Skip to main content

Adhesive Interactions of Tissue Cells with the Extracellular Matrix

  • Chapter
  • First Online:
Adhesive Interactions in Normal and Transformed Cells

Abstract

Adhesive interactions of cells with the extracellular matrix start soon after they ­settle on the matrix from suspended state. The matrix-attached spherical cells begin to spread and gradually reach high degree of flattening. The cell spreading process includes defined consecutive changes both in the cell shape and in the cell surface relief. Oncogenic transformation results in a deficient cell spreading. Adhesive interactions include intracellular signal transduction pathways in the cells. The signaling pathways are triggered by the extracellular stimulatory molecules (ligands) following their binding to different types of specialized cell surface receptors. In particular, integrin receptors, which are components of focal adhesions and play a key role in cell-matrix attachment, also function as signal transducers. Different integrin-mediated and growth factor receptor-mediated signaling pathways determine and control cell morphology, proliferation, survival, and migration. The oncogenic transformation results in the weakening of integrin-mediated cell-matrix adhesion and induces serious alterations in the integrin-mediated and growth factor receptor-mediated signaling pathways. The consequences of these alterations are the “anchorage independence” (substratum independence of cell proliferation), permanent mitogenic activation, loss of cell detachment-induced apoptosis (anoikis), and high migratory activity of transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rovensky YuA, Vasiliev JuM (1984) Surface topography of suspended tissue cells. Int Rev Cytol 90:273–307. doi:10.1016/S0074-7696(08)61492-8 DOI:dx.doi.org

    PubMed  Google Scholar 

  2. Rovensky YA, Komissarova EV, Topol LZ, Kisseljov FL (1992) Changes in surface relief of suspended cells are morphological signs of the initial stage of neoplastic transformation in fibroblastic monolayer cultures. Cell Biol Int Rep 16(6):557–65. doi:10.1016/S0309-1651(05)80054-2 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  3. Vasiliev JM (1985) Spreading of non-transformed and transformed cells. Biochim Biophys Acta 780(1):21–65.

    PubMed  CAS  Google Scholar 

  4. Kharitonova MA, Vasiliev JM (2008) Controlling cell length. Semin Cell Dev Biol. 19(6):480–484. doi:10.1016/j.semcdb.2008.07.008 DOI:dx.doi.org

    PubMed  Google Scholar 

  5. Kharitonova MA, Kopnin PB, Vasiliev JM (2007) Transformation by RAS oncogene decreases the width of substrate-spread fibroblasts but not their length. Cell Biol Int 31(3):220–223. doi:10.1016/j.cellbi.2006.10.008 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  6. Charras GT (2008) A short history of blebbing. J Microsc 231(3):466–478. doi:10.1111/j.1365-2818.2008.02059.x DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  7. Johnson LN (2009) The regulation of protein phosphorylation. Biochem Soc Trans 37(Pt 4):627–41. doi:10.1042/BST0370627 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  8. Li E, Hristova K (2006) Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry 45(20):6241–6251. doi:10.1021/bi060609y DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  9. Orth JD, McNiven MA (2006) Get off my back! Rapid receptor internalization through circular dorsal ruffles. Cancer Res 66(23):11094–11096. doi:10.1158/0008-5472.CAN-06-3397 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  10. Lo SH (2006) Focal adhesions: what’s new inside. Dev Biol 294(2):280–291. doi:10.1016/j.ydbio.2006.03.029 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  11. Schwartz MA, Ginsberg MH (2002) Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4(4):E65–8. doi:10.1038/ncb0402-e65 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  12. Legate KR, Wickström SA, Fässler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23(4):397–418. doi:10.1101/gad.1758709 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  13. Bennett JS, Berger BW, Billings PC (2009) The structure and function of platelet integrins. J Thromb Haemost 7 Suppl 1:200–205. doi:10.1111/j.1538-7836.2009.03378.x DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  14. Rovensky YA (1998) Cellular and molecular mechanisms of tumor invasion. Biochemistry (Mosc) 63(9):1029–1043.

    CAS  Google Scholar 

  15. Streuli CH, Akhtar N (2009) Signal co-operation between integrins and other receptor systems. Biochem J 418(3):491–506. doi:10.1042/BJ20081948 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  16. Ivaska J, Heino J (2010) Interplay between cell adhesion and growth factor receptors: from the plasma membrane to the endosomes. Cell Tissue Res 339(1):111–120. doi:10.1007/s00441-009-0857-z DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  17. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459(7245):356–363. doi:10.1038/nature08144 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  18. Millar RP, Newton CL (2010) The year in G protein-coupled receptor research. Mol Endocrinol 24(1):261–274

    PubMed  CAS  Google Scholar 

  19. Cotton M, Claing A (2009) G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 21(7):1045–1053. doi:10.1016/j.cellsig.2009.02.008 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  20. Lundquist EA (2006) Small GTPases. WormBook 17: 1–18. doi:10.1895/wormbook.1.67.1 DOI:dx.doi.org

    Google Scholar 

  21. Skwarek LC, Boulianne GL (2009) Great expectations for PIP: phosphoinositides as regulators of signaling during development and disease. Dev Cell 16(1):12–20. doi:10.1016/j.devcel.2008.12.006 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  22. Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90(1):259–289. doi:10.1152/physrev.00036.2009 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  23. Vicinanza M, D’Angelo G, Di Campli A, De Matteis MA (2008) Function and dysfunction of the PI system in membrane trafficking. EMBO J 27(19):2457–2470. doi:10.1038/emboj.2008.169 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  24. Saito K, Tautz L, Mustelin T (2007) The lipid-binding SEC14 domain. Biochim Biophys Acta 1771(6):719–726. doi:10.1016/j.bbalip.2007.02.010 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  25. Krauss M, Haucke V (2007) Phosphoinositides: regulators of membrane traffic and protein function. FEBS Lett 581(11):2105–2111. doi:10.1016/j.febslet.2007.01.089 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  26. Sasaki T, Sasaki J, Sakai T, Takasuga S, Suzuki A (2007) The physiology of hosphoinositides. Biol Pharm Bull 30(9):1599–1604. doi:10.1248/bpb.30.1599 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  27. Oude Weernink PA, Han L, Jakobs KH, Schmidt M (2007) Dynamic phospholipid signaling by G protein-coupled receptors. Biochim Biophys Acta 1768(4):888–900. doi:10.1007/s00210-007-0131-4 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  28. Oude Weernink PA, López de Jesús M, Schmidt M (2007) Phospholipase D signaling: orchestration by PIP2 and small GTPases. Naunyn Schmiedebergs Arch Pharmacol 374(5-6):399–411. doi:10.1007/s00210-007-0131-4 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  29. Heck JN, Mellman DL, Ling K, Sun Y, Wagoner MP, Schill NJ, Anderson RA (2007) A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family. Crit Rev Biochem Mol Biol 42(1):15–39. doi:10.1080/10409230601162752 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  30. Kanaho Y, Kobayashi-Nakano A, Yokozeki T (2007) The phosphoinositide kinase PIP5K that produces the versatile signaling phospholipid PI4,5P(2). Biol Pharm Bull 30(9):1605–1609. doi:10.1248/bpb.30.1605 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  31. Santarius M, Lee CH, Anderson RA (2006) Supervised membrane swimming: small G-protein lifeguards regulate PIPK signalling and monitor intracellular PtdIns(4,5)P2 pools. Biochem J 398(1):1–13. doi:10.1042/BJ20060565 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  32. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane ­dynamics. Nature 443 (7112):651–657. doi:10.1038/nature05185 DOI:dx.doi.org

    PubMed  Google Scholar 

  33. Mao YS, Yin HL (2007) Regulation of the actin cytoskeleton by phosphatidylinositol 4-­phosphate 5 kinases. Pflugers Arch 455(1):5–18. doi:10.1007/s00424-007-0286-3 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  34. Kölsch V, Charest PG, Firtel RA (2008) The regulation of cell motility and chemotaxis by phospholipid signaling. J Cell Sci 121(Pt 5):551–559

    PubMed  Google Scholar 

  35. Ling K, Schill NJ, Wagoner MP, Sun Y, Anderson RA (2006) Movin’ on up: the role of PtdIns(4,5)P(2) in cell migration. Trends Cell Biol 16(6):276–284. doi:10.1016/j.tcb.2006.03.007 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  36. Martelli AM, Cocco L, Capitani S, Miscia S, Papa S, Manzoli FA (2007) Nuclear phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3-kinase, Akt, and PTen: emerging key regulators of anti-apoptotic signaling and carcinogenesis. Eur J Histochem 51 Suppl 1:125–131

    PubMed  Google Scholar 

  37. Kumar A, Carrera AC (2007) New functions for PI3K in the control of cell division. Cell Cycle 6(14):1696–1698. doi:10.4161/cc.6.14.4492 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  38. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8(3):187–198. doi:10.2174/156800908784293659 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  39. Goto K, Hozumi Y, Nakano T, Saino-Saito S, Martelli AM (2008) Lipid messenger, diacylglycerol, and its regulator, diacylglycerol kinase, in cells, organs, and animals: history and perspective. Tohoku J Exp Med 214(3):199–212. doi:10.1620/tjem.214.199 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  40. Larsson C (2006) Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 18(3):276–284. doi:10.1016/j.cellsig.2005.07.010 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  41. Rosse C, Linch M, Kermorgant S, Cameron AJ, Boeckeler K, Parker PJ (2010) PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11(2):103–112. doi:10.1038/nrm2847 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  42. Arnaout MA, Goodman SL, Xiong JP (2007) Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 19(5):495–507. doi:10.1016/j.ceb.2007.08.002 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  43. Huveneers S, Danen EH (2009) Adhesion signaling – crosstalk between integrins, Src and Rho. J Cell Sci 122(Pt 8):1059–1069. doi:10.1242/jcs.039446 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  44. Gan B, Guan JL (2008) FIP200, a key signaling node to coordinately regulate various cellular processes. Cell Signal 20(5):787–794. doi:10.1016/j.cellsig.2007.10.021 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  45. Mitra SK, Schlaepfer DD (2006) Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 18(5):516–523. doi:10.1016/j.ceb.2006.08.011 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  46. Juliano RL, Reddig P, Alahari S, Edin M, Howe A, Aplin A (2004) Integrin regulation of cell signalling and motility. Biochem Soc Trans 32(Pt3):443–446. doi:10.1042/BST0320443 DOI:dx.doi.org

    Google Scholar 

  47. Vasiliev JM (2004) Cytoskeletal mechanisms responsible for invasive migration of neoplastic cells. Int J Dev Biol 48(5-6):425–439. doi:10.1387/ijdb.041806jv DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  48. Howe AK, Aplin AE, Juliano RL (2002) Anchorage-dependent ERK signaling – mechanisms and consequences. Curr Opin Genet Dev 12(1):30–35. doi:10.1016/S0959-437X(01)00260-X DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  49. Gilmore AP, Owens TW, Foster FM, Lindsay J (2009) How adhesion signals reach a mitochondrial conclusion – ECM regulation of apoptosis. Curr Opin Cell Biol 21(5):654–661. doi:10.1016/j.ceb.2009.05.009 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  50. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9(7):501–507. doi:10.1038/nrc2663 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  51. Teng CS (2000) Protooncogenes as mediators of apoptosis. Int Rev Cytol 197:137–202. doi:10.1016/S0074-7696(00)97004-9 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  52. Grossmann J (2002) Molecular mechanisms of “detachment-induced apoptosis – Anoikis”. Apoptosis 7(3):247–260. doi:10.1023/A:1015312119693 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  53. Stambolic V, Woodgett JR (2006) Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol 16(9):461–466. doi:10.1016/j.tcb.2006.07.001 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  54. Chen RH, Wang WJ, Kuo JC (2006) The tumor suppressor DAP-kinase links cell adhesion and cytoskeleton reorganization to cell death regulation. J Biomed Sci 13(2):193–199. doi:10.1007/s11373-005-9063-5 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  55. Echarri A, Del Pozo MA (2006) Caveolae internalization regulates integrin-dependent signaling pathways. Cell Cycle 5(19):2179–2182. doi:10.4161/cc.5.19.3264 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  56. Salanueva IJ, Cerezo A, Guadamillas MC, del Pozo MA (2007) Integrin regulation of caveolin function. J Cell Mol Med 11(5):969-980. doi:10.1111/j.1582-4934.2007.00109.x DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  57. Del Pozo MA, Schwartz MA (2007) Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol 17(5):246–250

    PubMed  Google Scholar 

  58. Lee J, Kim SS (2009) The function of p27 KIP1 during tumor development. Exp Mol Med 41(11):765–771

    PubMed  CAS  Google Scholar 

  59. Chiarugi P, Giannoni E (2008) Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 76(11):1352–1364. doi:10.1016/j.bcp.2008.07.023 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  60. Gilmore AP (2005) Anoikis. Cell Death Differ 12 Suppl 2:1473–1477. doi:10.1038/sj.cdd.4401723 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  61. Reddig PJ, Juliano RL (2005) Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev 24(3):425–439. doi:10.1007/s10555-005-5134-3 DOI:dx.doi.org

    PubMed  Google Scholar 

  62. Lock R, Debnath J (2008) Extracellular matrix regulation of autophagy. Curr Opin Cell Biol 20(5):583–588. doi:10.1016/j.ceb.2008.05.002 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  63. Arias-Salgado EG, Lizano S, Shattil SJ, Ginsberg MH (2005) Specification of the direction of adhesive signaling by the integrin beta cytoplasmic domain. J Biol Chem 280(33):29699–29707. doi:10.1074/jbc.M503508200 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  64. Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33 (Pt 5):891–895. doi:10.1042/BST20050891 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  65. Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16(10):522–529. doi:10.1016/j.tcb.2006.08.006 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  66. Narumiya S, Tanji M, Ishizaki T (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 28(1-2):65–76. doi:10.1007/s10555-008-9170-7 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  67. Oser M. Condeelis J (2009) The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem 108(6):1252–1262. doi:10.1002/jcb.22372 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  68. Scott RW, Olson MF (2007) LIM kinases: function, regulation and association with human disease. J Mol Med 85(6):555–568. doi:10.1007/s00109-007-0165-6 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  69. Bernard O (2007) Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol 39(6):1071–1076. doi:10.1016/j.biocel.2006.11.011 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  70. Pollitt AY, Insall RH (2009) WASP and SCAR/WAVE proteins: the drivers of actin assembly. J Cell Sci 122(Pt 15):2575–2578. doi:10.1242/jcs.023879 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  71. Tomar A, Schlaepfer DD (2009) Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol 21(5):676–683. doi:10.1016/j.ceb.2009.05.006 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  72. Mammoto A, Ingber DE (2009) Cytoskeletal control of growth and cell fate switching. Curr Opin Cell Biol 21(6):864–870. doi:10.1016/j.ceb.2009.08.001 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  73. Bershadsky AD, Ballestrem C, Carramusa L, Zilberman Y, Gilquin B, Khochbin S, Alexandrova AY, Verkhovsky AB, Shemesh T, Kozlov MM (2006) Assembly and mechanosensory function of focal adhesions: experiments and models. Eur J Cell Biol 85(3-4):165–173. doi:10.1016/j.ejcb.2005.11.001 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  74. Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20(5):551–556. doi:10.1016/j.ceb.2008.05.005 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  75. Chiquet M, Gelman L, Lutz R, Maier S (2009) From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta 1793(5):911–920. doi:10.1016/j.bbamcr.2009.01.012 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  76. Harjanto D, Zaman MH (2010) Matrix mechanics and receptor-ligand interactions in cell adhesion. Org Biomol Chem 8(2):299–304. doi:10.1039/b913064k DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  77. Baker EL, Zaman MH (2010) The biomechanical integrin. J Biomech 43(1):38–44. doi:10.1016/j.jbiomech.2009.09.007 DOI:dx.doi.org

    PubMed  Google Scholar 

  78. Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695. doi:10.1146/annurev.cellbio.19.111301.153011 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  79. Shemesh T, Geiger B, Bershadsky AD, Kozlov MM (2005) Focal adhesions as mechanosensors: a physical mechanism. Proc Natl Acad Sci U S A 102(35):12383–12388. doi:10.1073/pnas.0500254102 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  80. Wolfenson H, Henis YI, Geiger B, Bershadsky AD (2009) The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil Cytoskeleton 66(11):1017–1029. doi:10.1002/cm.20410 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  81. Critchley DR (2005) Genetic, biochemical and structural approaches to talin function. Biochem Soc Trans 33(Pt 6):1308–1312. doi:10.1042/BST20051308 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  82. Hirata H, Tatsumi H, Sokabe M (2008) Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J Cell Sci 121(Pt 17):2795–2804. doi:10.1242/jcs.030320 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  83. Trichet L, Sykes C, Plastino J (2008) Relaxing the actin cytoskeleton for adhesion and movement with Ena/VASP. J Cell Biol 181(1):19–25. doi:10.1083/jcb.200710168 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  84. Bear JE, Gertler FB (2009) Ena/VASP: towards resolving a pointed controversy at the barbed end. J Cell Sci 122(Pt 12):1947–1953. doi:10.1242/jcs.038125 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  85. Wang Y, Gilmore TD (2003) Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochim Biophys Acta 1593(2-3):115–120. doi:10.1016/S0167-4889(02)00349-X DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  86. Hirata H, Tatsumi H, Sokabe M (2008) Zyxin emerges as a key player in the mechanotransduction at cell adhesive structures. Commun Integr Biol 1(2):192–195. doi:10.4161/cib.1.2.7001 DOI:dx.doi.org

    PubMed  Google Scholar 

  87. Tilghman RW, Parsons JT (2008) Focal adhesion kinase as a regulator of cell tension in the progression of cancer. Semin Cancer Biol 18(1):45–52. doi:10.1016/j.semcancer.2007.08.002 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  88. Chiquet M, Tunç-Civelek V, Sarasa-Renedo A (2007) Gene regulation by mechanotransduction in fibroblasts. Appl Physiol Nutr Metab 32(5):967–973. doi:10.1139/H07-053 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  89. Dike LE, Chen CS, Mrksich M, Tien J, Whitesides GM, Ingber DE (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev Biol Anim 35(8):441–448. doi:10.1007/s11626-999-0050-4 DOI:dx.doi.org

    CAS  Google Scholar 

  90. Plant AL, Bhadriraju K, Spurlin TA, Elliott JT (2009) Cell response to matrix mechanics: focus on collagen. Biochim Biophys Acta 1793(5):893–902. doi:10.1016/j.bbamcr.2008.10.012 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  91. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33. doi:10.1038/nrm2593 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  92. Wang J, Zohar R, McCulloch CA (2006) Multiple roles of alpha-smooth muscle actin in mechanotransduction. Exp Cell Res 312(3):205–214. doi:10.1016/j.yexcr.2005.11.004 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  93. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12(9):2730–2741

    PubMed  CAS  Google Scholar 

  94. Dugina V, Fontao L, Chaponnier C, Vasiliev J, Gabbiani G (2001) Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J Cell Sci 114(Pt18):3285–3296

    Google Scholar 

  95. Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C (2003) Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell 14(6):2508–2519. doi:10.1091/mbc.E02-11-0729 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  96. Rhee S (2009) Fibroblasts in three dimensional matrices: cell migration and matrix remodeling. Exp Mol Med 41(12):858–865. doi:10.3858/emm.2009.41.12.096 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  97. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492. doi:10.1038/nature08908 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  98. Makrilia N, Kollias A, Manolopoulos L, Syrigos K (2009) Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest 27(10):1023–1037. doi:10.3109/07357900902769749 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  99. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22. doi:10.1038/nrc2748 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  100. Ljubimova JY, Fujita M, Khazenzon NM, Ljubimov AV, Black KL (2006) Changes in laminin isoforms associated with brain tumor invasion and angiogenesis. Front Biosci 11:81–88. doi:10.2741/1781 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  101. Marinkovich MP (2007) Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer 7(5):370–380. doi:10.1038/nrc2089 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  102. Fujita M, Khazenzon NM, Ljubimov AV, Lee BS, Virtanen I, Holler E, Black KL, Ljubimova JY (2006) Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 9(4):183–191. doi:10.1007/s10456-006-9046-9 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  103. Tsuruta D, Kobayashi H, Imanishi H, Sugawara K, Ishii M, Jones JC (2008) Laminin-332-integrin interaction: a target for cancer therapy? Curr Med Chem 15(20):1968–1975. doi:10.2174/092986708785132834 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  104. Bandyopadhyay A, Raghavan S (2009) Defining the role of integrin alphavbeta6 in cancer. Curr Drug Targets 10(7):645–652

    PubMed  CAS  Google Scholar 

  105. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112(1):3–25. doi:10.1016/j.acthis.2008.11.022 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  106. Kim LC, Song L, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6(10):587–595. doi:10.1038/nrclinonc.2009.129 DOI:dx.doi.org

    PubMed  Google Scholar 

  107. Guarino M (2010) Src signaling in cancer invasion. J Cell Physiol 223(1):14–26. doi:10.1002/jcp.22011 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  108. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2(2):91–100. doi:10.1038/nrc727 DOI:dx.doi.org

    PubMed  Google Scholar 

  109. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411(6835):355–365. doi:10.1038/35077225 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  110. Zhang X, Nie D, Chakrabarty S (2010) Growth factors in tumor microenvironment. Front Biosci 15:151–165. doi:10.2741/3612 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  111. Hanna JA, Bordeaux J, Rimm DL, Agarwal S (2009) The function, proteolytic processing, and histopathology of Met in cancer. Adv Cancer Res 103:1–23. doi:10.1016/S0065-230X(09)03001-2 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  112. Appelmann I, Liersch R, Kessler T, Mesters RM, Berdel WE (2010) Angiogenesis inhibition in cancer therapy: platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: biological functions and role in malignancy. Recent Results Cancer Res 180:51–81. doi:10.1007/978-3-540-78281-0_5 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  113. Mitsudomi T, Yatabe Y (2010) Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 277(2):301–308. doi:10.1111/j.1742-4658.2009.07448.x DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  114. Knights V, Cook SJ (2010) De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther 125(1):105–117. doi:10.1016/j.pharmthera.2009.10.001 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  115. Lu X, Kang Y (2010) Epidermal growth factor signalling and bone metastasis. Br J Cancer 102(3):457–461. doi:10.1038/sj.bjc.6605490 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  116. Provenzano PP, Keely PJ (2009) The role of focal adhesion kinase in tumor initiation and progression. Cell Adh Migr. 3(4):347–350. doi:10.4161/cam.3.4.9458 DOI:dx.doi.org

    PubMed  Google Scholar 

  117. Zhao J, Guan JL (2009) Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 28(1-2):35–49. doi:10.1007/s10555-008-9165-4 DOI:dx.doi.org

    PubMed  Google Scholar 

  118. DeNicola GM, Tuveson DA (2009) RAS in cellular transformation and senescence. Eur J Cancer 45 Suppl 1:211–216. doi:10.1016/S0959-8049(09)70036-X DOI:dx.doi.org

    PubMed  Google Scholar 

  119. Chatzizacharias NA, Kouraklis GP, Theocharis SE (2008) Clinical significance of FAK expression in human neoplasia. Histol Histopathol 23(5):629–650

    PubMed  CAS  Google Scholar 

  120. Luo M, Guan JL (2010) Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett 289(2):127–139. doi:10.1016/j.canlet.2009.07.005 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  121. Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, Noma K, Motoki T, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Wang ZG, Takaoka M (2009) Focal adhesion kinase as potential target for cancer therapy (Review). Oncol Rep 22(5):973–979

    PubMed  CAS  Google Scholar 

  122. Schwock J, Dhani N, Hedley DW (2010) Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets 14(1):77–94. doi:10.1517/14728220903460340 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  123. Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20(1):87–90. doi:10.1016/j.gde.2009.11.002 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  124. Simpson CD, Anyiwe K, Schimmer AD (2008) Anoikis resistance and tumor metastasis. Cancer Lett 272(2):177–185. doi:10.1016/j.canlet.2008.05.029 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  125. Westhoff MA, Fulda S (2009) Adhesion-mediated apoptosis resistance in cancer. Drug Resist Updat. 12(4-5):127–136. doi:10.1016/j.drup.2009.08.001 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  126. Ming M, He YY (2009) PTEN: new insights into its regulation and function in skin cancer. J Invest Dermatol 129(9):2109–2112. doi:10.1038/jid.2009.79 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  127. Alexiou GA, Voulgaris S (2010) The role of the PTEN gene in malignant gliomas. Neurol Neurochir Pol 44(1):80–86

    PubMed  Google Scholar 

  128. Weber GF (2008) Molecular mechanisms of metastasis. Cancer Lett 270(2):181–190. doi:10.1016/j.canlet.2008.04.030 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  129. Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796(2):293–308. doi:10.1016/j.bbcan.2009.07.006 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  130. Gimona M, Buccione R, Courtneidge SA, Linder S (2008) Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 20(2):235–241. doi:10.1016/j.ceb.2008.01.005 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  131. Weaver AM (2008) Invadopodia. Curr Biol 18(9):R362–4. doi:10.1016/j.cub.2008.02.028 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  132. Deryugina EI, Quigley JP (2010) Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta 1803(1):103–120. doi:10.1016/j.bbamcr.2009.09.017 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  133. Poincloux R, Lizárraga F, Chavrier P (2009) Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci. 122(Pt 17):3015–3024. doi:10.1242/jcs.034561 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  134. Alexander NR, Branch KM, Parekh A, Clark ES, Iwueke IC, Guelcher SA, Weaver AM (2008) Extracellular Matrix Rigidity Promotes Invadopodia Activity. Curr Biol 18(17): 1295–1299. doi:10.1016/j.cub.2008.07.090 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  135. López-Otín C, Palavalli LH, Samuels Y (2009) Protective roles of matrix metalloproteinases: from mouse models to human cancer. Cell Cycle 8(22):3657–3662. doi:10.4161/cc.8.22.9956 DOI:dx.doi.org

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury A. Rovensky M.D., Ph.D., D.Sci .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rovensky, Y.A. (2011). Adhesive Interactions of Tissue Cells with the Extracellular Matrix. In: Adhesive Interactions in Normal and Transformed Cells. Humana Press. https://doi.org/10.1007/978-1-61779-304-2_5

Download citation

Publish with us

Policies and ethics