Skip to main content

The Epithelial-to-Mesenchymal Transition and Cancer Stem Cells

  • Chapter
  • First Online:
Cancer Stem Cells in Solid Tumors

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1261 Accesses

Abstract

The epithelial-to-mesenchymal transition (EMT) is a developmental process which is reactivated during carcinoma progression, providing tumor cells with enhanced migratory properties, the capacity to invade the stroma, and the ability to metastasize. Tumor cells undergoing EMT also acquire stem cell characteristics, suggesting that there is crosstalk between pathways promoting EMT and self-renewal, and that the EMT process contributes to the generation of cancer stem cells. This chapter summarizes findings pointing to molecular links between EMT and cancer stem cells. The focus is crosstalk between signaling by the transforming growth factor-beta (TGF-β)/Smad pathway, a major inducer of EMT, and stem cell pathways including Wnt, Ras, Hedgehog, and Notch. Finally, the existence of EMT/stem cell niches in tumors where cooperative signaling between TGF-β and self-renewal pathways is activated is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALDH1:

Aldehyde dehydrogenase 1

AP-1:

Activator protein-1

APC:

Adenomatous polyposis coli

bHLH:

Basic helix-loop-helix

CAR:

Coxsackie- and adenovirus receptor

CD:

Cluster of differentiation

EMT:

Epithelial-to-mesenchymal transition

EpR:

Epithelial repressors

EPSC:

EMT promoting Smad complexes

ERK:

Extracellular signal-regulated kinase

ERα:

Estrogen receptor-α

GSK-3β:

Glycogen synthase kinase-3beta

HIF-1α:

Hypoxia-inducible factor 1 alpha

HMGA2:

High mobility group A2

LDL:

Low density lipoprotein

LEF:

Lymphoid enhancer factor

MAPK:

Mitogen-activated protein kinase

MeA:

Mesenchymal activators

MMP:

Matrix metalloproteinase

NF B:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PAI-1:

Plasminogen activator inhibitor 1

PI3K:

Phosphoinositol-3-kinase

RTK:

Receptor tyrosine kinase

Sp1:

Specificity protein 1

TCF:

T cell factor

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

α-SMA:

Alpha smooth muscle actin

β-Cat:

Beta Catenin

References

  1. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139 (5):871–890.

    Article  PubMed  CAS  Google Scholar 

  2. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7 (2):131–142.

    Article  PubMed  CAS  Google Scholar 

  3. Christofori G (2006) New signals from the invasive front. Nature 441 (7092):444–450.

    Article  PubMed  CAS  Google Scholar 

  4. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119 (6):1420–1428.

    Article  PubMed  CAS  Google Scholar 

  5. Thompson EW, Newgreen DF, Tarin D (2005) Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 65 (14):5991–5995; discussion 5995.

    Google Scholar 

  6. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7 (6):415–428.

    Article  PubMed  CAS  Google Scholar 

  7. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2 (2):84–89.

    Article  PubMed  CAS  Google Scholar 

  8. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2 (2):76–83.

    Article  PubMed  CAS  Google Scholar 

  9. Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62 (6):1613–1618.

    PubMed  CAS  Google Scholar 

  10. Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA, Cano A (2001) A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 276 (29):27424–27431.

    Article  PubMed  CAS  Google Scholar 

  11. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117 (7):927–939.

    Article  PubMed  CAS  Google Scholar 

  12. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7 (6):1267–1278.

    Article  PubMed  CAS  Google Scholar 

  13. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24 (14):2375–2385.

    Article  PubMed  CAS  Google Scholar 

  14. De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G (2005) The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65 (14):6237–6244.

    Article  PubMed  Google Scholar 

  15. Franci C, Gallen M, Alameda F, Baro T, Iglesias M, Virtanen I, Garcia de Herreros A (2009) Snail1 protein in the stroma as a new putative prognosis marker for colon tumours. PLoS One 4 (5):e5595.

    Article  PubMed  CAS  Google Scholar 

  16. Franci C, Takkunen M, Dave N, Alameda F, Gomez S, Rodriguez R, Escriva M, Montserrat-Sentis B, Baro T, Garrido M, Bonilla F, Virtanen I, Garcia de Herreros A (2006) Expression of Snail protein in tumor-stroma interface. Oncogene 25 (37):5134–5144.

    PubMed  CAS  Google Scholar 

  17. Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL, Crystal RG, de Herreros AG, Moustakas A, Pettersson RF, Fuxe J (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 11 (8):943–950.

    Article  PubMed  CAS  Google Scholar 

  18. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133 (4):704–715.

    Article  PubMed  CAS  Google Scholar 

  19. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3 (8):e2888.

    Article  PubMed  CAS  Google Scholar 

  20. Martin TA, Goyal A, Watkins G, Jiang WG (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12 (6):488–496.

    Article  PubMed  Google Scholar 

  21. Mironchik Y, Winnard PT, Jr., Vesuna F, Kato Y, Wildes F, Pathak AP, Kominsky S, Artemov D, Bhujwalla Z, Van Diest P, Burger H, Glackin C, Raman V (2005) Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res 65 (23):10801–10809.

    Article  PubMed  CAS  Google Scholar 

  22. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH (2007) Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 67 (5):1979–1987.

    Article  PubMed  CAS  Google Scholar 

  23. Yang MH, Wu KJ (2008) TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell Cycle 7 (14):2090–2096.

    Article  PubMed  CAS  Google Scholar 

  24. Howe LR, Watanabe O, Leonard J, Brown AM (2003) Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res 63 (8):1906–1913.

    PubMed  CAS  Google Scholar 

  25. Andreolas C, Kalogeropoulou M, Voulgari A, Pintzas A (2008) Fra-1 regulates vimentin during Ha-RAS-induced epithelial mesenchymal transition in human colon carcinoma cells. Int J Cancer 122 (8):1745–1756.

    Article  PubMed  CAS  Google Scholar 

  26. Lemieux E, Bergeron S, Durand V, Asselin C, Saucier C, Rivard N (2009) Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis. Int J Cancer 125 (7):1575–1586.

    Article  PubMed  CAS  Google Scholar 

  27. Rivat C, Le Floch N, Sabbah M, Teyrol I, Redeuilh G, Bruyneel E, Mareel M, Matrisian LM, Crawford HC, Gespach C, Attoub S (2003) Synergistic cooperation between the AP-1 and LEF-1 transcription factors in activation of the matrilysin promoter by the src oncogene: implications in cellular invasion. Faseb J 17 (12):1721–1723.

    PubMed  CAS  Google Scholar 

  28. Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I (2005) Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. Journal of Cellular Biochemistry 95 (5):918–931.

    Article  PubMed  CAS  Google Scholar 

  29. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A (2003) Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol 163 (4):847–857.

    Article  PubMed  CAS  Google Scholar 

  30. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM (2003) Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 63 (10):2658–2664.

    PubMed  CAS  Google Scholar 

  31. Gradl D, Kuhl M, Wedlich D (1999) The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19 (8):5576–5587.

    PubMed  CAS  Google Scholar 

  32. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308 (5725):1181–1184.

    Article  PubMed  CAS  Google Scholar 

  33. Kaidi A, Williams AC, Paraskeva C (2007) Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 9 (2):210–217.

    Article  PubMed  CAS  Google Scholar 

  34. Kouzmenko AP, Takeyama K, Ito S, Furutani T, Sawatsubashi S, Maki A, Suzuki E, Kawasaki Y, Akiyama T, Tabata T, Kato S (2004) Wnt/beta-catenin and estrogen signaling converge in vivo. J Biol Chem 279 (39):40255–40258.

    Article  PubMed  CAS  Google Scholar 

  35. Stemmer V, de Craene B, Berx G, Behrens J (2008) Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 27 (37):5075–5080.

    Article  PubMed  CAS  Google Scholar 

  36. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114 (4):569–581.

    PubMed  CAS  Google Scholar 

  37. Jungert K, Buck A, von Wichert G, Adler G, Konig A, Buchholz M, Gress TM, Ellenrieder V (2007) Sp1 is required for transforming growth factor-beta-induced mesenchymal transition and migration in pancreatic cancer cells. Cancer Res 67 (4):1563–1570.

    Article  PubMed  CAS  Google Scholar 

  38. Jorda M, Olmeda D, Vinyals A, Valero E, Cubillo E, Llorens A, Cano A, Fabra A (2005) Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 118 (Pt 15):3371–3385.

    Article  PubMed  CAS  Google Scholar 

  39. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 5 (9):744–749.

    Article  PubMed  CAS  Google Scholar 

  40. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179 (1-2):56–65.

    Article  PubMed  CAS  Google Scholar 

  41. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100 (7):3983–3988.

    Article  PubMed  CAS  Google Scholar 

  42. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138 (3):592–603.

    Article  PubMed  CAS  Google Scholar 

  43. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11 (4):R46.

    Article  PubMed  CAS  Google Scholar 

  44. Douville J, Beaulieu R, Balicki D (2008) ALDH1 as a Functional Marker of Cancer Stem and Progenitor Cells. Stem Cells Dev.

    Google Scholar 

  45. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, Fridlyand J, Sahin A, Agarwal R, Joy C, Liu W, Stivers D, Baggerly K, Carey M, Lluch A, Monteagudo C, He X, Weigman V, Fan C, Palazzo J, Hortobagyi GN, Nolden LK, Wang NJ, Valero V, Gray JW, Perou CM, Mills GB (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69 (10):4116–4124.

    Article  PubMed  CAS  Google Scholar 

  46. Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW (2010) Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 15 (2):235–252.

    Article  PubMed  Google Scholar 

  47. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA (2009) Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27 (9):2059–2068.

    Google Scholar 

  48. Massague J (2008) TGFbeta in Cancer. Cell 134 (2):215–230.

    Article  PubMed  CAS  Google Scholar 

  49. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19 (2):156–172.

    Article  PubMed  CAS  Google Scholar 

  50. Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1 (3):169–178.

    Article  PubMed  CAS  Google Scholar 

  51. Pardali K, Moustakas A (2007) Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775 (1):21–62.

    PubMed  CAS  Google Scholar 

  52. Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annual Review of Cell and Developmental Biology 21:659–693.

    Article  PubMed  CAS  Google Scholar 

  53. Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes & Development 19 (23):2783–2810.

    Article  CAS  Google Scholar 

  54. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112 (10):1486–1494.

    PubMed  CAS  Google Scholar 

  55. Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1 (5):260–266.

    Article  PubMed  CAS  Google Scholar 

  56. Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G, ten Dijke P (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66 (4):2202–2209.

    Article  PubMed  CAS  Google Scholar 

  57. Kaimori A, Potter J, Kaimori JY, Wang C, Mezey E, Koteish A (2007) Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem 282 (30):22089–22101.

    Article  PubMed  CAS  Google Scholar 

  58. Takano S, Kanai F, Jazag A, Ijichi H, Yao J, Ogawa H, Enomoto N, Omata M, Nakao A (2007) Smad4 is essential for down-regulation of E-cadherin induced by TGF-beta in pancreatic cancer cell line PANC-1. J Biochem 141 (3):345–351.

    Article  PubMed  CAS  Google Scholar 

  59. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16 (4):1987–2002.

    Article  PubMed  CAS  Google Scholar 

  60. Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA (2006) Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 20 (22):3130–3146.

    Article  PubMed  CAS  Google Scholar 

  61. DiMeo TA, Anderson K, Phadke P, Fan C, Perou CM, Naber S, Kuperwasser C (2009) A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 69 (13):5364–5373.

    Article  PubMed  CAS  Google Scholar 

  62. Gauger KJ, Hugh JM, Troester MA, Schneider SS (2009) Down-regulation of sfrp1 in a mammary epithelial cell line promotes the development of a cd44high/cd24low population which is invasive and resistant to anoikis. Cancer Cell Int 9:11.

    Article  PubMed  CAS  Google Scholar 

  63. McCoy EL, Iwanaga R, Jedlicka P, Abbey NS, Chodosh LA, Heichman KA, Welm AL, Ford HL (2009) Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest 119 (9):2663–2677.

    Article  PubMed  CAS  Google Scholar 

  64. McDonald SL, Silver A (2009) The opposing roles of Wnt-5a in cancer. Br J Cancer 101 (2):209–214.

    Article  PubMed  CAS  Google Scholar 

  65. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17 (1):45–51.

    Article  PubMed  CAS  Google Scholar 

  66. Su HY, Lai HC, Lin YW, Liu CY, Chen CK, Chou YC, Lin SP, Lin WC, Lee HY, Yu MH (2009) Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int J Cancer.

    Google Scholar 

  67. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17 (1):9–26.

    Article  PubMed  CAS  Google Scholar 

  68. Cadigan KM, Peifer M (2009) Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 1 (2):a002881.

    Article  PubMed  Google Scholar 

  69. Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137 (5):811–819.

    Article  PubMed  CAS  Google Scholar 

  70. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275 (5307):1787–1790.

    Article  PubMed  CAS  Google Scholar 

  71. Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28 (1–2):151–166.

    Article  PubMed  CAS  Google Scholar 

  72. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6 (10):931–940.

    Article  PubMed  CAS  Google Scholar 

  73. Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9 (7):517–531.

    Article  PubMed  CAS  Google Scholar 

  74. Safina AF, Varga AE, Bianchi A, Zheng Q, Kunnev D, Liang P, Bakin AV (2009) Ras alters epithelial-mesenchymal transition in response to TGFbeta by reducing actin fibers and cell-matrix adhesion. Cell Cycle 8 (2):284–298.

    Article  PubMed  CAS  Google Scholar 

  75. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grunert S (2002) Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156 (2):299–313.

    Article  PubMed  CAS  Google Scholar 

  76. Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, Adler G, Gress TM (2001) Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 61 (10):4222–4228.

    PubMed  CAS  Google Scholar 

  77. Oft M, Akhurst RJ, Balmain A (2002) Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4 (7):487–494.

    Article  PubMed  CAS  Google Scholar 

  78. Janda E, Nevolo M, Lehmann K, Downward J, Beug H, Grieco M (2006) Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene 25 (54):7117–7130.

    Article  PubMed  CAS  Google Scholar 

  79. Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M (2009) Role of Ras signaling in the induction of snail by transforming growth factor-beta. J Biol Chem 284 (1):245–253.

    Article  PubMed  CAS  Google Scholar 

  80. Peinado H, Quintanilla M, Cano A (2003) Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278 (23):21113–21123.

    Article  PubMed  CAS  Google Scholar 

  81. Katoh Y, Katoh M (2009) Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Current Molecular Medicine 9 (7):873–886.

    Article  PubMed  CAS  Google Scholar 

  82. Li X, Deng W, Nail CD, Bailey SK, Kraus MH, Ruppert JM, Lobo-Ruppert SM (2006) Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 25 (4):609–621.

    PubMed  CAS  Google Scholar 

  83. Li X, Deng W, Lobo-Ruppert SM, Ruppert JM (2007) Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26 (31):4489–4498.

    Article  PubMed  CAS  Google Scholar 

  84. Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T, Thomas SB, Farrar WL (2009) Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis 26 (5):433–446.

    Article  PubMed  CAS  Google Scholar 

  85. Molofsky AV, Pardal R, Morrison SJ (2004) Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 16 (6):700–707.

    Article  PubMed  CAS  Google Scholar 

  86. Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, Nelles L, Wuytens G, Su MT, Bodmer R, Smith JC, Huylebroeck D (1999) SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 274 (29):20489–20498.

    Article  PubMed  CAS  Google Scholar 

  87. Postigo AA (2003) Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J 22 (10):2443–2452.

    Article  PubMed  CAS  Google Scholar 

  88. Kim Y, Kugler MC, Wei Y, Kim KK, Li X, Brumwell AN, Chapman HA (2009) Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol 184 (2):309–322.

    Article  PubMed  CAS  Google Scholar 

  89. Zhang M, Wang M, Tang X, Li TF, Zhang Y, Chen D (2010) Smad3 prevents beta-catenin degradation and facilitates beta-catenin nuclear translocation in chondrocytes. J Biol Chem.

    Google Scholar 

  90. Romero D, Iglesias M, Vary CP, Quintanilla M (2008) Functional blockade of Smad4 leads to a decrease in beta-catenin levels and signaling activity in human pancreatic carcinoma cells. Carcinogenesis 29 (5):1070–1076.

    Article  PubMed  CAS  Google Scholar 

  91. Wu Y, Zhang X, Salmon M, Lin X, Zehner ZE (2007) TGFbeta1 regulation of vimentin gene expression during differentiation of the C2C12 skeletal myogenic cell line requires Smads, AP-1 and Sp1 family members. Biochimica et Biophysica Acta 1773 (3):427–439.

    Article  PubMed  CAS  Google Scholar 

  92. Verrecchia F, Vindevoghel L, Lechleider RJ, Uitto J, Roberts AB, Mauviel A (2001) Smad3/AP-1 interactions control transcriptional responses to TGF-beta in a promoter-specific manner. Oncogene 20 (26):3332–3340.

    Article  PubMed  CAS  Google Scholar 

  93. Datta PK, Blake MC, Moses HL (2000) Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-beta -induced physical and functional interactions between smads and Sp1. J Biol Chem 275 (51):40014–40019.

    Article  PubMed  CAS  Google Scholar 

  94. Botella LM, Sanchez-Elsner T, Rius C, Corbi A, Bernabeu C (2001) Identification of a critical Sp1 site within the endoglin promoter and its involvement in the transforming growth factor-beta stimulation. J Biol Chem 276 (37):34486–34494.

    Article  PubMed  CAS  Google Scholar 

  95. Poncelet AC, Schnaper HW (2001) Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells. J Biol Chem 276 (10):6983–6992.

    Article  PubMed  CAS  Google Scholar 

  96. Naso M, Uitto J, Klement JF (2003) Transcriptional control of the mouse Col7a1 gene in keratinocytes: basal and transforming growth factor-beta regulated expression. J Invest Dermatol 121 (6):1469–1478.

    Article  PubMed  CAS  Google Scholar 

  97. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A (2008) HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 283 (48):33437–33446.

    Article  PubMed  CAS  Google Scholar 

  98. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A (2006) Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174 (2):175–183.

    Article  PubMed  CAS  Google Scholar 

  99. Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y, Nakao M (2009) HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol 174 (3):854–868.

    Article  PubMed  CAS  Google Scholar 

  100. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434 (7035):843–850.

    Article  PubMed  CAS  Google Scholar 

  101. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420 (6917):860–867.

    Article  PubMed  CAS  Google Scholar 

  102. Wu Y, Zhou BP (2009) Inflammation: a driving force speeds cancer metastasis. Cell Cycle 8 (20):3267–3273.

    Article  PubMed  CAS  Google Scholar 

  103. Lopez-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1 (6–7):303–314.

    Article  PubMed  CAS  Google Scholar 

  104. Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S, Hirao A, Saya H, Taketo MM, Oshima M (2008) Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J 27 (12):1671–1681.

    Article  PubMed  CAS  Google Scholar 

  105. Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH, Radisky DC, Ferrone S, Knutson KL (2009) Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res 69 (7):2887–2895.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Fuxe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fuxe, J. (2011). The Epithelial-to-Mesenchymal Transition and Cancer Stem Cells. In: Allan, A. (eds) Cancer Stem Cells in Solid Tumors. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-246-5_14

Download citation

Publish with us

Policies and ethics