

  130. Lima EG et al (2008) The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs. Biomaterials 29(32):4292–4299

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge research support of the work described in this chapter (NIH grants AR46568, AR52871, and AR060361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark T. Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tan, A.R., Hung, C.T. (2011). Engineering Functional Cartilage Grafts. In: Bernstein, H. (eds) Tissue Engineering in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-322-6_13

Download citation

Publish with us

Policies and ethics