Engineering Functional Bone Grafts

  • Sarindr Bhumiratana
  • Gordana Vunjak-NovakovicEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


There is a strong medical need for biological tissue grafts that could reestablish the structure and function of bone lost to a major injury or disease. Routinely used prosthetic devices are most helpful in providing the necessary structure and mechanical support, but these devices often fail to fully integrate with the host tissues, and generally do not last longer than about 10 years. In addition, the important metabolic function of bone most certainly cannot be provided by prosthetic devices. Tissue engineering is now offering a potential to grow fully biological substitutes of native tissues, by an integrated use of living cells, biomaterial scaffolds, and culture systems (bioreactors). Today, tissue engineering modalities are designed based on the biological requirements and clinical constraints, and the progress is largely made at the interfaces between bioengineering, basic, and clinical sciences. This chapter is discussing the design criteria and parameters essential for engineering bone grafts, as well as the current status and future perspective of the field.


Bone Graft Bone Tissue Engineering Native Bone Spinner Flask Critical Size Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bone morphogenetic protein


Fibroblast growth factor


Granulocyte-macrophage colony-stimulating factor


Insulin-like growth factor


Indian Hedgehog




Macrophage colony-stimulating factor


Mesenchymal stem cell


Platelet-derived growth factor


Parathyroid hormone-related peptide


Transforming growth factor-β


Temporomandibular joint


Vascular endothelial growth factor



The authors gratefully acknowledge research support of the work described in this chapter (NIH grants DE016525, EB002520 and EB011869 and NYSCF grant CU09-3055).


  1. 1.
    Hench L, Wilson J (1993) Introduction to bioceramics. World Scientific, SingaporeGoogle Scholar
  2. 2.
    Baron R (2008) Anatomy and ultrastructure of bone – histogenesis, growth and remodeling. In: Arnold A (ed) Diseases of bone and mineral metabolism., South Dartmouth, MA. Web. 2010Google Scholar
  3. 3.
    Scott CK, Hightower JA (1991) The matrix of endochondral bone differs from the matrix of intramembranous bone. Calcif Tissue Int 49(5):349–354PubMedCrossRefGoogle Scholar
  4. 4.
    Abzhanov A et al (2007) Regulation of skeletogenic differentiation in cranial dermal bone. Development 134(17):3133–3144PubMedCrossRefGoogle Scholar
  5. 5.
    Solheim E (1998) Growth factors in bone. Int Orthop 22(6):410–416PubMedCrossRefGoogle Scholar
  6. 6.
    Gerber HP et al (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5(6):623–628PubMedCrossRefGoogle Scholar
  7. 7.
    Trippel SB (1994) Biologic regulation of bone growth. In: Brighton CT, Friedlander GE, LaneBone JM (eds) Formation and repair. American Academy of Orthopedic Surgeons, RosemontGoogle Scholar
  8. 8.
    Rosenfeld RG, Rosenbloom AL, Guevara-Aguirre J (1994) Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocr Rev 15(3):369–390PubMedGoogle Scholar
  9. 9.
    Gonzalez AM et al (1990) Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J Cell Biol 110(3):753–765PubMedCrossRefGoogle Scholar
  10. 10.
    Hebert JM et al (1990) Isolation of cDNAs encoding four mouse FGF family members and characterization of their expression patterns during embryogenesis. Dev Biol 138(2):454–463PubMedCrossRefGoogle Scholar
  11. 11.
    Bostrom MP, Asnis P (1998) Transforming growth factor beta in fracture repair. Clin Orthop Relat Res (355 suppl):S124–S131Google Scholar
  12. 12.
    Rosier RN, O’Keefe RJ, Hicks DG (1998) The potential role of transforming growth factor beta in fracture healing. Clin Orthop Relat Res (355 suppl):S294–S300Google Scholar
  13. 13.
    Joyce ME et al (1991) Role of growth factors in fracture healing. Prog Clin Biol Res 365:391–416PubMedGoogle Scholar
  14. 14.
    Urist MR (1965) Bone: formation by autoinduction. Science 150(698):893–899PubMedCrossRefGoogle Scholar
  15. 15.
    Wozney JM, Rosen V (1998) Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res 346:26–37PubMedCrossRefGoogle Scholar
  16. 16.
    Frost HM (1986) Intermediary organization of the skeleton, vol II. 1–331 edn. CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45(8 Pt 2):1353–1358PubMedGoogle Scholar
  18. 18.
    Bilezikian JP, Raisz LG, Rodan GA (1996) Principles of bone biology, vol 1. Academic Press, New YorkGoogle Scholar
  19. 19.
    Cruess RL, Dumont J (1975) Fracture healing. Can J Surg 18(5):403–413PubMedGoogle Scholar
  20. 20.
    Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200(2):165–170PubMedGoogle Scholar
  21. 21.
    Sfeir C et al (2005) Fracture repair. In: Lieberman JR, Friedlaender GE (eds) Bone regeneration and repair. Humana Press, TotowaGoogle Scholar
  22. 22.
    Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84-A(3):454–464PubMedGoogle Scholar
  23. 23.
    Gazdag AR et al (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3(1):1–8PubMedGoogle Scholar
  24. 24.
    Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3(3):192–195PubMedCrossRefGoogle Scholar
  25. 25.
    Bianco P et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192PubMedCrossRefGoogle Scholar
  26. 26.
    Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260PubMedCrossRefGoogle Scholar
  27. 27.
    Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60PubMedGoogle Scholar
  28. 28.
    Owen ME, Cave J, Joyner CJ (1987) Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci 87(Pt 5):731–738PubMedGoogle Scholar
  29. 29.
    Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64(2):278–294PubMedCrossRefGoogle Scholar
  30. 30.
    Vunjak-Novakovic G, Goldstein SA (2005) Biomechanical principles of cartilage and bone tissue engineering. In: Mow VC, Huiskes R (eds) Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams and Wilkins, Philadelphia, pp 343–408Google Scholar
  31. 31.
    Mizuno M et al (1997) Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 20(2):101–107PubMedCrossRefGoogle Scholar
  32. 32.
    Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486PubMedCrossRefGoogle Scholar
  33. 33.
    Vacanti CA et al (2001) Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 344(20):1511–1514PubMedCrossRefGoogle Scholar
  34. 34.
    Grundel RE et al (1991) Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna. Clin Orthop Relat Res 266:244–258PubMedGoogle Scholar
  35. 35.
    Hutmacher DW et al (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4):245–260PubMedCrossRefGoogle Scholar
  36. 36.
    Kofron MD, Laurencin CT (2006) Bone tissue engineering by gene delivery. Adv Drug Deliv Rev 58(4):555–576PubMedCrossRefGoogle Scholar
  37. 37.
    Dimitriou R, Babis GC (2007) Biomaterial osseointegration enhancement with biophysical stimulation. J Musculoskelet Neuronal Interact 7(3):253–265PubMedGoogle Scholar
  38. 38.
    Grayson WL et al (2008) Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Eng Part A 14(11):1809–1820PubMedCrossRefGoogle Scholar
  39. 39.
    Chao PH, Grayson W, Vunjak-Novakovic G (2007) Engineering cartilage and bone using human mesenchymal stem cells. J Orthop Sci 12(4):398–404PubMedCrossRefGoogle Scholar
  40. 40.
    Meinel L et al (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32(1):112–122PubMedCrossRefGoogle Scholar
  41. 41.
    Carter DR et al (1987) Influences of mechanical stress on prenatal and postnatal skeletal development. Clin Orthop Relat Res 219:237–250PubMedGoogle Scholar
  42. 42.
    Cheng SL et al (1994) Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134(1):277–286PubMedCrossRefGoogle Scholar
  43. 43.
    Hanada K, Dennis JE, Caplan AI (1997) Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res 12(10):1606–1614PubMedCrossRefGoogle Scholar
  44. 44.
    Meinel L et al (2006) Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials 27(28):4993–5002PubMedCrossRefGoogle Scholar
  45. 45.
    Bancroft GN et al (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99(20):12600–12605PubMedCrossRefGoogle Scholar
  46. 46.
    Sikavitsas VI et al (2003) Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci USA 100(25):14683–14688PubMedCrossRefGoogle Scholar
  47. 47.
    Grayson WL et al (2010) Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci USA 107(8):3299–3304PubMedCrossRefGoogle Scholar
  48. 48.
    Pearce AI et al (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10PubMedGoogle Scholar
  49. 49.
    Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1(1):60–68PubMedCrossRefGoogle Scholar
  50. 50.
    Meinel L et al (2005) Silk implants for the healing of critical size bone defects. Bone 37(5):688–698PubMedCrossRefGoogle Scholar
  51. 51.
    Byers BA et al (2006) Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects. J Biomed Mater Res A 76(3):646–655PubMedGoogle Scholar
  52. 52.
    Dunkelman NS et al (1995) Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol Bioeng 46(4):299–305PubMedCrossRefGoogle Scholar
  53. 53.
    Bang OY et al (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57(6):874–882PubMedCrossRefGoogle Scholar
  54. 54.
    Barrilleaux B et al (2006) Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 12(11):3007–3019PubMedCrossRefGoogle Scholar
  55. 55.
    Le Blanc K (2006) Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy 8(6):559–561PubMedCrossRefGoogle Scholar
  56. 56.
    Le Blanc K, Ringden O (2006) Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr Opin Immunol 18(5):586–591PubMedCrossRefGoogle Scholar
  57. 57.
    Ringden O et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397PubMedCrossRefGoogle Scholar
  58. 58.
    Barry FP (2003) Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today 69(3):250–256PubMedCrossRefGoogle Scholar
  59. 59.
    Meinel L et al (2004) Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J Biomed Mater Res A 71(1):25–34PubMedCrossRefGoogle Scholar
  60. 60.
    Marolt D et al (2006) Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27(36):6138–6149PubMedCrossRefGoogle Scholar
  61. 61.
    Liu K, Yang Y, Mansbridge J (2000) Comparison of the stress response to cryopreservation in monolayer and three-dimensional human fibroblast cultures: stress proteins, MAP kinases, and growth factor gene expression. Tissue Eng 6(5):539–554PubMedCrossRefGoogle Scholar
  62. 62.
    Quarto R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344(5):385–386PubMedCrossRefGoogle Scholar
  63. 63.
    Marcacci M et al (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955PubMedCrossRefGoogle Scholar
  64. 64.
    Kneser U et al (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10(1):7–19PubMedCrossRefGoogle Scholar
  65. 65.
    Kneser U et al (2006) Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 12(7):1721–1731PubMedCrossRefGoogle Scholar
  66. 66.
    Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693PubMedCrossRefGoogle Scholar
  67. 67.
    Laschke MW et al (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12(8):2093–2104PubMedCrossRefGoogle Scholar
  68. 68.
    Levenberg S et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23(7):879–884PubMedCrossRefGoogle Scholar
  69. 69.
    Unger RE et al (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28(27):3965–3976PubMedCrossRefGoogle Scholar
  70. 70.
    Kaigler D et al (2006) Transplanted endothelial cells enhance orthotopic bone regeneration. J Dent Res 85(7):633–637PubMedCrossRefGoogle Scholar
  71. 71.
    Tremblay PL et al (2005) Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5(5):1002–1010PubMedCrossRefGoogle Scholar
  72. 72.
    Rouwkema J, de Boer J, Van Blitterswijk CA (2006) Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng 12(9):2685–2693PubMedCrossRefGoogle Scholar
  73. 73.
    Valarmathi MT et al (2008) A three-dimensional tubular scaffold that modulates the osteogenic and vasculogenic differentiation of rat bone marrow stromal cells. Tissue Eng Part A 14(4):491–504PubMedCrossRefGoogle Scholar
  74. 74.
    Miranville A et al (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110(3):349–355PubMedCrossRefGoogle Scholar
  75. 75.
    Planat-Benard V et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109(5):656–663PubMedCrossRefGoogle Scholar
  76. 76.
    Frohlich M et al (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 3(4):254–264PubMedCrossRefGoogle Scholar
  77. 77.
    Lu HH et al (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38(6):2142–2154PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations