Skip to main content

Heat-Flow Finite-Element Models in Death Time Estimation

  • Chapter
  • First Online:
Forensic Pathology Reviews

Part of the book series: Forensic Pathology Reviews ((FPR,volume 6))

Abstract

Heat-flow finite-element (FE) models are based on the principles of thermodynamics. The numerical finite-element method (FEM) allows solving the partial differential equation of heat flow for complex geometrical, initial and boundary conditions. This article provides an overview of heat-flow mechanisms, their FE-modelling and their application to post-mortem cooling. A FE-model of the human body is presented which can be used to simulate standard and non-standard post-mortem cooling scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henssge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henssge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. Int J Legal Med 113(6):303–319

    Article  PubMed  CAS  Google Scholar 

  2. De Saram GSW, Webster G, Kathirgamatamby N (1955) Post-mortem temperature and the time of death. J Crim Law Pol Sci 46:562–577

    Article  Google Scholar 

  3. Fiddes FS, Patten TD (1958) A percentage method for representing the fall in body temperature after death. J Forensic Med 5(1):2–15

    Google Scholar 

  4. Marshall TK, Hoare FE (1962) Estimating the time of death. J Forensic Sci 7:56–81; 189–210; 211–221

    Google Scholar 

  5. Henssge C (1979) Precision of estimating the time of death by mathematical expression of rectal body cooling. Z Rechtsmed 83:49–67

    Article  PubMed  CAS  Google Scholar 

  6. Henssge C (1981) Todeszeitschätzungen durch die mathematische Beschreibung der rektalen Leichenabkühlung unter verschiedenen Abkühlbedingungen. Z Rechtsmed 87:147–178

    Article  PubMed  CAS  Google Scholar 

  7. Green MA, Wright JC (1985) Postmortem interval estimation from body temperature data only. Forensic Sci Int 28:35–46

    Article  PubMed  CAS  Google Scholar 

  8. Green MA, Wright JC (1985) The theoretical aspects of the time dependent Z equation as a means of postmortem interval estimation using body temperature data only. Forensic Sci Int 28:53–62

    Article  PubMed  CAS  Google Scholar 

  9. Morgan C, Nokes LDM, Williams JH, Knight BH (1988) Estimation of the post mortem period by multiple-site temperature measurements and the use of a new algorithm. Forensic Sci Int 39:89–95

    Article  PubMed  CAS  Google Scholar 

  10. Al-Alousi LM, Anderson RA, Worster DM, Land DV (2001) Multiple-probe thermography for estimating the postmortem interval: I. Continuous monitoring and data analysis of brain, liver, rectal and environmental temperatures in 117 forensic cases. J Forensic Sci 46(2):317–322

    PubMed  CAS  Google Scholar 

  11. Sellier K (1958) Determination of the time of death by extrapolation of the temperature decrease curve. Acta Medic Soc Leg 11:279–302

    Google Scholar 

  12. Joseph AEA, Schickele E (1970) A general method for assessing factors controlling post-mortem cooling. J Forensic Sci 15(3):364–391

    PubMed  CAS  Google Scholar 

  13. Hiraiwa K, Kudo T, Kuroda F, Ohno Y, Sebetan IM, Oshida S (1981) Estimation of post-mortem interval from rectal tremperature by use of computer – relationship between the rectal and skin cooling curves. Med Sci Law 21(1):4–9

    PubMed  CAS  Google Scholar 

  14. Hiraiwa K, Ohno Y, Kuroda F, Sebetan IM. Oshida S (1980) Estimation of post-mortem interval from rectal tremperature by use of computer. Med Sci Law 20(2):115–125

    Google Scholar 

  15. Mall G (2000) Temperaturgestützte Bestimmung der Todeszeit mit Hilfe der Methode der Finiten Elemente. Habilitation, München

    Google Scholar 

  16. Mall G, Eisenmenger W (2005) Estimation of time since death by heat-flow Finite-Element model. Part I: method, model, calibration and validation. Leg Med 7(1):1–14

    Article  Google Scholar 

  17. Mall G, Eisenmenger W (2005) Estimation of time since death by heat-flow Finite-Element model. Part II: application of non-standard cooling conditions and preliminary results in practical casework. Leg Med 7(1):69–80

    Article  Google Scholar 

  18. den Hartog EA, Lotens WA (2004) Postmortem time estimation using body temperature and a finite-element computer model. Eur J Appl Physiol 92:734–737

    Article  Google Scholar 

  19. Muggenthaler H, von Merten K, Peldschus S, Holley S, Adamec J, Praxl N, Graw M (2008) Experimental tests for the validation of active numerical human models. Forensic Sci Int 177(2–3):184–191

    Article  PubMed  Google Scholar 

  20. Werner J, Buse M (1988) Temperature profiles with respect to inhomogeneity and geometry of the human body. J Appl Physiol 65(3):1110–1118

    PubMed  CAS  Google Scholar 

  21. Schneider K-J, Goris A (2006) Bautabellen für Ingenieure, 17th edn. Werner-Verlag, Neuwied

    Google Scholar 

  22. Klinke R, Silbernagel AS (1994) Lehrbuch der Physiologie. Thieme, Stuttgart

    Google Scholar 

  23. de Dear RJ, Arens E, Hui Z, Oguro M (1997) Convective and radiative heat transfer coefficients for individual human body segments. J Biometeorol 40(3):141–156

    Article  Google Scholar 

  24. Çengel AC (1998) Heat transfer: a practical approach. McGraw-Hill, Boston a.o

    Google Scholar 

  25. Mall G, Hubig M, Beier G, Eisenmenger W (1998) Energy loss due to radiation in postmortem cooling. Part A: quantitative estimation of radiation using the Stefan-Boltzmann law. Int J Legal Med 111(6):299–304

    Article  PubMed  CAS  Google Scholar 

  26. Mall G, Hubig M, Beier G, Büttner A, Eisenmenger W (1999) Energy loss due to radiation in postmortem cooling. Part B: energy balance with respect to radiation. Int J Legal Med 112(4):233–240

    Article  PubMed  CAS  Google Scholar 

  27. Lundquist F (1956) Physical and chemical methods for the estimation of the time of death. Acta Med Leg Soc (Liège) 9:205–213

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Muggenthaler PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Muggenthaler, H., Hubig, M., Mall, G. (2011). Heat-Flow Finite-Element Models in Death Time Estimation. In: Turk, E. (eds) Forensic Pathology Reviews. Forensic Pathology Reviews, vol 6. Humana Press. https://doi.org/10.1007/978-1-61779-249-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-249-6_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-248-9

  • Online ISBN: 978-1-61779-249-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics