Skeletal Muscle Engineering: The Need for a Suitable Niche

  • Frédéric Trensz
  • Anthony Scimè
  • Guillaume GrenierEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


There are currently no curative treatments available for people suffering from one of the many prevalent disease- and trauma-related muscle myopathies. One approach to ameliorate these conditions relies on the cell-based transplantation of myogenic stem cells or, more optimistically, the transfer of engineered skeletal muscle tissue. To date, clinical trials with myogenic stem cell transplantation have met with only modest success while engineered muscle tissue transplantation is at its earliest stages of development. The many studies on muscle tissue engineering underscore the importance of the myogenic stem cell niche that plays a pivotal role in transplantation success. More work is required to determine the components of the niche required for improving the integration and function of transplanted cells and engineered tissues in host muscle.


Satellite Cell Basal Lamina Myogenic Cell Skeletal Muscle Tissue Myogenic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Basic fibroblast growth factor


Duchenne muscular dystrophy


Extracellular matrix


Epidermal growth factor


Hepatocyte growth factor


Insulin-like growth factor-1


Poly(ethylene glycol)


Polyglycolic acid


Poly-l-lactic acid


Vascular endothelial growth factor


Wingless integration site


  1. 1.
    Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238PubMedCrossRefGoogle Scholar
  2. 2.
    Kottlors M, Kirschner J (2010) Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res 340:541–548PubMedCrossRefGoogle Scholar
  3. 3.
    Biressi S, Rando TA (2010) Heterogeneity in the muscle satellite cell population. Semin Cell Dev Biol 21:845–854PubMedCrossRefGoogle Scholar
  4. 4.
    Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2:205–213PubMedCrossRefGoogle Scholar
  5. 5.
    Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84(A):822–832PubMedGoogle Scholar
  6. 6.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedCrossRefGoogle Scholar
  7. 7.
    Partridge TA, Grounds M, Sloper JC (1978) Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature 273:306–308PubMedCrossRefGoogle Scholar
  8. 8.
    Partridge TA, Morgan JE, Coulton GR, Hoffman EP et al (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337:176–179PubMedCrossRefGoogle Scholar
  9. 9.
    Otto A, Collins-Hooper H, Patel K (2009) The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 215:477–497PubMedCrossRefGoogle Scholar
  10. 10.
    Sacco A, Doyonnas R, Kraft P, Vitorovic S et al (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506PubMedCrossRefGoogle Scholar
  11. 11.
    Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267PubMedCrossRefGoogle Scholar
  12. 12.
    Tonlorenzi R, Dellavalle A, Schnapp E, Cossu G et al (2007) Isolation and characterization of mesoangioblasts from mouse, dog, and human tissues. Curr Protoc Stem Cell Biol Chapter 2:Unit 2B 1Google Scholar
  13. 13.
    Galvez BG, Sampaolesi M, Brunelli S, Covarello D et al (2006) Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol 174:231–243PubMedCrossRefGoogle Scholar
  14. 14.
    Sampaolesi M, Blot S, D’Antona G, Granger N et al (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444:574–579PubMedCrossRefGoogle Scholar
  15. 15.
    Collins CA, Olsen I, Zammit PS, Heslop L et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301PubMedCrossRefGoogle Scholar
  16. 16.
    Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2:22–31PubMedCrossRefGoogle Scholar
  17. 17.
    Gopinath SD, Rando TA (2008) Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7:590–598PubMedCrossRefGoogle Scholar
  18. 18.
    Sanes JR (2003) The basement membrane/basal lamina of skeletal muscle. J Biol Chem 278:12601–12604PubMedCrossRefGoogle Scholar
  19. 19.
    Ramirez F, Rifkin DB (2003) Cell signaling events: a view from the matrix. Matrix Biol 22:101–107PubMedCrossRefGoogle Scholar
  20. 20.
    Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224:7–16PubMedGoogle Scholar
  21. 21.
    Christov C, Chretien F, Abou-Khalil R, Bassez G et al (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18:1397–1409PubMedCrossRefGoogle Scholar
  22. 22.
    Golding JP, Calderbank E, Partridge TA, Beauchamp JR (2007) Skeletal muscle stem cells express anti-apoptotic ErbB receptors during activation from quiescence. Exp Cell Res 313:341–356PubMedCrossRefGoogle Scholar
  23. 23.
    Tatsumi R, Anderson JE, Nevoret CJ, Halevy O et al (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128PubMedCrossRefGoogle Scholar
  24. 24.
    Machida S, Booth FW (2004) Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc Nutr Soc 63:337–340PubMedCrossRefGoogle Scholar
  25. 25.
    Brack AS, Conboy IM, Conboy MJ, Shen J et al (2008) A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59PubMedCrossRefGoogle Scholar
  26. 26.
    Le Grand F, Jones AE, Seale V, Scime A et al (2009) Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4:535–547PubMedCrossRefGoogle Scholar
  27. 27.
    Brack AS, Conboy MJ, Roy S, Lee M et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810PubMedCrossRefGoogle Scholar
  28. 28.
    Cosgrove BD, Sacco A, Gilbert PM, Blau HM (2009) A home away from home: challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation 78:185–194PubMedCrossRefGoogle Scholar
  29. 29.
    Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577PubMedCrossRefGoogle Scholar
  30. 30.
    Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409PubMedCrossRefGoogle Scholar
  31. 31.
    Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010PubMedCrossRefGoogle Scholar
  32. 32.
    McCroskery S, Thomas M, Maxwell L, Sharma M et al (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147PubMedCrossRefGoogle Scholar
  33. 33.
    Guilak F, Cohen DM, Estes BT, Gimble JM et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26PubMedCrossRefGoogle Scholar
  34. 34.
    Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081PubMedCrossRefGoogle Scholar
  35. 35.
    Engler AJ, Griffin MA, Sen S, Bonnemann CG et al (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887PubMedCrossRefGoogle Scholar
  36. 36.
    Boonen KJ, Rosaria-Chak KY, Baaijens FP, van der Schaft DW et al (2009) Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am J Physiol Cell Physiol 296:C1338–C1345PubMedCrossRefGoogle Scholar
  37. 37.
    Machida S, Spangenburg EE, Booth FW (2004) Primary rat muscle progenitor cells have decreased proliferation and myotube formation during passages. Cell Prolif 37:267–277PubMedCrossRefGoogle Scholar
  38. 38.
    Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677PubMedCrossRefGoogle Scholar
  39. 39.
    Flaim CJ, Teng D, Chien S, Bhatia SN (2008) Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev 17:29–39PubMedCrossRefGoogle Scholar
  40. 40.
    Lutolf MP, Blau HM (2009) Artificial stem cell niches. Adv Mater 21:3255–3268PubMedCrossRefGoogle Scholar
  41. 41.
    Sands RW, Mooney DJ (2007) Polymers to direct cell fate by controlling the microenvironment. Curr Opin Biotechnol 18:448–453PubMedCrossRefGoogle Scholar
  42. 42.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55PubMedCrossRefGoogle Scholar
  43. 43.
    Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63PubMedCrossRefGoogle Scholar
  44. 44.
    Trensz F, Haroun S, Cloutier A, Richter MV et al (2010) A muscle resident cell population promotes fibrosis in hindlimb skeletal muscles of Mdx mice through the Wnt canonical pathway. Am J Physiol Cell Physiol 299(5):C939–C947PubMedCrossRefGoogle Scholar
  45. 45.
    Stedman HH, Sweeney HL, Shrager JB, Maguire HC et al (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–539PubMedCrossRefGoogle Scholar
  46. 46.
    Langsdorf A, Do AT, Kusche-Gullberg M, Emerson CP Jr et al (2007) Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Dev Biol 311:464–477PubMedCrossRefGoogle Scholar
  47. 47.
    Alberti K, Davey RE, Onishi K, George S et al (2008) Functional immobilization of signaling proteins enables control of stem cell fate. Nat Methods 5:645–650PubMedCrossRefGoogle Scholar
  48. 48.
    Fan VH, Tamama K, Au A, Littrell R et al (2007) Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells 25:1241–1251PubMedCrossRefGoogle Scholar
  49. 49.
    Platt MO, Roman AJ, Wells A, Lauffenburger DA et al (2009) Sustained epidermal growth factor receptor levels and activation by tethered ligand binding enhances osteogenic differentiation of multi-potent marrow stromal cells. J Cell Physiol 221:306–317PubMedCrossRefGoogle Scholar
  50. 50.
    Irvine DJ, Hue KA, Mayes AM, Griffith LG (2002) Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands. Biophys J 82:120–132PubMedCrossRefGoogle Scholar
  51. 51.
    Koning M, Harmsen MC, van Luyn MJ, Werker PM (2009) Current opportunities and challenges in skeletal muscle tissue engineering. J Tissue Eng Regen Med 3:407–415PubMedCrossRefGoogle Scholar
  52. 52.
    Dusterhoft S, Pette D (1993) Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation 53:25–33PubMedCrossRefGoogle Scholar
  53. 53.
    Powell CA, Smiley BL, Mills J, Vandenburgh HH (2002) Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol 283:C1557–C1565PubMedGoogle Scholar
  54. 54.
    Mikos AG, Sarakinos G, Leite SM, Vacanti JP et al (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323–330PubMedCrossRefGoogle Scholar
  55. 55.
    Bach AD, Arkudas A, Tjiawi J, Polykandriotis E et al (2006) A new approach to tissue engineering of vascularized skeletal muscle. J Cell Mol Med 10:716–726PubMedCrossRefGoogle Scholar
  56. 56.
    Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4:2868–2880PubMedGoogle Scholar
  57. 57.
    Clark RA, Lanigan JM, DellaPelle P, Manseau E et al (1982) Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol 79:264–269PubMedCrossRefGoogle Scholar
  58. 58.
    Beier JP, Stern-Straeter J, Foerster VT, Kneser U et al (2006) Tissue engineering of injectable muscle: three-dimensional myoblast-fibrin injection in the syngeneic rat animal model. Plast Reconstr Surg 118:1113–1121,discussion 1122–1124PubMedCrossRefGoogle Scholar
  59. 59.
    Cronin EM, Thurmond FA, Bassel-Duby R, Williams RS et al (2004) Protein-coated poly(L-lactic acid) fibers provide a substrate for differentiation of human skeletal muscle cells. J Biomed Mater Res A 69:373–381PubMedCrossRefGoogle Scholar
  60. 60.
    Saxena AK, Marler J, Benvenuto M, Willital GH et al (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 5:525–532PubMedCrossRefGoogle Scholar
  61. 61.
    Saxena AK, Willital GH, Vacanti JP (2001) Vascularized three-dimensional skeletal muscle tissue-engineering. Biomed Mater Eng 11:275–281PubMedGoogle Scholar
  62. 62.
    Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G et al (2005) Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials 26:4606–4615PubMedCrossRefGoogle Scholar
  63. 63.
    Riboldi SA, Sadr N, Pigini L, Neuenschwander P et al (2008) Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds. J Biomed Mater Res A 84:1094–1101PubMedGoogle Scholar
  64. 64.
    Dennis RG, Kosnik PE 2nd (2000) Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 36:327–335PubMedCrossRefGoogle Scholar
  65. 65.
    Dennis RG, Kosnik PE 2nd, Gilbert ME, Faulkner JA (2001) Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am J Physiol Cell Physiol 280:C288–C295PubMedGoogle Scholar
  66. 66.
    Kosnik PE, Faulkner JA, Dennis RG (2001) Functional development of engineered skeletal muscle from adult and neonatal rats. Tissue Eng 7:573–584PubMedCrossRefGoogle Scholar
  67. 67.
    du Moon G, Christ G, Stitzel JD, Atala A et al (2008) Cyclic mechanical preconditioning improves engineered muscle contraction. Tissue Eng Part A 14:473–482CrossRefGoogle Scholar
  68. 68.
    Shansky J, Creswick B, Lee P, Wang X et al (2006) Paracrine release of insulin-like growth factor 1 from a bioengineered tissue stimulates skeletal muscle growth in vitro. Tissue Eng 12:1833–1841PubMedCrossRefGoogle Scholar
  69. 69.
    Vandenburgh H, Shansky J, Benesch-Lee F, Barbata V et al (2008) Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37:438–447PubMedCrossRefGoogle Scholar
  70. 70.
    Thom JM, Morse CI, Birch KM, Narici MV (2007) Influence of muscle architecture on the torque and power-velocity characteristics of young and elderly men. Eur J Appl Physiol 100:613–619PubMedCrossRefGoogle Scholar
  71. 71.
    Narici MV, Maffulli N (2010) Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 95:139–159PubMedCrossRefGoogle Scholar
  72. 72.
    Levenberg S, Huang NF, Lavik E, Rogers AB et al (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA 100:12741–12746PubMedCrossRefGoogle Scholar
  73. 73.
    Levenberg S, Rouwkema J, Macdonald M, Garfein ES et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884PubMedCrossRefGoogle Scholar
  74. 74.
    Huang YC, Dennis RG, Larkin L, Baar K (2005) Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 98:706–713PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Frédéric Trensz
    • 1
  • Anthony Scimè
    • 2
  • Guillaume Grenier
    • 3
    • 4
    Email author
  1. 1.Étienne-Lebel Clinical Research CenterUniversité de SherbrookeSherbrookeCanada
  2. 2.Muscle Health Research CentreYork UniversityTorontoCanada
  3. 3.Étienne-Lebel Clinical Research CenterUniversité de SherbrookeSherbrookeCanada
  4. 4.Department of Orthopedic SurgeryUniversité de SherbrookeSherbrookeCanada

Personalised recommendations