Advertisement

Restoring Blood Vessels

  • Narutoshi Hibino
  • Christopher Breuer
  • Toshiharu ShinokaEmail author
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

In surgical repair for heart disease, it is sometimes necessary to fill or replace a pathological tissue or defect with autologous graft tissue or a foreign grafting material. To date, (1) autologous pericardium, (2) allograft, (3) xenograft, and (4) artificial graft (e.g., Dacron, Teflon, Gore-Tex) have been used as graft materials. These grafts, however, lack growth potential, are associated with increased risk of thrombosis and infection, and have limited durability, thus increasing the morbidity and mortality of their application. Vascular tissue engineering is a relatively new concept proposed in the latter half of the 1980s. It aims to produce neotissue from autologous cells with biodegradable polymer as a scaffold by the application of engineering and biological principles. The greatest advantage of tissue constructed by tissue engineering is that the scaffold polymer is completely biodegraded as cells fill the extracellular stroma, and foreign materials do not remain at later time points after transplant. In this review, we provide an overview of our work to demonstrate the advantages of tissue-engineered vascular grafts in animal models and in human clinical applications using autologous cells and biodegradable scaffolds.

Keywords

Bone Marrow Cell Vascular Graft Hypoplastic Left Heart Syndrome Autologous Cell Congenital Heart Surgery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Ac-LDL

Acetylated low-density lipoprotein

EPC

Endothelial progenitor cell

PTFE

Polytetrafluoroethylene

References

  1. 1.
    Wells W, Malas M, Baker CJ, Quardt SM, Barr ML (2003 Aug) Depopulated vena caval homograft: a new venous conduit. J Thorac Cardiovasc Surg 126(2):498–503PubMedCrossRefGoogle Scholar
  2. 2.
    Giannico S, Hammad F, Amodeo A, Michielon G, Drago F, Turchetta A et al (2006) Clinical outcome of 193 extracardiac Fontan patients: the first 15 years. J Am Coll Cardiol 47(10):2065–2073PubMedCrossRefGoogle Scholar
  3. 3.
    Petrossian E, Reddy VM, McElhinney DB, Akkersdijk GP, Moore P, Parry AJ et al (1999) Early results of the extracardiac conduit Fontan operation. J Thorac Cardiovasc Surg 117(4):688–696PubMedCrossRefGoogle Scholar
  4. 4.
    Homann M, Haehnel JC, Mendler N, Paek SU, Holper K, Meisner H et al (2000) Reconstruction of the RVOT with valved biological conduits: 25 years experience with allografts and xenografts. Eur J Cardiothorac Surg 17(6):624–630PubMedCrossRefGoogle Scholar
  5. 5.
    Stark J (1998) The use of valved conduits in pediatric cardiac surgery. Pediatr Cardiol 19(4):282–288PubMedCrossRefGoogle Scholar
  6. 6.
    Cleveland DC, Williams WG, Razzouk AJ, Trusler GA, Rebeyka IM, Duffy L et al (1992) Failure of cryopreserved homograft valved conduits in the pulmonary circulation. Circulation 86(5 Suppl):II150–II153PubMedGoogle Scholar
  7. 7.
    Jonas RA, Freed MD, Mayer JE Jr, Castaneda AR (1985) Long-term follow-up of patients with synthetic right heart conduits. Circulation 72(3 Pt 2):II77–II83PubMedGoogle Scholar
  8. 8.
    Bermudez CA, Dearani JA, Puga FJ, Schaff HV, Warnes CA, O’Leary PW et al (2004) Late results of the peel operation for replacement of failing extracardiac conduits. Ann Thorac Surg 77(3):881–887, discussion 8PubMedCrossRefGoogle Scholar
  9. 9.
    Karamlou T, Ungerleider RM, Alsoufi B, Burch G, Silberbach M, Reller M et al (2005) Oversizing pulmonary homograft conduits does not significantly decrease allograft failure in children. Eur J Cardiothorac Surg 27(4):548–553PubMedCrossRefGoogle Scholar
  10. 10.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926PubMedCrossRefGoogle Scholar
  11. 11.
    Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R et al (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115(3):536–545, discussion 45–6PubMedCrossRefGoogle Scholar
  12. 12.
    Watanabe M, Shin’oka T, Tohyama S, Hibino N, Konuma T, Matsumura G et al (2001) Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 7(4):429–439PubMedCrossRefGoogle Scholar
  13. 13.
    Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T et al (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129(6):1330–1338PubMedCrossRefGoogle Scholar
  14. 14.
    Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS et al (2005) Blood vessels engineered from human cells. Lancet 365(9477):2122–2124PubMedCrossRefGoogle Scholar
  15. 15.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967PubMedCrossRefGoogle Scholar
  16. 16.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228PubMedGoogle Scholar
  17. 17.
    Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2):362–367PubMedGoogle Scholar
  18. 18.
    Noishiki Y, Tomizawa Y, Yamane Y, Matsumoto A (1996) Autocrine angiogenic vascular prosthesis with bone marrow transplantation. Nat Med 2(1):90–93PubMedCrossRefGoogle Scholar
  19. 19.
    Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y, Kurosawa H (2003) First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108(14):1729–1734PubMedCrossRefGoogle Scholar
  20. 20.
    Hibino N, Shin’oka T, Matsumura G, Ikada Y, Kurosawa H (2005) The tissue-engineered vascular graft using bone marrow without culture. J Thorac Cardiovasc Surg 129(5):1064–1070PubMedCrossRefGoogle Scholar
  21. 21.
    Matsumura G, Ishihara Y, Miyagawa-Tomita S, Ikada Y, Matsuda S, Kurosawa H et al (2006) Evaluation of tissue-engineered vascular autografts. Tissue Eng 12(11):3075–3083PubMedCrossRefGoogle Scholar
  22. 22.
    Brennan MP, Dardik A, Hibino N, Roh JD, Nelson GN, Papademitris X et al (2008) Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg 248(3):370–377PubMedGoogle Scholar
  23. 23.
    Shin’oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533PubMedCrossRefGoogle Scholar
  24. 24.
    Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C et al (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139(2):431–436, 6e1–6e2PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Narutoshi Hibino
    • 1
  • Christopher Breuer
    • 1
  • Toshiharu Shinoka
    • 1
    Email author
  1. 1.Department of Cardiac Surgery, Interdepartmental Program in Vascular Biology and TherapeuticsYale University School of MedicineNew HavenUSA

Personalised recommendations