Skip to main content

Final Thoughts: Complexity and Controversy Surrounding the “Cancer Stem Cell” Paradigm

  • Chapter
  • First Online:
Cancer Stem Cells in Solid Tumors

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Many patients die of cancers that are metastatic at presentation, or relapse after treatment with curative intent. Cancers are known to contain heterogeneous populations of cells. The cancer stem cell (CSC) hypothesis posits the intriguing possibility that cancer cells are hierarchically organized, such that an identifiable subgroup of these cells may cause metastatic spread, treatment failure, and relapse. These “CSCs” should then become the focus of our research and treatment efforts. Although there is increasing evidence to support this hypothesis, it remains controversial due to increasing complexities in the data reported. We will discuss these maturing data under the framework of the scientific method itself; how we formulate and conceptualize the hypothesis, how we experimentally test the hypothesis, and how we analyze our experimental data. Whether tumor heterogeneity is ultimately determined to be hierarchical or stochastic, interrogating the CSC hypothesis will lead to novel mechanistic insights and improved outcomes for patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALDH:

Aldehyde dehydrogenase

AML:

Acute myeloid leukemia

BLAST:

Basic local alignment search tool

BRCA:

Breast cancer susceptibility gene

CD:

Cluster of differentiation

CSC:

Cancer stem cell

EHS:

Engelbreth-Holm-Swarm

EMT:

Epithelial-to-mesenchymal transition

EpCAM:

Epithelial cell adhesion molecule

ESA:

Epithelial specific antigen

GM-CSF:

Granulocyte macrophage colony-stimulating factor

HGF:

Hepatocyte growth factor

IGH:

Immunoglobulin heavy chain

IL:

Interleukin

iPS:

Induced pluripotent stem cells

LIC:

Leukemia-initiating cell

NCBI:

National Center for Biotechnology Information

NGFR:

Nerve growth factor receptor

NK:

Natural killer

NOD/SCID:

Nonobese diabetic/severe combined immune deficiency

NSG:

NOD/SCID/IL2Rγ−/−

PDGFR:

Platelet-derived growth factor receptor

PECAM1:

Platelet endothelial cell adhesion molecule 1

SCF:

Stem cell factor

Shh:

Sonic hedgehog

TGF-β:

Transforming growth factor beta

TIC:

Tumor-initiating cells

References

  1. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  2. Hewitt HB (1979) A critical examination of the foundations of immunotherapy for cancer. Clin Radiol 30 (4):361-369. doi:S0009-9260(79)80209–3 [pii]

    Google Scholar 

  3. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197 (4302):461–463

    Article  PubMed  CAS  Google Scholar 

  4. Brunschwig A, Southam CM, Levin AG (1965) Host resistance to cancer. Clinical experiments by homotransplants, autotransplants and admixture of autologous leucocytes. Ann Surg 162 (3):416–425

    Article  PubMed  CAS  Google Scholar 

  5. Hill RP (2006) Identifying cancer stem cells in solid tumors: Case not proven. Cancer Res 66 (4):1891–1895; discussion 1890

    Google Scholar 

  6. Hill RP, Perris R (2007) “Destemming” Cancer stem cells. J Natl Cancer Inst 99 (19):1435–1440. doi:10.1093/jnci/djm136

    Google Scholar 

  7. Hill RP, Milas L (1989) The proportion of stem cells in murine tumors. International journal of radiation oncology, biology, physics 16 (2):513–518

    Article  PubMed  CAS  Google Scholar 

  8. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL (2003) Similar mll-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17 (24):3029–3035

    Article  PubMed  CAS  Google Scholar 

  9. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA (2006) Transformation from committed progenitor to leukaemia stem cell initiated by mll-af9. Nature 442 (7104):818–822. doi:nature04980 [pii] 10.1038/nature04980

    Google Scholar 

  10. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4 (5):381–384

    Article  PubMed  CAS  Google Scholar 

  11. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104 (3):973–978

    Article  PubMed  CAS  Google Scholar 

  12. Committee on Science E, and Public Policy, National Academy of Sciences, National Academy of Engineering, and Institute of Medicine (2009) On being a scientist: A guide to responsible conduct in research. 3rd edn. National Academies Press, Washington, D.C.

    Google Scholar 

  13. Taleb NN (2001) Fooled by randomness: The hidden role of chance in life and in the markets. Texere LLC, London

    Google Scholar 

  14. Simons DJ, Chabris CF (1999) Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception 28 (9):1059–1074

    Article  PubMed  CAS  Google Scholar 

  15. Fugelsang JA, Stein CB, Green AE, Dunbar KN (2004) Theory and data interactions of the scientific mind: Evidence from the molecular and the cognitive laboratory. Can J Exp Psychol 58 (2):86–95

    PubMed  Google Scholar 

  16. Lander A (2009) The ‘stem cell’ concept: Is it holding us back? Journal of Biology 8 (8):70

    Article  PubMed  Google Scholar 

  17. Reynolds CW (1987) Flocks, herds and schools: A distributed behavioral model. Paper presented at the Proceedings of the 14th annual conference on Computer graphics and interactive techniques

    Google Scholar 

  18. Popper K (1959) The logic of scientific discovery. Hutchinson, London

    Google Scholar 

  19. Clarke MF (2005) A self-renewal assay for cancer stem cells. Cancer Chemother Pharmacol 56 Suppl 7:64–68

    Article  PubMed  Google Scholar 

  20. Piccirillo SGM, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A, Baronchelli S, Maira G, Pollo B, Mangiola A, DiMeco F, Dalpra L, Vescovi AL (2009) Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28 (15):1807–1811. doi:10.1038/onc.2009.27

    Google Scholar 

  21. Glas M, Rath BH, Simon M, Reinartz R, Schramme A, Trageser D, Eisenreich R, Leinhaas A, Keller M, Schildhaus HU, Garbe S, Steinfarz B, Pietsch T, Steindler DA, Schramm J, Herrlinger U, Brüstle O, Scheffler B (2010) Residual tumor cells are unique cellular targets in glioblastoma. Annals of Neurology 68:264–269. doi:10.1002/ana.22036

    Google Scholar 

  22. Abuzakouk M, Feighery C, O’Farrelly C (1996) Collagenase and dispase enzymes disrupt lymphocyte surface molecules. J Immunol Methods 194 (2):211–216. doi:0022-1759(96)00038–5 [pii]

    Google Scholar 

  23. Koumenis C, Wouters BG (2006) “Translating” Tumor hypoxia: Unfolded protein response (upr)-dependent and upr-independent pathways. Mol Cancer Res 4 (7):423–436. doi:10.1158/1541-7786.mcr-06-0150

    Google Scholar 

  24. Young SD, Hill RP (1990) Effects of reoxygenation on cells from hypoxic regions of solid tumors: Anticancer drug sensitivity and metastatic potential. J Natl Cancer Inst 82 (5):371–380

    Article  PubMed  CAS  Google Scholar 

  25. Zhang L, Hill RP (2004) Hypoxia enhances metastatic efficiency by up-regulating mdm2 in kht cells and increasing resistance to apoptosis. Cancer Res 64 (12):4180–4189. doi:10.1158/0008-5472.CAN-03-3038 64/12/4180 [pii]

    Google Scholar 

  26. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458 (7239):780–783

    Article  PubMed  CAS  Google Scholar 

  27. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic ­microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8 (20):3274–3284. doi:9701 [pii]

    Google Scholar 

  28. Kim Y, Lin Q, Zelterman D, Yun Z (2009) Hypoxia-regulated delta-like 1 homologue enhances cancer cell stemness and tumorigenicity. Cancer Res:0008-5472.CAN-0009-1605. doi:10.1158/0008-5472.can-09–1605

  29. Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A (2010) Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell 7 (2):150–161

    Article  PubMed  CAS  Google Scholar 

  30. Ponta H, Sherman L, Herrlich PA (2003) Cd44: From adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4 (1):33–45

    Article  PubMed  CAS  Google Scholar 

  31. Jothy S (2003) Cd44 and its partners in metastasis. Clin Exp Metastasis 20 (3):195–201

    Article  PubMed  CAS  Google Scholar 

  32. Fargeas CA, Fonseca A-V, Huttner WB, Corbeil D (2006) Prominin-1 (cd133): From progenitor cells to human diseases. Future Lipidology 1 (2):213–225

    Article  CAS  Google Scholar 

  33. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C, Lillington D, Oakervee H, Cavenagh J, Agrawal SG, Lister TA, Gribben JG, Bonnet D (2008) Anti-cd38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 112 (3):568–575. doi:10.1182/blood-2007-10-118331

    Google Scholar 

  34. Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, Kang J, Assanah M, McKhann GM, Sisti MB, McCormick PC, Canoll P, Bruce JN (2008) Identification of a2b5+cd133- tumor-initiating cells in adult human gliomas. Neurosurgery 62 (2):505–514; discussion 514–505

    Google Scholar 

  35. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) cd133(+) and cd133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67 (9):4010–4015

    Article  PubMed  CAS  Google Scholar 

  36. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J, Jr., Chang HY, van de Rijn M, Shortliffe L, Weissman IL (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA 106 (33):14016–14021. doi:0906549106 [pii] 10.1073/pnas.0906549106

    Google Scholar 

  37. Smalley MJ, Clarke RB (2005) The mammary gland “Side population”: A putative stem/progenitor cell marker? J Mammary Gland Biol Neoplasia 10 (1):37–47. doi:10.1007/s10911-005-2539-0

    Google Scholar 

  38. Prasmickaite L, Engesaeter BO, Skrbo N, Hellenes T, Kristian A, Oliver NK, Suo Z, Maelandsmo GM (2010) Aldehyde dehydrogenase (aldh) activity does not select for cells with enhanced aggressive properties in malignant melanoma. PLoS ONE 5 (5):e10731. doi:10.1371/journal.pone.0010731

  39. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bfgf and egf more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9 (5):391–403

    Article  PubMed  CAS  Google Scholar 

  40. De Witt Hamer PC, Van Tilborg AA, Eijk PP, Sminia P, Troost D, Van Noorden CJ, Ylstra B, Leenstra S (2008) The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 27 (14):2091–2096

    Article  PubMed  Google Scholar 

  41. van Staveren WC, Solis DY, Hebrant A, Detours V, Dumont JE, Maenhaut C (2009) Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochimica et biophysica acta 1795 (2):92–103

    PubMed  Google Scholar 

  42. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, Yung R, Parmigiani G, Dorsch M, Peacock CD, Watkins DN (2009) A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res 69 (8):3364–3373. doi:0008-5472.CAN-08-4210 [pii] 10.1158/0008-5472.CAN-08-4210

  43. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100 (7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  44. Sorrell JM, Caplan AI (2009) Chapter 4 fibroblasts – a diverse population at the center of it all. In: Kwang WJ (ed) International review of cell and molecular biology, vol Volume 276. Academic, pp 161–214

    Google Scholar 

  45. Paulsson J, Sjoblom T, Micke P, Ponten F, Landberg G, Heldin C-H, Bergh J, Brennan DJ, Jirstrom K, Ostman A (2009) Prognostic significance of stromal platelet-derived growth factor {beta}-receptor expression in human breast cancer. Am J Pathol 175 (1):334–341. doi:10.2353/ajpath.2009.081030

    Google Scholar 

  46. Raica M, Cimpean AM (2010) Platelet-derived growth factor (pdgf)/pdgf receptors (pdgfr) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 3 (3):572–599

    Article  CAS  Google Scholar 

  47. Coltrera MD, Wang J, Porter PL, Gown AM (1995) Expression of platelet-derived growth factor b-chain and the platelet-derived growth factor receptor β subunit in human breast tissue and breast carcinoma. Cancer Research 55 (12):2703–2708

    PubMed  CAS  Google Scholar 

  48. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PWK, Lam CT, Poon RTP, Fan ST (2008) Significance of cd90+ cancer stem cells in human liver cancer. Cancer Cell 13 (2):153–166

    Article  PubMed  CAS  Google Scholar 

  49. Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, Li ML, Tam KH, Lam CT, Poon RT, Fan ST (2008) Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 47 (3):919–928. doi:10.1002/hep.22082

    Google Scholar 

  50. Gastl G, Spizzo G, Obrist P, Dunser M, Mikuz G (2000) Ep-cam overexpression in breast cancer as a predictor of survival. Lancet 356 (9246):1981–1982. doi:S0140-6736(00)03312-2 [pii] 10.1016/S0140-6736(00)03312-2

    Google Scholar 

  51. Picard O, Rolland Y, Poupon MF (1986) Fibroblast-dependent tumorigenicity of cells in nude mice: Implication for implantation of metastases. Cancer Research 46 (7):3290–3294

    PubMed  CAS  Google Scholar 

  52. Salter RD, Shurin MR, Kukreja A (2009) Protumorigenic function of dendritic cells. In: Dendritic cells in cancer. Springer New York, pp 1–14. doi:10.1007/978-0-387-88611-4_17

  53. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454 (7203):436–444

    Article  PubMed  CAS  Google Scholar 

  54. Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: Are tumor stem cells also regulated by the microenvironment? Cancer Cell 7 (1):17-23. doi:S1535610804003757 [pii] 10.1016/j.ccr.2004.12.013

    Google Scholar 

  55. Martins-Green M, Boudreau N, Bissell MJ (1994) Inflammation is responsible for the development of wound-induced tumors in chickens infected with rous sarcoma virus. Cancer Res 54 (16):4334–4341

    PubMed  CAS  Google Scholar 

  56. Révész L (1956) Genetic studies of the relationship of tumor-host cells: Effect of tumor cells killed by x-rays upon the growth of admixed viable cells. Nature 178 (4547):1391–1392

    Article  PubMed  Google Scholar 

  57. Hewitt HB, Blake E, Proter EH (1973) The effect of lethally irradiated cells on the transplantability of murine tumors. Br J Cancer 28 (2):123–135

    Article  PubMed  CAS  Google Scholar 

  58. Singh S, Ross SR, Acena M, Rowley DA, Schreiber H (1992) Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J Exp Med 175 (1):139–146

    Article  PubMed  CAS  Google Scholar 

  59. Moriyama T, Ohuchida K, Mizumoto K, Cui L, Ikenaga N, Sato N, Tanaka M (2010) Enhanced cell migration and invasion of cd133+ pancreatic cancer cells cocultured with pancreatic stromal cells. Cancer 116 (14):3357–3368. doi:10.1002/cncr.25121

    Google Scholar 

  60. Liao CP, Adisetiyo H, Liang M, Roy-Burman P (2010) Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res 70 (18):7294–7303. doi:0008-5472.CAN-09-3982 [pii] 10.1158/0008-5472.CAN-09-3982

    Google Scholar 

  61. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11 (1):69–82

    Article  PubMed  CAS  Google Scholar 

  62. Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, Spaeth E, Xu W, Zhang X, Lewis MT, Reuben JM, Krishnamurthy S, Ferrari M, Gaspar Rr, Buchholz TA, Cristofanilli M, Marini F, Andreeff M, Woodward WA (2010) Mesenchymal stem cells promote mammosphere formation and decrease e-cadherin in normal and malignant breast cells. PLoS ONE 5 (8):e12180

    Article  PubMed  Google Scholar 

  63. Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nature protocols 2 (2):247–250

    Article  PubMed  CAS  Google Scholar 

  64. Wang Y, Revelo MP, Sudilovsky D, Cao M, Chen WG, Goetz L, Xue H, Sadar M, Shappell SB, Cunha GR, Hayward SW (2005) Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate 64 (2):149–159. doi:10.1002/pros.20225

    Google Scholar 

  65. Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T, Henkelman R, Cusimano M, Dirks P (2004) Identification of human brain tumor initiating cells. Nature 432 (7015):396–401

    Article  PubMed  CAS  Google Scholar 

  66. Cornil I, Man S, Fernandez B, Kerbel RS (1989) Enhanced tumorigenicity, melanogenesis, and metastases of a human malignant melanoma after subdermal implantation in nude mice. J Natl Cancer Inst 81 (12):938–944. doi:10.1093/jnci/81.12.938

    Google Scholar 

  67. Grossi FS, Zhao X, Romijn JC, Kate FJW, Schröder FH (1992) Metastatic potential of human renal cell carcinoma: Experimental model using subrenal capsule implantation in athymic nude mice. Urological Research 20 (4):303–306

    Article  PubMed  CAS  Google Scholar 

  68. Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ (1986) Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res 46 (8):4109–4115

    PubMed  CAS  Google Scholar 

  69. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M, Witte L, May C, Shawber C, Kimura Y, Kitajewski J, Rosenwaks Z, Bernstein ID, Rafii S (2010) Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Cell Stem Cell 6 (3):251–264. doi:S1934-5909(10)00045-7 [pii] 10.1016/j.stem.2010.02.001

    Google Scholar 

  70. Dupin E, Le Douarin NM (2003) Development of melanocyte precursors from the vertebrate neural crest. Oncogene 22 (20):3016–3023

    Article  PubMed  CAS  Google Scholar 

  71. Trentin A, Glavieux-Pardanaud C, Le Douarin NM, Dupin E (2004) Self-renewal capacity is a widespread property of various types of neural crest precursor cells. Proc Natl Acad Sci USA 101 (13):4495–4500

    Article  PubMed  CAS  Google Scholar 

  72. Guermazi A, Feger C, Rousselot P, Merad M, Benchaib N, Bourrier P, Mariette X, Frija J, Kerviler Ed (2002) Granulocytic sarcoma (chloroma): Imaging findings in adults and children. Am J Roentgenol 178 (2):319–325

    CAS  Google Scholar 

  73. Lens M, Bataille V, Krivokapic Z (2009) Melanoma of the small intestine. The Lancet Oncology 10 (5):516–521. doi:10.1016/s1470-2045(09)70036-1

    Google Scholar 

  74. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumor formation by single human melanoma cells. Nature 456 (7222):593–598

    Article  PubMed  CAS  Google Scholar 

  75. Fridman R, Kibbey MC, Royce LS, Zain M, Sweeney TM, Jicha DL, Yannelli JR, Martin GR, Kleinman HK (1991) Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with matrigel. J Natl Cancer Inst 83 (11):769–774. doi:10.1093/jnci/83.11.769

    Google Scholar 

  76. Noel A, De Pauw-Gillet MC, Purnell G, Nusgens B, Lapiere CM, Foidart JM (1993) Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br J Cancer 68 (5):909–915

    Article  PubMed  CAS  Google Scholar 

  77. Peters LJ, Hewitt HB (1974) The influence of fibrin formation on the transplantability of murine tumor cells: Implications for the mechanism of the revesz effect. Br J Cancer 29 (4):279–291

    Article  PubMed  CAS  Google Scholar 

  78. Topley P, Jenkins DC, Jessup EA, Stables JN (1993) Effect of reconstituted basement membrane components on the growth of a panel of human tumor cell lines in nude mice. Br J Cancer 67 (5):953–958

    Article  PubMed  CAS  Google Scholar 

  79. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451 (7176):345–349

    Article  PubMed  CAS  Google Scholar 

  80. Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM, Morrison SJ (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18 (5):510–523

    Article  PubMed  CAS  Google Scholar 

  81. Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, Pereira K, Karamboulas C, Moghal N, Rajeshkumar NV, Hidalgo M, Tsao M, Ailles L, Waddell TK, Maitra A, Neel BG, Matsui W (2010) Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7 (3):279–282. doi:S1934-5909(10)00401-7 [pii] 10.1016/j.stem.2010.08.009

    Google Scholar 

  82. Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5 (7):738–743

    Article  PubMed  CAS  Google Scholar 

  83. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441 (7092):475–482

    Article  PubMed  CAS  Google Scholar 

  84. Oravecz-Wilson KI, Philips ST, Yilmaz ÖH, Ames HM, Li L, Crawford BD, Gauvin AM, Lucas PC, Sitwala K, Downing JR, Morrison SJ, Ross TS (2009) Persistence of leukemia-initiating cells in a conditional knockin model of an imatinib-responsive myeloproliferative disorder. Cancer Cell 16 (2):137–148

    Article  PubMed  CAS  Google Scholar 

  85. Zhang YW, Su Y, Lanning N, Gustafson M, Shinomiya N, Zhao P, Cao B, Tsarfaty G, Wang LM, Hay R, Vande Woude GF (2005) Enhanced growth of human met-expressing xenografts in a new strain of immunocompromised mice transgenic for human hepatocyte growth factor/scatter factor. Oncogene 24 (1):101–106. doi:1208181 [pii] 10.1038/sj.onc.1208181

    Google Scholar 

  86. Brodeur J, Anthony Monti, Sriram Kollipara, Kelly Connolly, Andrea Boudrow, Hamid Tissire, Tong Zi, Riyun Huang, Joerg Heyer, Kristan Meetze, and William M. Rideout III Knock-in of human hgf into the mouse genome maintains endogenous hgf regulation and supports the growth of hgf-dependent human cancer cell lines. In: Proceedings of the 100th Annual Meeting of the American Association for Cancer Research, Colorado Convention Center, Denver, CO, April 18–22 2009. American Association for Cancer Research

    Google Scholar 

  87. Knudsen BS, Vande Woude G (2008) Showering c-met-dependent cancers with drugs. Current Opinion in Genetics & Development 18 (1):87–96

    Article  CAS  Google Scholar 

  88. Grugan KD, Miller CG, Yao Y, Michaylira CZ, Ohashi S, Klein-Szanto AJ, Diehl JA, Herlyn M, Han M, Nakagawa H, Rustgi AK (2010) Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion. Proceedings of the National Academy of Sciences 107 (24):11026–11031. doi:10.1073/pnas.0914295107

    Google Scholar 

  89. Mascarenhas JB, Littlejohn EL, Wolsky RJ, Young KP, Nelson M, Salgia R, Lang D (2010) Pax3 and sox10 activate met receptor expression in melanoma. Pigment cell & melanoma research 23 (2):225–237. doi:PCR667 [pii] 10.1111/j.1755-148X.2010.00667.x

  90. Halaban R, Rubin JS, Funasaka Y, Cobb M, Boulton T, Faletto D, Rosen E, Chan A, Yoko K, White W, et al. (1992) Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells. Oncogene 7 (11):2195–2206

    PubMed  CAS  Google Scholar 

  91. Halaban R, Rubin JS, White W (1993) Met and hgf-sf in normal melanocytes and melanoma cells. EXS 65:329–339

    PubMed  CAS  Google Scholar 

  92. Inda M-d-M, Bonavia R, Mukasa A, Narita Y, Sah DWY, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, Tan P, DePinho RA, Cavenee W, Furnari F (2010) Tumor heterogeneity is an active process maintained by a mutant egfr-induced cytokine circuit in glioblastoma. Genes Dev 24 (16):1731–1745. doi:10.1101/gad.1890510

    Google Scholar 

  93. Adhikari AS, Agarwal N, Wood BM, Porretta C, Ruiz B, Pochampally RR, Iwakuma T (2010) Cd117 and stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer Res 70 (11):4602–4612. doi:0008-5472.CAN-09-3463 [pii] 10.1158/0008-5472.CAN-09-3463

  94. Cao Y, Lathia JD, Eyler CE, Wu Q, Li Z, Wang H, McLendon RE, Hjelmeland AB, Rich JN (2010) Erythropoietin receptor signaling through stat3 is required for glioma stem cell maintenance. Genes & Cancer 1 (1):50–61. doi:10.1177/1947601909356352

  95. Owczarek CM, Zhang Y, Layton MJ, Metcalf D, Roberts B, Nicola NA (1997) The unusual species cross-reactivity of the leukemia inhibitory factor receptor alpha-chain is determined primarily by the immunoglobulin-like domain. Journal of Biological Chemistry 272 (38):23976–23985. doi:10.1074/jbc.272.38.23976

    Google Scholar 

  96. Manz MG (2007) Human-hemato-lymphoid-system mice: Opportunities and challenges. Immunity 26 (5):537–541. doi:S1074-7613(07)00251-8 [pii] 10.1016/j.immuni.2007.05.001

    Google Scholar 

  97. Damia G, D’Incalci M (2009) Contemporary pre-clinical development of anticancer agents – what are the optimal preclinical models? Eur J Cancer 45 (16):2768–2781. doi:S0959-8049(09)00587-5 [pii] 10.1016/j.ejca.2009.08.008

    Google Scholar 

  98. Lowenstein PR, Castro MG (2009) Uncertainty in the translation of preclinical experiments to clinical trials. Why do most phase iii clinical trials fail? Curr Gene Ther 9 (5):368–374

    Article  PubMed  CAS  Google Scholar 

  99. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4 (6):568–580. doi: S1934-5909(09)00149-0 [pii] 10.1016/j.stem. 2009.03.014

    Google Scholar 

  100. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) Aldh1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1 (5):555–567

    Article  PubMed  CAS  Google Scholar 

  101. Todaro M, Perez Alea M, Scopelliti A, Medema JP, Stassi G (2008) Il-4-mediated drug resistance in colon cancer stem cells. Cell Cycle 7 (3):309–313

    Article  PubMed  CAS  Google Scholar 

  102. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1 (4):389–402

    Article  PubMed  CAS  Google Scholar 

  103. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in b27-supplemented neurobasal, a new serum-free medium combination. J Neurosci Res 35 (5):567–576

    Article  PubMed  CAS  Google Scholar 

  104. Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG (2010) Notch pathway blockade depletes cd133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28 (1):5–16. doi:10.1002/stem.254

    Google Scholar 

  105. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) Hedgehog-gli1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17 (2):165–172

    Google Scholar 

  106. Peñuelas S, Anido J, Prieto-Sánchez RM, Folch G, Barba I, Cuartas I, García-Dorado D, Poca MA, Sahuquillo J, Baselga J, Seoane J (2009) Tgf-beta increases glioma-initiating cell self-renewal through the induction of lif in human glioblastoma. Cancer Cell 15 (4):315–327

    Article  PubMed  Google Scholar 

  107. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumor-initiating cells. Nature 444 (7120):761–765

    Article  PubMed  CAS  Google Scholar 

  108. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445 (7123):111–115

    Article  PubMed  CAS  Google Scholar 

  109. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, Xerri L, Dontu G, Stassi G, Xiao Y, Barsky SH, Birnbaum D, Viens P, Wicha MS (2009) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16 (1):45–55. doi:1078-0432.CCR-09-1630 [pii] 10.1158/1078-0432.CCR-09-1630

    Google Scholar 

  110. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1 (3):313–323

    Article  PubMed  CAS  Google Scholar 

  111. Coles-Takabe BLK, Brain I, Purpura KA, Karpowicz P, Zandstra PW, Morshead CM, van der Kooy D (2008) Don’t look: Growing clonal versus non-clonal neural stem cell colonies. Stem Cells:2008–0558. doi:10.1634/stemcells.2008-0558

  112. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B (2007) The genomic landscapes of human breast and colorectal cancers. Science 318 (5853):1108–1113. doi:1145720 [pii] 10.1126/science.1145720

    Google Scholar 

  113. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, Johnson DS, Trivett MK, Etemadmoghadam D, Locandro B, Traficante N, Fereday S, Hung JA, Chiew Y-E, Haviv I, Australian Ovarian Cancer Study G, Gertig D, deFazio A, Bowtell DDL (2008) Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 14 (16):5198–5208. doi:10.1158/1078-0432.ccr-08-0196

  114. John T, Black MA, Toro TT, Leader D, Gedye CA, Davis ID, Guilford PJ, Cebon JS (2008) Predicting clinical outcome through molecular profiling in stage iii melanoma. Clin Cancer Res 14 (16):5173–5180. doi:10.1158/1078-0432.ccr-07-4170

    Google Scholar 

  115. Kern SE, Shibata D (2007) The fuzzy math of solid tumor stem cells: A perspective. Cancer Res 67 (19):8985-8988

    Article  PubMed  CAS  Google Scholar 

  116. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67 (3):1030–1037

    Article  PubMed  CAS  Google Scholar 

  117. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, Nowak MA (2005) Dynamics of chronic myeloid leukaemia. Nature 435 (7046):1267–1270

    Article  PubMed  CAS  Google Scholar 

  118. Gatenby RA, Silva AS, Gillies RJ, Frieden BR (2009) Adaptive therapy. Cancer Res 69 (11):4894–4903. doi:69/11/4894 [pii] 10.1158/0008-5472.CAN-08-3658

    Google Scholar 

  119. Curtis SJ, Sinkevicius KW, Li D, Lau AN, Roach RR, Zamponi R, Woolfenden AE, Kirsch DG, Wong K-K, Kim CF (2010) Primary tumor genotype is an important determinant in identification of lung cancer propagating cells. Cell Stem Cell 7 (1):127–133

    Article  PubMed  CAS  Google Scholar 

  120. Greaves M (2010) Cancer stem cells: Back to darwin? Semin Cancer Biol 20 (2):65–70. doi:S1044-579X(10)00010-6 [pii] 10.1016/j.semcancer.2010.03.002

  121. Hill RP, Chambers AF, Ling V, Harris JF (1984) Dynamic heterogeneity: Rapid generation of metastatic variants in mouse b16 melanoma cells. Science 224 (4652):998–1001

    Article  PubMed  CAS  Google Scholar 

  122. Ling V, Chambers AF, Harris JF, Hill RP (1984) Dynamic heterogeneity and metastasis. J Cell Physiol Suppl 3:99–103

    Article  PubMed  CAS  Google Scholar 

  123. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL, Abbott RM, Hoog J, Dooling DJ, Koboldt DC, Schmidt H, Kalicki J, Zhang Q, Chen L, Lin L, Wendl MC, McMichael JF, Magrini VJ, Cook L, McGrath SD, Vickery TL, Appelbaum E, DeSchryver K, Davies S, Guintoli T, Lin L, Crowder R, Tao Y, Snider JE, Smith SM, Dukes AF, Sanderson GE, Pohl CS, Delehaunty KD, Fronick CC, Pape KA, Reed JS, Robinson JS, Hodges JS, Schierding W, Dees ND, Shen D, Locke DP, Wiechert ME, Eldred JM, Peck JB, Oberkfell BJ, Lolofie JT, Du F, Hawkins AE, O’Laughlin MD, Bernard KE, Cunningham M, Elliott G, Mason MD, Thompson Jr DM, Ivanovich JL, Goodfellow PJ, Perou CM, Weinstock GM, Aft R, Watson M, Ley TJ, Wilson RK, Mardis ER (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464 (7291):999–1005

    Article  PubMed  CAS  Google Scholar 

  124. Campbell PJ, Pleasance ED, Stephens PJ, Dicks E, Rance R, Goodhead I, Follows GA, Green AR, Futreal PA, Stratton MR (2008) Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proceedings of the National Academy of Sciences 105 (35):13081–13086. doi:10.1073/pnas.0801523105

    Google Scholar 

  125. Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G, Chen L, Ewing CM, Eisenberger MA, Carducci MA, Nelson WG, Yegnasubramanian S, Luo J, Wang Y, Xu J, Isaacs WB, Visakorpi T, Bova GS (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15 (5):559–565. doi:nm.1944 [pii] 10.1038/nm.1944

    Google Scholar 

  126. Hong YJ, Marjoram P, Shibata D, Siegmund KD (2010) Using DNA methylation patterns to infer tumor ancestry. PLoS ONE 5 (8):e12002

    Article  PubMed  Google Scholar 

  127. Geyer FC, Weigelt B, Natrajan R, Lambros MB, de Biase D, Vatcheva R, Savage K, Mackay A, Ashworth A, Reis-Filho JS (2010) Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol 220 (5):562–573. doi:10.1002/path.2675

    Google Scholar 

  128. Morrison SJ, Elsa Quintana, Mark Shackleton. Some cancers follow a stem cell model, while other cancers have common tumorigenic cells with little hierarchical organization In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research, Washington, Apr 17–21 2010. American Association for Cancer Research

    Google Scholar 

  129. Vogelstein B The sequence of all 185,000 coding exons in each of 100 human tumors: What has it taught us? In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research, Washington, Apr 17–21 2010. American Association for Cancer Research.

    Google Scholar 

  130. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: Cancer stem cells versus clonal evolution. Cell 138 (5):822–829

    Article  PubMed  CAS  Google Scholar 

  131. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR, Foster R (2009) cd133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27 (12):2875–2883. doi:10.1002/stem.236

    Google Scholar 

  132. Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K (2010) Heterogeneity for stem cell related markers according to tumor subtype and histologic stage in breast cancer. Clinical Cancer Research 16 (3):876–887. doi:10.1158/1078-0432.ccr-09-1532

    Google Scholar 

  133. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11 (3):259–273

    Article  PubMed  CAS  Google Scholar 

  134. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133 (4):704–715

    Article  PubMed  CAS  Google Scholar 

  135. Bhat-Nakshatri P, Appaiah H, Ballas C, Pick-Franke P, Goulet R, Jr., Badve S, Srour EF, Nakshatri H (2010) Slug/snai2 and tumor necrosis factor generate breast cells with cd44+/cd24- phenotype. BMC Cancer 10:411. doi:1471–2407-10-411 [pii] 10.1186/1471-2407-10-411

    Google Scholar 

  136. Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW (2010) Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the cd44(hi/)cd24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 15 (2):235–252. doi:10.1007/s10911-010-9175-z

    Google Scholar 

  137. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R, Jr., Badve S, Nakshatri H (2006) Cd44+/cd24- breast cancer cells exhibit enhanced invasive properties: An early step necessary for metastasis. Breast Cancer Res 8 (5):R59. doi:bcr1610 [pii] 10.1186/bcr1610

    Google Scholar 

  138. Reim F, Dombrowski Y, Ritter C, Buttmann M, Hausler S, Ossadnik M, Krockenberger M, Beier D, Beier CP, Dietl J, Becker JC, Honig A, Wischhusen J (2009) Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: Selective escape of cd44high/cd24low/her2low breast cancer stem cells. Cancer Res 69 (20):8058–8066. doi:0008-5472.CAN-09-0834 [pii] 10.1158/0008-5472.CAN-09-0834

    Article  PubMed  CAS  Google Scholar 

  139. Oliveras-Ferraros C, Vazquez-Martin A, Martin-Castillo B, Cufi S, Del Barco S, Lopez-Bonet E, Brunet J, Menendez JA (2010) Dynamic emergence of the mesenchymal cd44(pos)cd24(neg/low) phenotype in her2-gene amplified breast cancer cells with de novo resistance to trastuzumab (herceptin). Biochem Biophys Res Commun 397 (1):27–33. doi:S0006-291X(10)00932-0 [pii] 10.1016/j.bbrc.2010.05.041

    Google Scholar 

  140. Reiman JM, Knutson KL, Radisky DC (2010) Immune promotion of epithelial-mesenchymal transition and generation of breast cancer stem cells. Cancer Res 70 (8):3005–3008. doi:70/8/3005 [pii] 10.1158/0008-5472.CAN-09-4041

    Google Scholar 

  141. Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH, Radisky DC, Ferrone S, Knutson KL (2009) Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res 69 (7):2887–2895. doi:0008-5472.CAN-08-3343 [pii] 10.1158/0008-5472.CAN-08-3343

    Google Scholar 

  142. Fillmore C, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Research 10 (2):R25

    Article  PubMed  Google Scholar 

  143. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu M-F, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100 (9):672–679. doi:10.1093/jnci/djn123

    Google Scholar 

  144. Phillips TM, McBride WH, Pajonk F (2006) The response of cd24(−/low)/cd44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98 (24):1777–1785

    Article  PubMed  Google Scholar 

  145. Lagadec C, Vlashi E, Della Donna L, Meng Y, Dekmezian C, Kim K, Pajonk F (2010) Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res 12 (1):R13. doi:bcr2479 [pii] 10.1186/bcr2479

  146. Wikipedia (2010) Blind men and an elephant. http://en.wikipedia.org/wiki/Blind_men_and_an_elephant.

  147. Strippoli P, Canaider S, Noferini F, D’Addabbo P, Vitale L, Facchin F, Lenzi L, Casadei R, Carinci P, Zannotti M, Frabetti F (2005) Uncertainty principle of genetic information in a living cell. Theor Biol Med Model 2:40. doi:1742-4682-2-40 [pii] 10.1186/1742-4682-2-40

  148. Kim D, Irving L. Weissman. Enrichment of xenotransplantable clonal cells in cd38high/cd138+ cells of multiple myeloma patients In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research, Washington, Apr 17–21, 2010. American Association for Cancer Research

    Google Scholar 

  149. Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M, Mulloy JC (2010) Aml xenograft efficiency is significantly improved in nod/scid-il2rg mice constitutively expressing human scf, gm-csf and il-3. Leukemia 24 (10):1785–8. doi:leu2010158 [pii] 10.1038/leu.2010.158

    Google Scholar 

  150. Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H, Jager N, Gnirke A, Stunnenberg HG, Meissner A (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotech 28 (10):1106–1114

    Article  CAS  Google Scholar 

  151. Norris KL, Lee J-Y, Yao T-P (2009) Acetylation goes global: The emergence of acetylation biology. Sci Signal 2 (97):pe76. doi:10.1126/scisignal.297pe76

  152. Rueda BR, Anne M. Friel, Ling Zhang, Michael D. Curley, Gayatry Mohapatra, Petra A. Sergent, Vanessa A. Therrien, Rosemary Foster. Human endometrial cancer cell cd133+ cell fractions are regulated by methylation. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research, Washington, Apr 17–21 2010. American Association for Cancer Research

    Google Scholar 

  153. Horst D, Kriegl L, Engel J, Kirchner T, Jung A (2009) Prognostic significance of the cancer stem cell markers cd133, cd44, and cd166 in colorectal cancer. Cancer Invest 27 (8):844–850

    Article  PubMed  Google Scholar 

  154. Li C-Y, Li B-X, Liang Y, Peng R-Q, Ding Y, Xu D-Z, Zhang X, Pan Z-Z, Wan D-S, Zeng Y-X, Zhu X-F, Zhang X-S (2009) Higher percentage of cd133+ cells is associated with poor prognosis in colon carcinoma patients with stage iiib. Journal of Translational Medicine 7 (1):56

    Article  PubMed  CAS  Google Scholar 

  155. Nakamura K, Iinuma H, Aoyagi Y, Shibuya H, Watanabe T (2010) Predictive value of cancer stem-like cells and cancer-associated genetic markers for peritoneal recurrence of colorectal cancer in patients after curative surgery. Oncology 78 (5–6):309–315

    Article  PubMed  CAS  Google Scholar 

  156. Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren G, 2nd, Samuel S, Kim MP, Lim SJ, Ellis LM (2009) Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-i receptor inhibition. Cancer Res 69 (5):1951–1957

    Google Scholar 

  157. Elsaba TMA, Martinez-Pomares L, Robins AR, Crook S, Seth R, Jackson D, McCart A, Silver AR, Tomlinson IPM, Ilyas M (2010) The stem cell marker cd133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS ONE 5 (5):e10714

    Article  PubMed  Google Scholar 

  158. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356 (3):217–226

    Article  PubMed  CAS  Google Scholar 

  159. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Skollermo A, Steen J, Stenvall M, Sterky F, Stromberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Walden A, Wan J, Wernerus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Ponten F (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4 (12):1920–1932. doi:M50029-MCP200[pii] 10.1074/mcp.M500279-MCP200

    Google Scholar 

  160. Pine SR, Ryan BM, Varticovski L, Robles AI, Harris CC (2010) Microenvironmental ­modulation of asymmetric cell division in human lung cancer cells. Proceedings of the National Academy of Sciences 107 (5):2195–2200. doi:10.1073/pnas.0909390107

  161. Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S, Mack S, Kongkham PN, Peacock J, Dubuc A, Ra Y-S, Zilberberg K, McLeod J, Scherer SW, Sunil Rao J, Eberhart CG, Grajkowska W, Gillespie Y, Lach B, Grundy R, Pollack IF, Hamilton RL, Van Meter T, Carlotti CG, Boop F, Bigner D, Gilbertson RJ, Rutka JT, Taylor MD (2009) Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 41 (4):465–472

    Article  PubMed  CAS  Google Scholar 

  162. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, Senz J, Steidl C, Holt RA, Jones S, Sun M, Leung G, Moore R, Severson T, Taylor GA, Teschendorff AE, Tse K, Turashvili G, Varhol R, Warren RL, Watson P, Zhao Y, Caldas C, Huntsman D, Hirst M, Marra MA, Aparicio S (2009) Mutational evolution in a lobular breast tumor profiled at single nucleotide resolution. Nature 461 (7265):809–813

    Article  PubMed  CAS  Google Scholar 

  163. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463 (7278):191–196. doi:nature08658 [pii] 10.1038/nature08658

    Google Scholar 

  164. Fox EJ, Salk JJ, Loeb LA (2009) Cancer genome sequencing – an interim analysis. Cancer Res 69 (12):4948–4950. doi:0008-5472.CAN-09-1231 [pii] 0.1158/0008-5472.CAN-09-1231

    Google Scholar 

  165. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3 (7):730–737

    Article  PubMed  CAS  Google Scholar 

  166. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature 445 (7123):106–110

    Article  PubMed  Google Scholar 

  167. Maliszewski CR, Schoenborn MA, Cerretti DP, Wignall JM, Picha KS, Cosman D, Tushinski RJ, Gillis S, Baker PE (1988) Bovine gm-csf: Molecular cloning and biological activity of the recombinant protein. Mol Immunol 25 (9):843–850

    Article  PubMed  CAS  Google Scholar 

  168. Ruscetti FW, Gallo RC (1981) Human t-lymphocyte growth factor: Regulation of growth and function of t lymphocytes. Blood 57 (3):379–394

    PubMed  CAS  Google Scholar 

  169. English LS, Latta H, Whitehurst M (1985) Initial characterization of sheep t-cell growth factor and its species-restricted activity on human, rat, and mouse cells. Cell Immunol 90 (2):314–321

    Article  PubMed  CAS  Google Scholar 

  170. Redelman D, Bussett E (1983) In vitro studies of the rabbit immune system. Viii. The production of rabbit t cell growth factor (tcgf) and its relationship to mouse and human tcgf. J Immunol Methods 56 (3):359–370

    Article  PubMed  CAS  Google Scholar 

  171. Gascan H, Moreau JF, Jacques Y, Soulillou JP (1989) Response of murine il3-sensitive cell lines to cytokines of human and murine origin. Lymphokine Res 8 (1):79–84

    PubMed  CAS  Google Scholar 

  172. Gough NM, Gearing DP, King JA, Willson TA, Hilton DJ, Nicola NA, Metcalf D (1988) Molecular cloning and expression of the human homologue of the murine gene encoding myeloid leukemia-inhibitory factor. Proc Natl Acad Sci USA 85 (8):2623–2627

    Article  PubMed  CAS  Google Scholar 

  173. Emoto H, Tagashira S, Mattei M-Gv, Yamasaki M, Hashimoto G, Katsumata T, Negoro T, Nakatsuka M, Birnbaum D, Coulier Fo, Itoh N (1997) Structure and expression of human fibroblast growth factor-10. Journal of Biological Chemistry 272 (37):23191–23194. doi:10.1074/jbc.272.37.23191

Download references

Acknowledgments

Thanks to Francis Ouellette for helpful advice. This research was funded in part by the Ontario Ministry of Health and Long Term Care. The views expressed do not necessarily reflect those of the OMOHLTC. CG is supported by a Royal Australasian College of Physicians CSL Fellowship and a National Health and Medical Research Council Overseas Postdoctoral Fellowship. LEA is supported by a new investigator award from the Ontario Institute for Cancer Research. RPH is supported by funds from the Terry Fox Foundation and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie Ailles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gedye, C., Hill, R.P., Ailles, L. (2011). Final Thoughts: Complexity and Controversy Surrounding the “Cancer Stem Cell” Paradigm. In: Allan, A. (eds) Cancer Stem Cells in Solid Tumors. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-246-5_24

Download citation

Publish with us

Policies and ethics