Skip to main content

Cancer Stem Cells and Disease Prognosis

  • Chapter
  • First Online:
Cancer Stem Cells in Solid Tumors

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1222 Accesses

Abstract

Cancer stem cells (CSCs) represent distinct tumor cells defined by their capacity for tumor formation, self-renewal, and differentiation. In addition, the CSC hypothesis has been extended to suggest that specific tumor cell populations are also responsible for distinct clinical scenarios such as initial tumor formation, disease relapse following initial therapy, and cancer progression including the transformation of indolent to aggressive disease in hematologic malignancies and the development of metastatic disease in solid tumors. However, several questions regarding CSCs remain the subject of intense debate, including their actual clinical relevance and/or whether the eradication of CSCs will actually improve patient outcomes. In this chapter, we will review strategies to identify CSCs and evidence that they play a role in disease prognosis, progression, and therapeutic resistance; as well as discuss potential barriers in designing and interpreting clinical trials studying CSC targeting therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCG:

ATP-binding cassette subfamily G

ALDH:

Aldehyde dehydrogenase

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

BCR-ABL:

Breakpoint cluster region-abelson

CD:

Cluster of differentiation

CML:

Chronic myeloid leukemia

CR:

Complete response

CSC:

Cancer stem cell

CXCR4:

Chemokine receptor 4

EMT:

Epithelial-to-mesenchymal transition

HER2:

Human epidermal growth factor receptor 2

IGS:

Invasiveness gene signature

IHC:

Immunohistochemistry

NHL:

Non-Hodgkin’s lymphoma

OS:

Overall survival

RECIST:

Response evaluation criteria in solid tumors

SCID:

Severe combined immune deficiency

TGF-β:

Transforming growth factor beta

TIC:

Tumor-initiating cells

References

  1. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66 (19):9339–9344

    Article  PubMed  CAS  Google Scholar 

  2. Bruce WR, Van Der Gaag H (1963) A Quantitative Assay for the Number of Murine Lymphoma Cells Capable of Proliferation in Vivo. Nature 199:79–80

    Article  PubMed  CAS  Google Scholar 

  3. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197 (4302):461–463

    Article  PubMed  CAS  Google Scholar 

  4. Park CH, Bergsagel DE, McCulloch EA (1971) Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst 46 (2):411–422

    PubMed  CAS  Google Scholar 

  5. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367 (6464):645–648

    Article  PubMed  CAS  Google Scholar 

  6. Bedi A, Zehnbauer BA, Collector MI, Barber JP, Zicha MS, Sharkis SJ, Jones RJ (1993) BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood 81 (11):2898–2902

    PubMed  CAS  Google Scholar 

  7. Verfaillie CM, McCarthy JB, McGlave PB (1992) Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogenous leukemia. Decreased adhesion to stroma and fibronectin but increased adhesion to the basement membrane components laminin and collagen type IV. The Journal of clinical investigation 90 (4):1232–1241. doi:10.1172/JCI115985

    Google Scholar 

  8. Udomsakdi C, Eaves CJ, Swolin B, Reid DS, Barnett MJ, Eaves AC (1992) Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level. Proceedings of the National Academy of Sciences of the United States of America 89 (13):6192–6196

    Article  PubMed  CAS  Google Scholar 

  9. Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B, Jamal N, Messner H, Addey L, Minden M, Laraya P, Keating A, Eaves A, Lansdorp PM, Eaves CJ, Dick JE (1996) Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 87 (4):1539–1548

    PubMed  CAS  Google Scholar 

  10. Wang JC, Lapidot T, Cashman JD, Doedens M, Addy L, Sutherland DR, Nayar R, Laraya P, Minden M, Keating A, Eaves AC, Eaves CJ, Dick JE (1998) High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 91 (7):2406–2414

    PubMed  CAS  Google Scholar 

  11. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133 (1):157–165

    PubMed  CAS  Google Scholar 

  12. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432 (7015):396–401

    Article  PubMed  CAS  Google Scholar 

  13. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America 97 (26):14720–14725

    Article  PubMed  CAS  Google Scholar 

  14. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, Smith BD, Civin CI, Jones RJ (2004) Characterization of clonogenic multiple myeloma cells. Blood 103 (6):2332–2336

    Article  PubMed  CAS  Google Scholar 

  15. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 100 (7):3983-3988. doi:10.1073/pnas.0530291100 0530291100 [pii]

  16. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America 104 (24):10158–10163. doi:0703478104 [pii] 10.1073/pnas.0703478104

  17. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell stem cell 1 (3):313–323

    Article  PubMed  CAS  Google Scholar 

  18. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67 (3):1030–1037

    Article  PubMed  CAS  Google Scholar 

  19. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America 104 (3):973–978. doi:0610117104 [pii] 10.1073/pnas.0610117104

  20. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445 (7123):111–115

    Article  PubMed  CAS  Google Scholar 

  21. Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM, Suva D, Clement V, Provero P, Cironi L, Osterheld MC, Guillou L, Stamenkovic I (2009) Identification of cancer stem cells in Ewing’s sarcoma. Cancer Res 69 (5):1776–1781

    Article  PubMed  CAS  Google Scholar 

  22. Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, Hong SM, Koorstra JB, Rajeshkumar NV, He X, Goggins M, Iacobuzio-Donahue C, Berman DM, Laheru D, Jimeno A, Hidalgo M, Maitra A, Matsui W (2010) Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 102 (5):340–351. doi:djp535 [pii] 10.1093/jnci/djp535

    Google Scholar 

  23. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell stem cell 1 (5):555–567

    Article  CAS  Google Scholar 

  24. Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell stem cell 4 (5):440–452. doi:S1934-5909(09)00104-0 [pii] 10.1016/j.stem.2009.03.003

  25. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, Longaker MT, Weissman IL (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466 (7302):133–137

    Article  PubMed  CAS  Google Scholar 

  26. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65 (20):9328–9337

    Article  PubMed  CAS  Google Scholar 

  27. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451 (7176):345–349. doi: nature06489[pii] 10.1038/nature06489

    Google Scholar 

  28. Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, Pereira K, Karamboulas C, Moghal N, Rajeshkumar NV, Hidalgo M, Tsao M, Ailles L, Waddell TK, Maitra A, Neel BG, Matsui W (2010) Tumor-Initiating Cells Are Rare in Many Human Tumors. Cell stem cell 7 (3):279–282. doi:S1934-5909(10)00401-7 [pii] 10.1016/j.stem.2010.08.009

  29. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I, McNiece I, Lin L, Ambinder RF, Peacock C, Watkins DN, Huff CA, Jones RJ (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68 (1):190–197

    Article  PubMed  CAS  Google Scholar 

  30. Brennan SK, Meade B, Wang Q, Merchant AA, Kowalski J, Matsui W (2010) Mantle cell lymphoma activation enhances bortezomib sensitivity. Blood. 116:4185-91. doi:blood-2010-02-268375 [pii]

    Google Scholar 

  31. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444 (7120):756–760

    Article  PubMed  CAS  Google Scholar 

  32. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458 (7239):780–783. doi:nature07733 [pii] 10.1038/nature07733

    Google Scholar 

  33. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, Pickell K, Aguilar J, Lazetic S, Smith-Berdan S, Clarke MF, Hoey T, Lewicki J, Gurney AL (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE 3 (6):e2428

    Article  PubMed  Google Scholar 

  34. Jimeno A, Feldmann G, Suarez-Gauthier A, Rasheed Z, Solomon A, Zou GM, Rubio-Viqueira B, Garcia-Garcia E, Lopez-Rios F, Matsui W, Maitra A, Hidalgo M (2009) A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 8 (2):310–314

    Article  PubMed  CAS  Google Scholar 

  35. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100 (9):672–679. doi:djn123 [pii] 10.1093/jnci/djn123

    Google Scholar 

  36. van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzman-Ramirez N, Hamdy FC, Eaton CL, Thalmann GN, Cecchini MG, Pelger RC, van der Pluijm G (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70 (12):5163–5173. doi:0008-5472.CAN-09-3806 [pii] 10.1158/0008-5472.CAN-09-3806

    Google Scholar 

  37. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nature reviews 2 (6):442–454

    Article  PubMed  CAS  Google Scholar 

  38. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell 133 (4):704–715

    Article  PubMed  CAS  Google Scholar 

  39. Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE (2007) Development and characterization of gemcitabine-resistant pancreatic tumor cells. Annals of surgical oncology 14 (12):3629–3637

    Article  PubMed  Google Scholar 

  40. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11 (12):1487–1495. doi:ncb1998 [pii] 10.1038/ncb1998

    Google Scholar 

  41. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138 (3):592–603. doi:S0092-8674(09)00850-2 [pii] 10.1016/j.cell.2009.07.011

    Google Scholar 

  42. Brabletz S, Brabletz T The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer? EMBO reports 11 (9):670-677. doi:embor2010117 [pii] 10.1038/embor.2010.117

  43. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. The New England journal of medicine 351 (7):657–667. doi:10.1056/NEJMoa040258 351/7/657 [pii]

  44. Rice KN, Jamieson CH (2010) Molecular pathways to CML stem cells. Int J Hematol 91 (5):748–752. doi:10.1007/s12185-010-0615-8

    Google Scholar 

  45. Curtis SJ, Sinkevicius KW, Li D, Lau AN, Roach RR, Zamponi R, Woolfenden AE, Kirsch DG, Wong K-K, Kim CF (2010) Primary Tumor Genotype Is an Important Determinant in Identification of Lung Cancer Propagating Cells. Cell stem cell 7 (1):127–133

    Article  PubMed  CAS  Google Scholar 

  46. Guo W, Lasky JL, Chang CJ, Mosessian S, Lewis X, Xiao Y, Yeh JE, Chen JY, Iruela-Arispe ML, Varella-Garcia M, Wu H (2008) Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453 (7194):529–533. doi:nature06933 [pii] 10.1038/nature06933

    Google Scholar 

  47. Neering SJ, Bushnell T, Sozer S, Ashton J, Rossi RM, Wang PY, Bell DR, Heinrich D, Bottaro A, Jordan CT (2007) Leukemia stem cells in a genetically defined murine model of blast-crisis CML. Blood 110 (7):2578–2585. doi:blood-2007-02-073031 [pii] 10.1182/blood-2007-02-073031

    Google Scholar 

  48. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D, Medina D, Tsimelzon A, Hilsenbeck S, Green JE, Michalowska AM, Rosen JM (2008) Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 68 (12):4674–4682. doi:68/12/4674 [pii]10.1158/0008-5472.CAN-07-6353

    Google Scholar 

  49. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317 (5836):337. doi:317/5836/337 [pii]10.1126/science.1142596

    Google Scholar 

  50. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456 (7222):593–598

    Article  PubMed  CAS  Google Scholar 

  51. Pujol JL, Carestia L, Daures JP (2000) Is there a case for cisplatin in the treatment of small-cell lung cancer? A meta-analysis of randomized trials of a cisplatin-containing regimen versus a regimen without this alkylating agent. British journal of cancer 83 (1):8–15. doi:S0007092000911649 [pii] 10.1054/bjoc.2000.1164

  52. Gaynor J, Chapman D, Little C, McKenzie S, Miller W, Andreeff M, Arlin Z, Berman E, Kempin S, Gee T, et al. (1988) A cause-specific hazard rate analysis of prognostic factors among 199 adults with acute lymphoblastic leukemia: the Memorial Hospital experience since 1969. J Clin Oncol 6 (6):1014–1030

    PubMed  CAS  Google Scholar 

  53. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. The New England journal of medicine 355 (23):2408–2417. doi:355/23/2408 [pii] 10.1056/NEJMoa062867

  54. Chen Y, Peng C, Sullivan C, Li D, Li S (2010) Critical molecular pathways in cancer stem cells of chronic myeloid leukemia. Leukemia 24 (9):1545–1554. doi:leu2010143 [pii] 10.1038/leu.2010.143

    Google Scholar 

  55. Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O, Blanchet O, Marit G, Gluckman E, Reiffers J, Gardembas M, Mahon FX (2007) Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109 (1):58–60. doi:blood-2006-03-011239 [pii] 10.1182/blood-2006-03-011239

    Google Scholar 

  56. Ardeshna KM, Smith P, Norton A, Hancock BW, Hoskin PJ, MacLennan KA, Marcus RE, Jelliffe A, Vaughan G, Hudson, Linch DC (2003) Long-term effect of a watch and wait policy versus immediate systemic treatment for asymptomatic advanced-stage non-Hodgkin lymphoma: a randomised controlled trial. Lancet 362 (9383):516–522. doi:S0140673603141104 [pii]

    Google Scholar 

  57. Brice P, Bastion Y, Lepage E, Brousse N, Haioun C, Moreau P, Straetmans N, Tilly H, Tabah I, Solal-Celigny P (1997) Comparison in low-tumor-burden follicular lymphomas between an initial no-treatment policy, prednimustine, or interferon alfa: a randomized study from the Groupe d’Etude des Lymphomes Folliculaires. Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 15 (3):1110–1117

    CAS  Google Scholar 

  58. Koreth J, Cutler CS, Djulbegovic B, Behl R, Schlossman RL, Munshi NC, Richardson PG, Anderson KC, Soiffer RJ, Alyea EP, 3rd (2007) High-dose therapy with single autologous transplantation versus chemotherapy for newly diagnosed multiple myeloma: A systematic review and meta-analysis of randomized controlled trials. Biol Blood Marrow Transplant 13 (2):183–196. doi:S1083-8791(06)00644-6 [pii] 10.1016/j.bbmt.2006.09.010

    Google Scholar 

  59. Schoch C, Haferlach T, Haase D, Fonatsch C, Loffler H, Schlegelberger B, Staib P, Sauerland MC, Heinecke A, Buchner T, Hiddemann W (2001) Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: a study of 90 patients. Br J Haematol 112 (1):118–126. doi:bjh2511 [pii]

    Google Scholar 

  60. Stadtmauer EA, O’Neill A, Goldstein LJ, Crilley PA, Mangan KF, Ingle JN, Brodsky I, Martino S, Lazarus HM, Erban JK, Sickles C, Glick JH (2000) Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. Philadelphia Bone Marrow Transplant Group. The New England journal of medicine 342 (15):1069–1076. doi:10.1056/NEJM200004133421501

  61. Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11 (3):1154–1159. doi:11/3/1154 [pii]

    Google Scholar 

  62. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14 (1):123–129

    Article  PubMed  CAS  Google Scholar 

  63. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, Xerri L, Dontu G, Stassi G, Xiao Y, Barsky SH, Birnbaum D, Viens P, Wicha MS (2010) Aldehyde Dehydrogenase 1-Positive Cancer Stem Cells Mediate Metastasis and Poor Clinical Outcome in Inflammatory Breast Cancer. Clin Cancer Res. 16:45–55

    Article  PubMed  CAS  Google Scholar 

  64. Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z, Stass SA, Jiang F (2009) ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Invest 90 (2):234–244. doi:labinvest2009127 [pii] 10.1038/labinvest.2009.127

    Google Scholar 

  65. Ran D, Schubert M, Pietsch L, Taubert I, Wuchter P, Eckstein V, Bruckner T, Zoeller M, Ho AD (2009) Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Exp Hematol 37 (12):1423–1434. doi:S0301-472X(09)00390-7 [pii] 10.1016/j.exphem.2009.10.001

    Google Scholar 

  66. Pearce DJ, Taussig D, Zibara K, Smith LL, Ridler CM, Preudhomme C, Young BD, Rohatiner AZ, Lister TA, Bonnet D (2006) AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 107 (3):1166–1173. doi:2005-06-2325 [pii] 10.1182/blood-2005-06-2325

  67. Laks DR, Masterman-Smith M, Visnyei K, Angenieux B, Orozco NM, Foran I, Yong WH, Vinters HV, Liau LM, Lazareff JA, Mischel PS, Cloughesy TF, Horvath S, Kornblum HI (2009) Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells 27 (4):980–987. doi:10.1002/stem.15

    Google Scholar 

  68. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. The New England journal of medicine 356 (3):217–226

    Article  PubMed  CAS  Google Scholar 

  69. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K (2007) Molecular definition of breast tumor heterogeneity. Cancer cell 11 (3):259–273. doi:S1535-6108(07)00029-3 [pii] 10.1016/j.ccr.2007.01.013

    Google Scholar 

  70. Stevenson M, Mostertz W, Acharya C, Kim W, Walters K, Barry W, Higgins K, Tuchman SA, Crawford J, Vlahovic G, Ready N, Onaitis M, Potti A (2009) Characterizing the Clinical Relevance of an Embryonic Stem Cell Phenotype in Lung Adenocarcinoma. Clin Cancer Res 15 (24):7553–7561. doi:1078-0432.CCR-09-1939 [pii] 10.1158/1078-0432.CCR-09-1939

    Google Scholar 

  71. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J, Devereux WL, Rhodes JT, Huff CA, Beachy PA, Watkins DN, Matsui W (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America 104 (10):4048–4053

    Article  PubMed  CAS  Google Scholar 

  72. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, Munchhof M, VanArsdale T, Beachy PA, Reya T (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458 (7239):776–779. doi:nature07737 [pii] 10.1038/nature07737

    Google Scholar 

  73. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo S, Vescovi AL, DiMeco F, Olivi A, Eberhart CG (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25 (10):2524–2533. doi:2007-0166 [pii] 10.1634/stemcells.2007-0166

    Google Scholar 

  74. Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, Karikari C, Alvarez H, Iacobuzio-Donahue C, Jimeno A, Gabrielson KL, Matsui W, Maitra A (2007) Blockade of Hedgehog Signaling Inhibits Pancreatic Cancer Invasion and Metastases: A New Paradigm for Combination Therapy in Solid Cancers. Cancer Res 67 (5):2187–2196. doi:10.1158/0008-5472.can-06-3281

    Google Scholar 

  75. Brennan SK, Wang Q, Tressler R, Harley C, Go N, Bassett E, Huff CA, Jones RJ, Matsui W (2010) Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms. PLoS ONE 5 (9):e12487. doi: 10.1371/journal.pone.0012487

    Google Scholar 

  76. Rajeshkumar NV, Rasheed ZA, Garcia-Garcia E, Lopez-Rios F, Fujiwara K, Matsui WH, Hidalgo M (2010) A combination of DR5 agonistic monoclonal antibody with gemcitabine targets pancreatic cancer stem cells and results in long-term disease control in human pancreatic cancer model. Mol Cancer Ther 9 (9):2582–2592. doi:1535-7163.MCT-10-0370 [pii] 10.1158/1535-7163.MCT-10-0370

  77. Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, Bundred NJ (2007) Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 99 (8):616–627. doi:99/8/616 [pii] 10.1093/jnci/djk133

    Google Scholar 

  78. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. The New England journal of medicine 355 (26):2733–2743. doi:355/26/2733 [pii] 10.1056/NEJMoa064320

  79. Bonifazi F, de Vivo A, Rosti G, Guilhot F, Guilhot J, Trabacchi E, Hehlmann R, Hochhaus A, Shepherd PC, Steegmann JL, Kluin-Nelemans HC, Thaler J, Simonsson B, Louwagie A, Reiffers J, Mahon FX, Montefusco E, Alimena G, Hasford J, Richards S, Saglio G, Testoni N, Martinelli G, Tura S, Baccarani M (2001) Chronic myeloid leukemia and interferon-alpha: a study of complete cytogenetic responders. Blood 98 (10):3074–3081

    Article  PubMed  CAS  Google Scholar 

  80. Angstreich GR, Matsui W, Huff CA, Vala MS, Barber J, Hawkins AL, Griffin CA, Smith BD, Jones RJ (2005) Effects of imatinib and interferon on primitive chronic myeloid leukaemia progenitors. Br J Haematol 130 (3):373–381. doi:BJH5606 [pii] 10.1111/j.1365-2141.2005.05606.x

    Google Scholar 

  81. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL, Arber DA, Slovak ML, Forman SJ (2003) Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101 (12):4701–4707. doi:10.1182/blood-2002-09-2780 2002-09-2780 [pii]

  82. Huff CA, Wang Q, Rogers K, Jung M, Bolanos-Meade J, Borrello I, Jones R, Matsui W (2008). AACR Meeting Abstracts, LB-87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Matsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rasheed, Z.A., Kowalski, J., Matsui, W.H. (2011). Cancer Stem Cells and Disease Prognosis. In: Allan, A. (eds) Cancer Stem Cells in Solid Tumors. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-246-5_19

Download citation

Publish with us

Policies and ethics